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Введение 

Нелокальные краевые задачи для дифференциальных уравнений в 

частных производных, где связаны между собой значения неизвестных 

функций и ее производных в различных точках границы [25, 27, 32, 37, 

39, 40, 43, 68, 69, 74, 75], имеют важные приложения и встречаются в 

приложениях в качестве математической модели реальных физических 

процессов. Это задачи распределения влаги в почве [40, 43, 74, 76], за-

дачи математической биологии [39].  

Развитие теории нелокальных краевых задач для дифференциаль-

ных уравнений в частных производных были начаты в работах  

А.В. Бицадзе и А.А. Самарского [12]. Исследованию таких задач посвя-

щены работы А.М. Нахущева [38-40], Ю.А. Митропольского и 

Л.Б. Урманчевой [37], Н.И. Ионкина [25], М.Х. Шханукова [74-75],  

Т.И. Кигурадзе [32], А.И. Кожанова [31], О.А. Репина [46],  

Ю.Т. Сильченко [68], А. Сопуева [69], Л.С. Пулькиной [44],  

Т.Т. Каракеева [27], А.Т. Асановой [7] и др. 

Нелокальные краевые задачи для дифференциальных уравнений в 

частных производных в определенной постановке могут быть приве-

дены к интегральным уравнениям Вольтерра, в том числе интегральным 

уравнениям Вольтерра третьего рода [27, 43, 74]. Теория данных задач 

развивается в направлении применения методов регуляризации, основы 

которых были заложены в работах А.Н. Тихонова, М.М. Лаврентьева. 

Регуляризация интегральных уравнений Вольтерра третьего рода и 

условия их разрешимости исследованы в работах Л.И. Панова [45], 

Я. Янно [77], Н.А. Магницкого [34], А. Асанова [7], Т.Д. Омурова  

[41-42], Т.Т. Каракеева [30], М.В. Булатова [11] и др. Вопросы числен-

ного решения изучены в работах Т.Т. Каракеева [28-29]. 

Нелокальные краевые задачи для дифференциальных уравнений в 

частных производных исследованы в случаях обратимости объединён-

ного оператора при неизвестных функциях в нелокальных условиях  

[8, 32, 37]. Данные задачи в случаях необратимости объединённого опе-

ратора при неизвестных функциях в нелокальных условиях мало иссле-

дованы, не разработаны методы регуляризации, не изучены вопросы 

обоснования методов численного решения.  
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Нелокальные краевые задачи для дифференциальных уравнений в 

частных производных второго и третьего порядка изучены  

Ю.А. Митропольского и Л.Б. Урманчевой, Т.И. Кигурадзе,  А.М. Наху-

щева, М.Х. Шханукова, Т.Т. Каракеева и др. 

Ю.А. Митропольский и Л.Б. Урманчева, Т.И. Кигурадзе исследо-

вали нелинейные дифференциальные уравнения в частных производных 

второго порядка с нелокальным краевым условием в случае, когда в кра-

евом условии коэффициенты являются постоянными. Эту же задачу ис-

следует А.Т. Асанова в случае, когда в краевом условии коэффициен-

тами являются функции. 

Нелокальные краевые задачи для дифференциальных уравнений в 

частных производных третьего порядка исследовано М.Х. Шхануковым, 

Т.Т. Каракеевым и другими. 

В работе Ю.А. Митропольского и Л.Б. Урманчевой исследуется за-

дача [37] 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡𝜕𝑥
= 𝑃(𝑡, 𝑥)𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑢𝑡(𝑥, 𝑡)),          (0.1.1) 

𝑢(𝑡, 0) = 𝑢0(𝑡) + 𝜐(0),                

𝑢(0, 𝑥) = 𝑢0(0) + 𝜐(𝑥),                                          (0.1.2) 

𝐴𝑢(0, 𝑥) + 𝐶𝑢(𝑇, 𝑥) = 𝜔(𝑥),                                   (0.1.3) 

где 𝑢 = (𝑢1, … , 𝑢𝑛), 𝑓 = (𝑓1, … , 𝑓𝑛) – векторы 𝑛-мерного евклидова про-

странства 𝐸𝑛, 𝑃(𝑡, 𝑥) − 𝑛 × 𝑛-матрица, вектор функция 𝑢0(𝑡) задана, не-

прерывна и обладает непрерывной ограниченной производной    

|𝑢0(𝑡)| ≤ 𝑁⃗⃗ ,     |𝑢0𝑡
′ (𝑡)| ≤ 𝑁⃗⃗ 1,    𝑡 ∈ [0, 𝑇], 

вектор-функция 𝜐(𝑥) строится в процессе нахождения искомого реше-

ния, а вектор-функция 𝜔(𝑥) ограничена и непрерывна, |𝜔(𝑥)| ≤ 𝐿⃗ . 

Требуется выполнение следующих условий: 

I. Вектор функция 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑢𝑡
′(𝑡, 𝑥)) определена и непрерывна 

в области,  Ω: (𝑡, 𝑥) ∈ [0, 𝑇] × [−𝑎, 𝑎], (𝑢(𝑡, 𝑥), 𝑢𝑡
′(𝑡, 𝑥)) ∈ 𝐷 × 𝐷1, 

где 𝐷, 𝐷1 − ограниченные области 𝐸𝑛: 𝐷 = {𝑢⃗ : 𝑏⃗ ≤ 𝑢⃗ ≤ 𝑐 },     

𝐷1 = {𝑢𝑡
′ : |𝑢𝑡

′| ≤ 𝑎𝑀⃗⃗ 0 + 𝑁⃗⃗ 1} и удовлетворяет неравенствам 

|𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑢𝑡
′(𝑡, 𝑥))| ≤ 𝑀⃗⃗ ,  

|𝑃(𝑡, 𝑥)𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑢𝑡
′(𝑡, 𝑥))| ≤ 𝑀⃗⃗ 0, 
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|𝑓(𝑡, 𝑥, 𝑢̅1, 𝑢̅2) − 𝑓(𝑡, 𝑥, 𝑢1, 𝑢2)| ≤ 𝐾1|𝑢̅1 − 𝑢1| + 𝐾2|𝑢̅2 − 𝑢2|. 

Элементы матриц 𝐾1, 𝐾2 неотрицательны.  

II. Матрица 𝑃(𝑡, 𝑥) непрерывны при (𝑡, 𝑥) ∈ [0, 𝑇] × [−𝑎, 𝑎], эле-

менты матрицы 𝑃 определены соотношениями |{𝑃(𝑡, 𝑥)}𝑖𝑗| = 𝑃𝑖𝑗. 

III. Для постоянных матриц 𝐴 и 𝐶 существует обратная матрица 

(𝐴 + 𝐶)−1.  

Решение задачи (1)–(3) строится с помощью последовательности функ-

ций 

𝑢0(𝑡, 𝑥) = 𝑢0(𝑡) + 𝜐0(𝑥),                                                                         

𝑢𝑛+1(𝑡, 𝑥) = 𝑢0(𝑡) +∑𝜐𝑖(𝑥) + ∫∫{[𝑃(𝜉, 𝜂)𝑢𝑛(𝜉, 𝜂) +             

𝑡

0

𝑥

0

𝑛+1

𝑖=0

 

+𝑓 (𝜉, 𝜂, 𝑢̃𝑛(𝜉, 𝜂), 𝑢̃𝑛𝜉
′ (𝜉, 𝜂))] − [𝑃(𝜉, 𝜂)𝑢𝑛(𝜉, 𝜂) +                           

+𝑓 (𝜉, 𝜂, 𝑢̃𝑛(𝜉, 𝜂), 𝑢̃𝑛𝜀
′ (𝜉, 𝜂))]}𝑑𝜉𝑑𝜂 +

𝑡

𝑇
{𝐶−1(𝜔(𝑥) − 𝐴[𝑢0(0) + 

+𝜐0(𝑥) +∑𝜐𝑗(𝑥)]

𝑛

𝑗=1

) − 𝑢0(𝑇) −∑𝜐𝑗(𝑥)},                                      (0.1.4)

𝑛

𝑗=1

 

(𝐴 + 𝐶)𝜐𝑛(𝑥) + 𝐶 ∫∫𝑃(𝜉, 𝜂)𝜐𝑛(𝜂)𝑑𝜉𝑑𝜂 = ψ𝑛(𝑥),                         

𝑇

0

𝑥

0

 

где  𝜓𝑛(𝑥) = −𝐶 ∫∫{𝑃(𝜉, 𝜂)[𝑢̃𝑛(𝜉, 𝜂) − 𝑢𝑛−1(𝜉, 𝜂)] +

𝑇

0

𝑥

0

 

+[𝑓 (𝜉, 𝜂, 𝑢̃𝑛(𝜉, 𝜂), 𝑢̃𝑛𝜉
′ (𝜉, 𝜂)) − 𝑓 (𝜉, 𝜂, 𝑢̃𝑛−1(𝜉, 𝜂), 𝑢̃𝑛−1,𝜉

′ (𝜉, 𝜂))]}𝑑𝜉𝑑𝜂, 

𝑢̃𝑛(𝜉, 𝜂) = 𝑢𝑛(𝜉, 𝜂) − 𝜐𝑛(𝜂). 

Вектор функция 𝜐𝑖(𝑥), 𝑖 = 0,1, …, выбирается так, чтобы последователь-

ные приближения  𝑢̃𝑖(𝜉, 𝜂),   𝑖 = 0,1, …, удовлетворяли двухточечному 

условию  

𝐴𝑢̃𝑖(0, 𝑥) + 𝐶𝑢̃𝑖(𝑇, 𝑥) = 𝜔(𝑥). 

При выполнении условий I–III доказано существование единствен-

ного решения 𝑢(𝑡, 𝑥) системы (0.1.1)–(0.1.3), которое является равномер-



7 

 

ным пределом последовательности 𝑢𝑛+1(𝑡, 𝑥), удовлетворяющим си-

стеме интегро-дифференциальных уравнений с частными производ-

ными:  

𝑢(𝑡, 𝑥) = 𝑢0(𝑡) + 𝜐(𝑥) + ∫∫[𝑃(𝜉, 𝜂)𝑢(𝜉, 𝜂) +

𝑡

0

𝑥

0

 

+𝑓(𝜉, 𝜂, 𝑢(𝜉, 𝜂), 𝑢𝜀
′ (𝜉, 𝜂))]𝑑𝜉𝑑𝜂.                              

В работе Т.И. Кигурадзе [32] рассматривается задача  

𝜕2𝑢

𝜕𝑥𝜕𝑦
= 𝑃(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
+ 𝑓(𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
),                        (0.1.5) 

краевыми условиями  

𝐴0𝑢(0, 𝑦) + 𝐴1𝑢(𝑎, 𝑦) = 𝜑2(𝑦)  при  0 ≤ 𝑦 ≤ 𝑏,   

𝑢(𝑥, 0) = 𝜑1(𝑥)  при  0 ≤ 𝑥 ≤ 𝑎,                                         (0.1.6) 

где  𝑃:𝐷𝑎𝑏 → 𝑅𝑛×𝑛 и 𝑓:𝐷𝑎𝑏 × 𝑅
2𝑛 → 𝑅𝑛 - непрерывные матричная и век-

торная функции, ℎ: 𝐶([0, 𝑎]; 𝑅𝑛) → 𝑅𝑛 -линейный непрерывный опера-

тор, 𝜑1: [0, 𝑎] → 𝑅𝑛 и 𝜑2: [0, 𝑎] → 𝑅𝑛 - непрерывно дифференцируемые 

векторные функции такие, что ℎ(𝜑1) = 𝜑2(0), 𝐴0 и 𝐴1 постоянные ве-

щественные (𝑛 × 𝑛)-матрицы и соблюдается равенство  

𝐴0𝜑1(0) + 𝐴1𝜑1(𝑎) = 𝜑2(0). 
В работе доказывается существование и единственность решения задачи 

(0.1.5)–(0.1.6). 

М.Х. Шхануков [74] для уравнения  

𝐿(𝑢) = 𝑢𝑥𝑥𝑡 + 𝑑(𝑥, 𝑡)𝑢𝑡 + 𝜂(𝑥, 𝑡)𝑢𝑥𝑥 + 𝑎(𝑥, 𝑡)𝑢𝑥 + 

+𝑏(𝑥, 𝑡)𝑢 = −𝑞(𝑥, 𝑡),                                                                 (0.1.7) 

в области 𝐷 ≡ {(𝑥, 𝑡): 0 < 𝑥 < 𝐻, 0 < 𝑡 < 𝑇} рассматривает характери-

стическую задачу  

𝑢(0, 𝑡) = 𝑓(𝑡),                                              (0.1.8) 

𝑢𝑥(0, 𝑡) = 𝑔(𝑡),                                            (0.1.9) 

𝑢(𝑥, 0) = ℎ(𝑥),                                          (0.1.10) 

где 𝑓(𝑡), 𝑔(𝑡) ∈ 𝐶1[0, 𝑇], ℎ(𝑥) ∈ 𝐶2[0,𝐻], 𝜂𝑥 ,  𝑑𝑡 ,  𝑎𝑥, 𝑏, 𝑞 ∈ 𝐶(𝐷̅). 
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Для задачи (0.1.7)–(0.1.10) имеет место соотношение  

𝜐𝐿(𝑢) − 𝑢𝑀(𝜐) =
𝜕

𝜕𝑥
[𝜐𝑢𝑥𝑡 + 𝑢𝜐𝑥𝑡 + 𝜂𝑢𝑥𝜐 − (𝜂𝜐)𝑥𝑢 + 𝑎𝑢𝜐] + 

+
𝜕

𝜕𝑡
[𝑑𝑢𝜐 − 𝜐𝑥𝑢𝑥],                                                                    (0.1.11) 

где 𝑀(𝜐) = −𝜐𝑥𝑡𝑥 − (𝑑𝜐)𝑡 + (𝜂𝜐)𝑥𝑥 − (𝑎𝜐)𝑥 + 𝑏𝜐.  

В работе показано, что функция Римана 𝜐(𝑥, 𝑡, 𝜉, 𝜏) однозначно опреде-

ляется следующими требованиями:  

𝑀(𝜐) = 0,                                                                                    (0.1.12) 

{
 

 
𝜐(𝜉, 𝑡, 𝜉, 𝜏) = 0,    𝜐𝑥(𝜉, 𝑡, 𝜉, 𝜏) = exp{∫𝜂(𝜉, 𝑡1)𝑑𝑡1

𝑡

𝜏

},                     

𝜐(𝑥, 𝜏, 𝜉, 𝜏) = 𝜔1(𝑥, 𝜏),                                                            (0.1.13)

 

где 𝜔1(𝑥, 𝜏) – решение задачи Коши 

𝜐𝑥𝑥(𝑥, 𝜏, 𝜉, 𝜏) + 𝑑(𝑥, 𝜏)𝜐(𝑥, 𝜏, 𝜉, 𝜏) = 0, 

𝜐(𝑥, 𝜏, 𝜉, 𝜏)|𝑥=𝜉 = 0,   𝜐𝑥(𝑥, 𝜏, 𝜉, 𝜏)|𝑥=𝜉 = 1,           (0.1.14) 

(𝜉, 𝜏) – произвольная фиксированная точка области 𝐷.  

Интегрируя (0.1.11) по области Ω ≡ {(𝑥, 𝑡): 0 < 𝑥 < 𝜉,  0 < 𝑡 < 𝜏} 

 с учетом (0.1.8)–(0.1.10), (0.1.12)–(0.1.14), получено соотношение 

𝑢(𝜉, 𝜏) = 𝑓(𝜏)𝜐𝑥(0, 𝜏, 𝜉, 𝜏) − ∫[𝜐(0, 𝑡, 𝜉, 𝜏)𝑔
′(𝑡)

𝜏

0

+ 𝜂(0, 𝑡)𝜐(0, 𝑡, 𝜉, 𝜏) × 

× 𝑔(𝑡) + 𝑓(𝑡)(𝜐𝑥𝑡(0, 𝑡, 𝜉, 𝜏) − 𝜂𝑥𝜐(0, 𝑡, 𝜉, 𝜏) − 𝜂(0, 𝑡)𝜐𝑥(0, 𝑡, 𝜉, 𝜏) +        

+𝑎(0, 𝑡)𝜐(0, 𝑡, 𝜉, 𝜏)]𝑑𝑡 − ∫[𝑑(𝑥, 0)ℎ(𝑥)𝜐(𝑥, 0, 𝜉, 𝜏) −                                  

𝜉

0

 

−𝜐𝑥(𝑥, 0, 𝜉, 𝜏)]ℎ
′(𝑥)𝑑𝑥 + ∫∫𝜐𝑞(𝑥, 𝑡)𝑑𝑥𝑑𝑡.                                     

𝜏

0

𝜉

0

(0.1.15) 

Формула (0.1.15) позволяет явном виде написать решение задачи 

(0.1.7)–(0.1.10), если известно 𝜐(𝑥, 𝑡, 𝜉, 𝜏). Доказано существование и 

единственность функции Римана. 

Полученные результаты используются при изучении нелокальной 

задачи 

𝐿(𝑢) = −𝑞(𝑥, 𝑡),                                            (0.1.16) 
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𝑢(0, 𝑡) = 𝑢(𝐻, 𝑡),    𝑢𝑥(0, 𝑡) = 𝑔(𝑡)                           (0.1.17) 

𝑢(𝑥, 0) = ℎ(𝑥).                                              (0.1.18) 

С помощью (0.1.15) из задачи (0.1.16)–(0.1.18) получено интеграль-

ное уравнение Вольтерра вида 

𝑓(𝜏)[𝜐𝑥(0, 𝜏, 𝐻, 𝜏) − 1] + ∫𝐾(𝜏, 𝑡)𝑓(𝑡)𝑑𝑡 = 𝛾(𝜏), 𝑓(𝜏) = 𝑢(0, 𝜏), (0.1.19)

𝜏

0

 

𝐾(𝜏, 𝑡) = 𝜐𝑥𝑡(0, 𝑡, 𝐻, 𝜏) − 𝜂𝑥𝜐(0, 𝑡, 𝐻, 𝜏) − 𝜂𝜐𝑥(0, 𝑡, 𝐻, 𝜏) + 𝑎𝜐(0, 𝑡, 𝐻, 𝜏), 

𝛾(𝜏) = ∫𝑔(𝑡)[𝜂𝜐(0, 𝑡, 𝐻, 𝜏) − 𝜐𝑡(0, 𝑡, 𝐻, 𝜏)]𝑑𝑡 + ∫[𝑑(𝑥, 0)ℎ(𝑥) ×

𝐻

0

𝜏

0

 

× 𝜐(𝑥, 0,𝐻, 𝜏) − 𝜐𝑥(𝑥, 0,𝐻, 𝜏)ℎ
′(𝑥)]𝑑𝑥 −∫∫𝜐𝑞𝑑𝑥𝑑𝑡 − 𝜐(0, 𝜏, 𝐻, 𝜏)

𝜏

0

𝐻

0

× 

× 𝑔(𝜏) + 𝜐(0,0, 𝐻, 𝜏)𝑔(0). 
Находя из уравнения (0.1.19) 𝑓(𝑡) ∈ 𝐶1[0, 𝑇], из (0.1.15) получено 

решение задачи (0.1.16)–(0.1.18).  

Задача (0.1.16)–(0.1.18) в случае 𝑢(0, 𝑡) = 𝜆(𝑡)𝑢(𝐻, 𝑡) в условии 

(0.1.17) исследовано в работе Т.Т. Каракеева [27]. Показано, что данная 

задача с помощью функции Римана сводится к интегральному уравне-

нию Вольтерра третьего рода: 

[1 − 𝜆(𝜏)𝜐𝑥(0, 𝜏, 𝐻, 𝜏)]𝑓(𝜏) + ∫𝐾(𝜏, 𝑡)𝑓(𝑡)𝑑𝑡 = 𝑞(𝜏),

𝜏

0

 

где  𝐾(𝜏, 𝑡) = 𝜆(𝜏)[𝜐𝑥𝑡(0, 𝑡, 𝐻, 𝜏) − 𝜂𝑥(0, 𝑡)𝜐(0, 𝑡, 𝐻, 𝜏) − 𝜂(0, 𝑡) × 

× 𝜐𝑥(0, 𝑡, 𝐻, 𝜏) + 𝑎(0, 𝑡)𝜐(0, 𝑡, 𝐻, 𝜏), 

𝑞(𝜏) = 𝜆(𝜏) [∫[𝑑(𝑥, 0)𝜐(0, 𝑡, 𝐻, 𝜏)

𝐻

0

ℎ(𝑥) − 𝜐𝑥(0, 𝑡, 𝐻, 𝜏)ℎ
′(𝑥)]𝑑𝑥 − 

−∫∫𝜐(𝑥, 𝑡, 𝐻, 𝜏)𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡 + ∫[𝜐(0, 𝑡, 𝐻, 𝜏)

𝐻

0

𝜏

0

𝐻

0

𝑔′(𝑡) + 𝜐(0, 𝑡, 𝐻, 𝜏) × 

× 𝜂(0, 𝑡)]𝑔(𝑡)𝑑𝑡. 

Функция Римана определяется также как выше в [74]. 
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В предположении, что функция  (1 − 𝜆(𝑡)𝜐𝑥(0, 𝜏, 𝐻, 𝜏)) обращается 

в нуль при 𝜏 = 𝑇 и является невозрастающей функцией методом регуля-

ризации доказано единственность и устойчивость решения исследуемой 

задачи.   

А.М. Нахушев рассматривает в области Ω = {𝑧|0 < 𝑥 < ℎ,  

0 < 𝑦 < 𝑇} евклидовой плоскости точек 𝑧 = (𝑥, 𝑦) нагруженное уравне-

ние гиперболического типа [40] 

𝑢𝑥𝑦 + 𝐴(𝑥, 𝑦)𝑢𝑥 + 𝐵(𝑥, 𝑦)𝑢𝑦 + 𝐶(𝑥, 𝑦)𝑢 =∑𝐵𝑖𝑢 + 𝑓(𝑥, 𝑦),        

3

𝑖=1

(0.1.20) 

где 𝐵1𝑢 ≡ 𝑎(𝑥, 𝑦)
𝜕

𝜕𝑥
∫𝛼(𝑥, 𝑦, 𝜂)𝑢(𝑥, 𝜂)𝑑𝜂

𝑦

0

+ 𝑏(𝑥, 𝑦) × 

×
𝜕

𝜕𝑦
∫𝛽(𝑥, 𝑦, 𝜉)𝑢(𝜉, 𝑦)

𝑥

0

𝑑𝜉 + ∫𝑑𝜉 ∫ 𝑐(𝑥, 𝑦, 𝜉)𝑢(𝜉)𝑑𝜂,

𝑦

0

𝑥

0

 

𝐵2𝑢 ≡ ∫𝛼
𝑖(𝑥, 𝑦, 𝜂)𝑢(𝑥𝑖 , 𝜂)𝑑𝜂 +∫𝛽

𝑗(𝑥, 𝑦, 𝜉)𝑢(𝜉, 𝑦𝑗)

𝑥

0

𝑦

0

𝑑𝜉,  

 𝐵3𝑢 ≡ 𝑐𝑖𝑗(𝑥, 𝑦)𝑢(𝑥𝑖 , 𝑦𝑗),   𝜉 = (𝜉, 𝜂). 

Для уравнения (0.1.20) ставится следующая задача. Пусть 𝛼𝑗(𝑦),

(𝑗 = 1,… , 𝑛) – заданные достаточно гладкие на сегменте 0 ≤ 𝑦 ≤ 𝑇
 

функции, а 𝑥0 > 0,  𝑥
𝑗,   𝑗 = 1,… , 𝑛,  – фиксированные точки, принадле-

жащие промежутку 0 ≤ 𝑥 ≤ ℎ. Найти регулярное в области Ω решение 

𝑢(𝑥, 𝑦) уравнения (0.1.20), непрерывное в Ω и удовлетворяющее усло-

вию 𝑢(𝑥, 0) = 𝜑(𝑥), 0 ≤ 𝑥 ≤ ℎ, если дополнительно для всех 𝑦 ∈ [0, 𝑇] 

известно, что 

𝜕

𝜕𝑦
∫ 𝑢(𝜉, 𝑦)𝑑𝜉 = 𝜏(𝑦)                                   (0.1.21)

𝑥0

0

 

или  

𝜕

𝜕𝑦
∑𝛼𝑗(𝑦)𝑢(𝑥

𝑗 , 𝑦)

𝑛

𝑗=1

= 𝜏(𝑦).                         (0.1.22) 

Решения нелокальной задачи строиться на основе функции Римана 



11 

 

𝑅(𝑥, 𝜂, 𝑥, 𝑦) = 𝑒𝑥𝑝(∫𝐴(𝑥, 𝑡)𝑑𝑡

𝑦

𝜂

),    

𝑅(𝜉, 𝑦, 𝑥, 𝑦) = 𝑒𝑥𝑝(∫𝐵(𝑡, 𝑦)

𝑥

𝜉

𝑑𝑡),                      (0.1.23) 

для уравнения 𝑅𝜉𝜂 − (𝐴𝑅)𝜉 − (𝐵𝑅)𝜂 + 𝐶𝑅 = 0. 

Решение задачи Гурса 𝑢(𝑥, 0) = 𝜑(𝑥),  0 ≤ 𝑥 ≤ ℎ,  𝑢(0, 𝑦) = 𝜓(𝑦),

0 ≤ 𝑦 ≤ 𝑇,  для уравнения (0.1.20) представлено в виде  

𝑢(𝑥, 𝑦) = 𝑅(𝑥, 0, 𝑥, 𝑦)𝜑(𝑥) − 𝑅(0,0, 𝑥, 𝑦)𝜑(0) + 𝑅(0, 𝑦, 𝑥, 𝑦)𝜓(𝑦) + 

+∫[𝐵(𝜉, 0)𝑅(𝜉, 0, 𝑥, 𝑦) − 𝑅𝜉(𝜉, 0, 𝑥, 𝑦)]

𝑥

0

𝜑(𝜉)𝑑𝜉 + ∫[𝐴(0, 𝜂)𝑅(0, 𝜂, 𝑥, 𝑦) −

𝑦

0

 

−𝑅𝜂(0, 𝜂, 𝑥, 𝑦)]𝜓(𝜂)𝑑𝜂 + 𝐹(𝑥, 𝑦, 𝑖) + ∫𝑑𝜉 ∫𝑅(𝜉, 𝜂, 𝑥, 𝑦)

𝑦

0

𝑥

0

(𝐵1𝑢)𝑑𝜂. 

Пользуясь общим представлением  

𝑢(𝑥, 𝑦) = 𝜐(𝑥, 𝑦) + ∫𝑃(𝑥, 𝑦, 𝜉1)𝜐(𝜉1, 𝑦)𝑑𝜉1 +

𝑥

0

∫𝑄(𝑥, 𝑦, 𝜂1)𝜐(𝑥, 𝜂1)𝑑𝜂1,

𝑦

0

 

всех регулярных в области Ω и непрерывных в Ω̅ решений уравнения 

𝐿𝑢 = 𝐵1𝑢 + 𝑓(𝑥, 𝑦), доказано следующее утверждение. 

Теорема 0.1.1. Если для всех 𝑦 ∈ [0, 𝑇] 

∫ [𝑅(0, 𝑦, 𝜉, 𝑦) + ∫𝑃(𝜉, 𝑦, 𝜉1)𝑅(0, 𝑦, 𝜉1, 𝑦)𝑑𝜉1

𝜉

0

]

𝑥0

0

≠ 0, 

где 𝑅(0, 𝑦, 𝜉, 𝑦) – функция Римана, нелокальная задача (0.1.21), (0.1.22) 

для уравнения 𝑢𝑥𝑦 + 𝐴(𝑥, 𝑦)𝑢𝑥 + 𝐵(𝑥, 𝑦)𝑢𝑦 + 𝐶(𝑥, 𝑦)𝑢 = 𝐵1𝑢 + 𝑓(𝑥, 𝑦) 

всегда разрешима притом единственным образом. 

В работе А.Т. Асановой [7] установлены достаточные условия су-

ществования и единственности классического решения задачи двухто-

чечной краевой задачи для квазилинейных гиперболических систем 

уравнений с двумя независимыми переменными  

𝜕2𝑢

𝜕𝑡𝜕𝑥
= 𝑃(𝑡, 𝑥)𝑢 + 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥),

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
),               (0.1.24)  
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с условиями  

𝑢(𝑡, 0) = 𝑢0(𝑡) + 𝜐(0), 𝑡 ∈ [0, 𝑇]                        (0.1.25) 

𝑢(0, 𝑥) = 𝑢0(0) + 𝜐(𝑥), 𝑥 ∈ [0,𝜔]                      (0.1.26) 

𝐴(𝑥)𝑢(0, 𝑥) + 𝐶(𝑥)𝑢(𝑇, 𝑥) = 𝑤(𝑥),   𝑥 ∈ [0,𝜔],            (0.1.27) 

где  𝑢 = (𝑢1, … , 𝑢𝑛),     𝑓 = (𝑓1, … , 𝑓𝑛) – векторы 𝑛-мерного пространства 

𝑅𝑛, 𝑃(𝑡, 𝑥) − (𝑛 × 𝑛)-матрица, вектор-функция 𝑢0(𝑡) задана на [0, 𝑇], 

непрерывна и обладает непрерывной ограниченной производной, вектор 

функция 𝜐(𝑥) определяется в процессе нахождения искомого решения, 

а вектор функция  𝑤(𝑥) ограничена и непрерывна на [0, 𝜔]. 

В краевой задаче (0.1.24)–(0.1.27) производится, следующая за-

мена: 𝑢̃(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − 𝜐(𝑥). Тогда задача (0.1.24)–(0.1.27) переходит к 

эквивалентной краевой задаче с параметром 𝜐(𝑥): 

𝜕2𝑢

𝜕𝑡𝜕𝑥
= 𝑃(𝑡, 𝑥)𝑢̃ + 𝑃(𝑡, 𝑥)𝜐(𝑥) + 𝑓(𝑡, 𝑥, 𝑢̃(𝑡, 𝑥) + 𝜐(𝑥),

𝜕𝑢̃(𝑡, 𝑥)

𝜕𝑡
), (0.1.28) 

с условиями  

𝑢̃(𝑡, 0) = 𝑢0(𝑡),             𝑡 ∈ [0, 𝑇]                               (0.1.29) 

𝑢̃(0, 𝑥) = 𝑢0(0),            𝑥 ∈ [0,𝜔]                              (0.1.30) 

[𝐴(𝑥) + 𝐶(𝑥)]𝜐(𝑥) = 𝑤(𝑥) − 𝐴(𝑥)𝑢0(0) −          

−𝐶(𝑥)𝑢̃(𝑇, 𝑥),   𝑥 ∈ [0, 𝜔].                                                  (0.1.31) 

Известные функции удовлетворяют следующим условиям: 

1) матрица 𝑃(𝑡, 𝑥) непрерывна при (𝑡, 𝑥) ∈ Ω̅;  

2) вектор-функция 𝑓(𝑡, 𝑥, 𝑢(𝑡, 𝑥),
𝜕𝑢(𝑡,𝑥)

𝜕𝑡
) определена и непрерывна в об-

ласти 𝐺0: (𝑡, 𝑥) ∈ Ω̅, (𝑢(𝑡, 𝑥),
𝜕𝑢(𝑡,𝑥)

𝜕𝑡
) ∈ 𝑆1(𝑢0, 𝑝) × 𝑆2(𝑢0, 𝑝), 

где  𝑆1(𝑢0, 𝑝) = {𝑢 ∈ 𝑅𝑛: ‖𝑢 − 𝑢0‖ ≤ 𝑝},     𝑆2(𝑢0, 𝑝) = {𝑢 ∈ 𝑅𝑛: ‖𝑢 −

−𝑢0‖ ≤ 𝑝 и удовлетворяет условию Липшица  

‖𝑓(𝑡, 𝑥, 𝑢1, 𝑢2) − 𝑓(𝑡, 𝑥, 𝑢̅1, 𝑢̅2)‖ ≤ 𝐾1(𝑡, 𝑥)‖𝑢1 − 𝑢̅1‖ + 𝐾2(𝑡, 𝑥) × 

× ‖𝑢2 − 𝑢̅2‖,                                                                                                    

где 𝐾𝑖(𝑡, 𝑥) – неотрицательные непрерывные на Ω̅ функции, 𝑖 = 1,2;  
3) для непрерывных на [0, 𝜔] матриц 𝐴(𝑥) и 𝐶(𝑥) существует обратная 

матрица  [𝐴(𝑥) + 𝐶(𝑥)]−1 при всех 𝑥 ∈ [0, 𝜔].  
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Используя обозначение 𝜔̃(𝑡, 𝑥) =
𝜕𝑢̃(𝑡,𝑥)

𝜕𝑡
 задача (0.1.28)-(0.1.29) све-

дена к системе двух интегральных уравнений  

𝜔̃(𝑡, 𝑥) = 𝑢0(𝑡) + ∫[𝑃(𝑡, 𝜉)𝑢̃

𝑥

0

(𝑡, 𝜉) + 𝑃(𝑡, 𝜉)𝜐(𝜉) +         

+𝑓(𝜏, 𝜉, 𝑢̃(𝜏, 𝜉) + 𝜐(𝜉), 𝜔̃(𝜏, 𝜉))]𝑑𝜉,                                    (0.1.32) 

𝑢̃(𝑡, 𝑥) = 𝑢0(𝑡) + ∫𝑑𝜏∫[𝑃(𝜏, 𝜉)𝑢̃(𝜏, 𝜉) + 𝑃(𝜏, 𝜉)𝜐(𝜉) +

𝑥

0

𝑡

0

                  

+𝑓(𝜏, 𝜉, 𝑢̃(𝜏, 𝜉) + 𝜐(𝜉), 𝜔̃(𝜏, 𝜉))]𝑑𝜉.                                     (0.1.33) 

Метод введения дополнительных параметров разбивает процесс 

нахождения неизвестных функций на два этапа: 

1) нахождение введенного функционального параметра 𝜐(𝑥) из со-

отношения (0.1.31); 

2) нахождение неизвестных функций 𝑢(𝑡, 𝑥), 𝜔(𝑡, 𝑥) из системы 

интегральных уравнений (0.1.32)–(0.1.33).  

Для определения неизвестных функций 𝜐(𝑥), 𝑢̃(𝑡, 𝑥), 𝜔̃(𝑡, 𝑥) при-

меняется итерационный метод и решения функциональных соотноше-

ний (0.1.32)–(0.1.33), (0.1.31) находят как пределы последовательностей 

{𝜐(𝑘)(𝑥), 𝑢̃(𝑘)(𝑡, 𝑥), 𝜔̃(𝑘)(𝑡, 𝑥)} которое определяют по следующему алго-

ритму: 

I. учитывая обратимость матрицы 𝐴(𝑥) + 𝐶(𝑥) при 𝑥 ∈ [0, 𝜔] из 

уравнения (0.1.31) находят 𝜐(0)(𝑥). Из системы уравнений 

(0.1.32)–(0.1.33) определяется  𝑢̃(0)(𝑡, 𝑥), 𝜔̃(0)(𝑡, 𝑥); 

II. в силу обратимости матрицы 𝐴(𝑥) + 𝐶(𝑥) при 𝑥 ∈ [0, 𝜔], из урав-

нения (0.1.31) при 𝑢̃(𝑇, 𝑥) = 𝑢̃(0)(𝑇, 𝑥) находят 𝜐(1)(𝑥). Из си-

стемы уравнений (0.1.32)–(0.1.33) определяется 𝑢̃(1)(𝑡, 𝑥),

𝜔̃(1)(𝑡, 𝑥) и т. д. 

Если данные краевой задачи (0.1.24)–(0.1.27) удовлетворяют условиям 

1)–3), то существует единственное классическое решение 𝑢(𝑡, 𝑥) двухто-

чечной краевой задачи (0.1.24)–(0.1.27) в области 𝑆(𝑢0, 𝑝). 
В работе Т.Т. Каракеева исследуется линейное уравнение Воль-

терра третьего рода [28] 
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𝑝(𝑥)𝜐(𝑥) + ∫𝐾(𝑥, 𝑡)𝜐(𝑡)𝑑𝑡 = 𝑓(𝑥),                        (0.1.34)

𝑥

0

 

где 𝑝(𝑥), 𝑓(𝑥), 𝐾(𝑥, 𝑡) – известные функции и подчиняются условиям  

𝑎)  𝑝(𝑥) ∈ 𝐶2[0, 𝑏],     𝑝(𝑏) = 0, 𝑝(𝑥) – невозрастающая функция, 

б) 𝐾(𝑥, 𝑡) ∈ 𝐶1(𝐷),    𝐾(𝑥, 𝑥) ≥ 0,    (𝑥, 𝑡) ∈ 𝐷 = {0 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏}, 

в) 𝑚𝑎𝑥(𝑝(𝑥), 𝐾(𝑥, 𝑡)) > 0,   0 ≤ 𝑥 ≤ 𝑏,   𝑓(𝑥) ∈ 𝐶1[0, 𝑏]. 

Действуя оператором 𝐶0𝐽 + 𝐼, где 𝐼 – тождественный оператор,  

𝐽 − оператор Вольтерра (𝐽𝜐)(𝑥) = ∫ 𝜐(𝑡)𝑑𝑡,
𝑥

0
 из (0.1.34), получено урав-

нение  

(𝐴𝜐)(𝑥) + (𝐺𝜐)(𝑥) = (𝐿𝜐)(𝑥) + 𝑔(𝑥),                      (0.1.35) 

 где (𝐿𝜐)(𝑥) = ∫ 𝐿(𝑥, 𝑡)
𝑥

0
𝜐(𝑡)𝑑𝑡, (𝐺𝜐)(𝑥) = ∫ 𝐺(𝑡)

𝑥

0
𝜐(𝑡)𝑑𝑡,   

𝑔(𝑥) = 𝑓(𝑥)𝐶0∫𝑓(𝑡)𝑑𝑡,  𝐺(𝑥) = 𝐶0

𝑥

0

𝑝(𝑥) + 𝐾(𝑥, 𝑥),  𝐿(𝜏, 𝑡) = 𝐾(𝑡, 𝑡) − 

−𝐾(𝑥, 𝑡)−𝐶0∫𝐾(𝜈, 𝑡)𝑑𝜈,   (𝐴𝜐)

𝑥

𝑡

(𝑥) = 𝑝(𝑥)𝜐(𝑥). 

Рассматривается уравнение с малым параметром  

(𝜀 + 𝐴)𝜐𝜀(𝑥) + (𝐺𝜐𝜀)(𝑥) = (𝐿𝜐𝜀)(𝑥) + 𝜀𝜐(0) + 𝑔(𝑥),          (0.1.36) 

где 𝜀 − малый параметр из интервала (0,1). 

Доказано следующая теорема. 

Теорема 0.1.2. Пусть выполняются условия а-в, если: 

1. уравнение (0.1.34) имеет решение 𝜐(𝑥) ∈ 𝐶𝛾[0, 𝑏], 0 < 𝛾 ≤ 1, то при 

𝜀 → 0, решение уравнения (0.1.36) равномерно сходится к решению 

уравнения (0.1.34), причем имеет место оценка 

‖𝜐𝜀(𝑥) − 𝜐(𝑥)‖𝐶 ≤ (𝑑4𝜀 + 𝑑3𝜀
𝛾)𝑑5𝑀0, 

0 < 𝑀0 = 𝑐𝑜𝑛𝑠𝑡,   𝑑3 = (2 + 𝑃2)𝛾0
−(1+𝛾)

𝑑𝛾𝑑1
−𝛾
,   𝑑4 =

(2 + 𝑃2)𝑏
𝛾

𝑝(0)
, 

𝛾0 = 𝑚𝑖𝑛(1 − 𝜃1, 1 − 𝛾),    𝑑5 = 𝑒𝑥𝑝(𝑏𝐶3(𝐿𝐾 + 𝐶0‖𝐾‖𝐶(𝐷))/𝑑1),     

𝜃2 = 1 − 𝜃1,    𝐶3 = (2 + 𝑃2)(2𝜃2
−2 + ‖𝜑‖𝐶𝑝

−1(0)),  
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‖𝜐‖𝛾∗ = sup
(𝜏,𝜈)∈[0,𝑏]

𝑥≠𝜈

{|𝜐(𝑥) − 𝜐(𝜈)|/|𝑥 − 𝜈|𝛾}; 

2. уравнение (0.1.34) имеет решение 𝜐(𝑥) ∈ 𝐶[0, 𝑏], то при 𝜀 → 0, реше-

ние уравнения (0.1.36) равномерно сходится к решению уравнения 

(0.1.34), причем имеет место оценка 

‖𝜐𝜀(𝑥) − 𝜐(𝑥)‖𝐶 ≤ [𝑑7(𝜀/𝑝(0) + (𝜃2
2𝑑1𝑒)

−1𝜀1−𝛽)‖𝜐‖𝐶 + 𝑑8𝜔𝜐(𝜀
𝛽)]𝑑5, 

    𝜔𝜐(𝛿) = sup
|𝑥−𝑡|≤𝛿

|𝜐(𝑥) − 𝜐(𝑡)|. 

В работе [29] для уравнения (0.1.34) обоснован метод численного 

решения на основе квадратурных формул правых прямоугольников: 

𝜐𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑊𝑖,𝑗

𝜀,ℎ𝐺𝑗

𝑖

𝑗=1

[ℎ∑𝐿𝑗,𝑘𝜐𝜀,𝑘 − ℎ∑𝐿𝑖,𝑘

𝑖

𝑘=1

𝑗

𝑘=1

𝜐𝜀,𝑘 + 

+𝑔𝑗 − 𝑔𝑖] + 𝑊̃𝑖,𝑗
𝜀,ℎ[ℎ∑𝐿𝑖,𝑗𝜐𝜀,𝑗 + 𝑔𝑖 + 𝜀𝜐0

𝑖

𝑗=1

],   𝑖 = 1. . 𝑛,          (0.1.37) 

где 𝐿𝑗,𝑘 = 𝐿(𝑥𝑗 , 𝑥𝑘),  𝜐𝜀,𝑗 = 𝜐𝜀(𝑥𝑗), 𝑔𝑖 = 𝑔(𝑥𝑖),   𝑝𝑖 = 𝑝(𝑥𝑖),   𝑥𝑗 = 𝑗ℎ,  

𝑗 = 1. . 𝑖,  𝐿(𝑥𝑖 , 𝑥𝑘) = −𝐾(𝑥𝑖 , 𝑥𝑘) + 𝐾(𝑥𝑘 , 𝑥𝑘) − 𝐶0ℎ ∑ 𝐾(𝑥𝑚, 𝑥𝑘),   

𝑖

𝑚=𝑘+1

 

𝜐0 = 𝜐(0),  𝑖 = 1. . 𝑛, 

𝑊𝑖,𝑗
𝜀,ℎ =

1

𝜀 + 𝑝𝑗
𝑒𝑥𝑝(−ℎ ∑

𝐺𝑚
𝜀 + 𝑝𝑚

𝑖

𝑚=𝑗

),  

𝑊̃𝑖,1
𝜀,ℎ =

1

𝜀 + 𝑝0
𝑒𝑥𝑝(−ℎ ∑

𝐺𝑚 + 𝑝𝑚
′

𝜀 + 𝑝𝑚

𝑖

𝑚=1

).               (0.1.38) 

Доказано сходимость численного метода по равномерной сеточной 

норме к точному решению уравнения (0.1.34), получена оценка погреш-

ности: 

‖𝜐𝜀,𝑖 − 𝜐𝑖‖𝐶ℎ
≤ 𝐶2ℎ

𝛼,   0 < 𝐶2 = 𝑐𝑜𝑛𝑠𝑡,   𝜀 = 𝑂(ℎ𝛼),   0 < 𝜎 ≤ 1/2. 

В работе А. Асанова, Г. Ободоевой [6] рассматривается интеграль-

ное уравнение Вольтерра третьего рода 

𝑎(𝑡)𝑢(𝑡) + ∫𝐾(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡),   𝑡 ∈ [𝑡0, 𝑇],   𝑇 > 𝑡0,    (0.1.39)

𝑡

𝑡0
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где 𝐾(𝑡, 𝑠), 𝑓(𝑡), 𝑎(𝑡) - заданные функции 𝑎(𝑡0) = 0, 𝑎(𝑡) − неубываю-

щая функция на [𝑡0, 𝑇]. 

Исследование вопросов единственности и регуляризируемости ре-

шения уравнения (0.1.38) проведено на основе уравнения  

(𝜀 + 𝑎(𝑡))𝜐(𝑡, 𝜀) + ∫𝐾(𝑡, 𝑠)𝜐(𝑠, 𝜀)𝑑𝑠 = 𝑓(𝑡),   𝑡 ∈ [𝑡0, 𝑇]

𝑡

𝑡0

        (0.1.40) 

где 0 < 𝜀 малый параметр, в следующих условиях  

а) при любом фиксированном 𝑡 ∈ [𝑡0, 𝑇], 𝐾(𝑡, 𝑠) ∈ 𝐿
𝑞1(𝑡0, 𝑡), 𝑞 ≥ 1, 

функция 𝐾(𝑡, 𝑡) ∈ 𝐿1
1(𝑡0, 𝑇)  и  𝐾(𝑡, 𝑡) ≥ 0, 𝑡 ∈ [𝑡0, 𝑇],   

б) при 𝜏 > 𝜂 для любых (𝜏, 𝑠), (𝜂, 𝑠) ∈ 𝐺 = {(𝑡, 𝑠): 𝑡0 < 𝑠 < 𝑡 < 𝑇} спра-

ведлива оценка  

|𝐾(𝜏, 𝑠) − 𝐾(𝜂, 𝑠)| ≤ 𝑙(𝑠)∫𝐾(𝑠, 𝑠)𝑑𝑠,

𝜏

𝜂

 

где  𝑙(𝑡) ≥ 0 при 𝑡 ∈ [𝑡0, 𝑇] и 𝑙(𝑡) ∈ 𝐿1
𝑞1[𝑡0, 𝑇],  𝑞1 ≥ 1. 

Доказано следующая теорема. 

Теорема 0.1.3. Пусть выполняются условия, а-б. Тогда: 

1) если 𝐾(𝑡, 𝑡) > 0 при почти всех 𝑡 ∈ [𝑡0, 𝑇] уравнение (0.1.38) имеет 

решение 𝑢(𝑡) ∈ 𝐶[𝑡0, 𝑇] и 𝑢(𝑡0) = 0, то решение 𝜐(𝑡, 𝜀) уравнения 

(0.1.39) при 𝜀 → 0 сходится по норме 𝐶[𝑡0, 𝑇] к 𝑢(𝑡). При этом спра-

ведлива оценка  

‖𝜐(𝑡, 𝜀) − 𝑢(𝑡)‖𝐶 ≤ 3𝑀𝐶0‖𝑢(𝑡)‖𝐶𝜀
1−𝛽 +𝑀𝜔𝑢̅(𝜀

𝛽), 

где 𝛽 − произвольное число из (0,1), 𝜔𝑢̅(𝛿) = sup
|𝑥−𝜈|≤𝛿

|𝑢(𝜑−1(𝑥)) −

−𝑢(𝜑−1(𝜈))|, 𝜑(𝑡) = ∫ 𝐾(𝑠, 𝑠)𝑑𝑠,  𝜑−1(𝑥) 
𝑡

𝑡0
– обратная функция к 

функции 𝜑(𝑡), 𝑀,  𝐶0 − известные постоянные, независящие от 𝜀; 

2) если уравнение (0.1.39) имеет решение 𝑢(𝑡) ∈ 𝐶𝜑
𝛾[𝑡0, 𝑇], 

0 < 𝛾 ≤ 1, 𝜑(𝑡) = ∫ 𝐾(𝑠, 𝑠)𝑑𝑠 
𝑡

𝑡0
 и 𝑢(𝑡0) = 0, то решение 𝜐(𝑡, 𝜀) урав-

нения (0.1.40) при 𝜀 → 0 сходится по норме 𝐶[𝑡0, 𝑇] к 𝑢(𝑡). При этом 

справедлива оценка  

‖𝜐(𝑡, 𝜀) − 𝑢(𝑡)‖𝐶 ≤ 𝑀2𝜀
𝛾, 

где 𝑀2 − постоянная, независящая от 𝜀.  
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ГЛАВА 1. РЕГУЛЯРИЗАЦИЯ НЕЛОКАЛЬНЫХ КРАЕВЫХ 

ЗАДАЧ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В 

ЧАСТНЫХ ПРОИЗВОДНЫХ 

 

1.1 Нелокальная краевая задача для нелинейных дифференциаль-

ных уравнений в частных производных второго порядка 

 

Рассмотрим дифференциальное уравнение  

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡𝜕𝑥
= 𝑃(𝑥, 𝑡)𝑤(𝑥, 𝑡) + 𝑓(𝑥, 𝑡, 𝑤(𝑥, 𝑡), 𝑤𝑡(𝑥, 𝑡)),       (1.1.1) 

с условиями 

𝑤(0, 𝑡) = 𝜎(𝑡) + 𝜑0,                      (1.1.2) 

 𝐴(𝑥)𝑤(𝑥, 0) + 𝐶(𝑥)𝑤(𝑥, 𝑇) = 𝑞(𝑥).        (1.1.3) 

Известные функции удовлетворяют условиям: 

а) 𝐴(𝑥),   𝐶(𝑥) ∈ 𝐶[0, 𝑏],   𝑝(𝑥) ≡ 𝐴(𝑥) + 𝐶(𝑥) −неубывающая функ-

ция, 𝑝(0) = 0,    𝑝(𝑥) > 0,   ∀𝑥 ∈ (0, 𝑏],   𝑞(𝑥) ∈ 𝐶[0, 𝑏],   𝜎(0) = 0, 

𝐶(0)𝜎(𝑇) = 𝑞(0); 

б)  𝑃(𝑥, 𝑡) ∈ 𝐶(𝐷),     𝑓(𝑥, 𝑡, 𝑤, 𝑧) ∈ 𝐶(𝐷 × 𝑅1 × 𝑅1),     𝜎(𝑡) ∈ 𝐶1[0, 𝑇], 

𝐷 = [0, 𝑏] × [0, 𝑇],  𝜑0 − неизвестный параметр, функция, 

 𝑓(𝑥, 𝑡, 𝑤, 𝑧) удовлетворяет условию Липшица по 𝑤 и 𝑧;  

в) 𝐺(𝑥) ≡ 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1, 0 < 𝐶0, 𝐾(𝑥, 𝑠) ≡ 𝐶(𝑥)𝑃0(𝑠),

𝑃0(𝑠) = ∫ 𝑃(𝑠, 𝜏)𝑑𝜏,
𝑇

0
 0 ≤ 𝑠 ≤ 𝑥,   𝐾(𝑥, 𝑠) удовлетворяет усло-

вию Липшица по 𝑥 в области 𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏},  

 𝑑1 = 𝑐𝑜𝑛𝑠𝑡. 
Введем подстановку  

𝑤(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏,                    (1.1.4)

𝑡

0

  

𝑤(𝑥, 0) = 𝜑(𝑥),   𝜑(0) = 𝜑0.                       (1.1.5)         

Тогда из (1.1.1), (1.1.2), имеем  

𝑧(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 +∫𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0
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+∫𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)𝑑𝜏, 𝑧(𝑠, 𝑡)

𝑡

0

)𝑑𝑠.                                       (1.1.6)

𝑥

0

 

При 𝑡 = 𝑇 обе части (1.1.4) умножим на 𝐶(𝑥) и учитывая условие 

(1.1.3) и уравнение (1.1.6), получим интегральное уравнение 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)

𝑥

0

𝜑(𝑠)𝑑𝑠 = 𝜇(𝑥) − 𝐶(𝑥)∫∫𝑃(𝑠, 𝑡) ×               

𝑇

0

𝑥

0

 

×∫𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −

𝑡

0

𝐶(𝑥)∫∫𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

)

𝑇

0

𝑥

0

𝑑𝑡𝑑𝑠,      ( 1.1.7) 

где  𝜇(𝑥) = 𝑞(𝑥) − 𝐶(𝑥)𝜎(𝑇), 𝐾(𝑥, 𝑠) = 𝐶(𝑥) ∫ 𝑃(𝑠, 𝑡)𝑑𝑡,
𝑇

0
  

𝑝(𝑥) =   𝐴(𝑥) + 𝐶(𝑥). 

Проинтегрируем уравнение (1.1.7), умноженное на постоянную 

𝐶0 > 0, от 0 до 𝑥 и суммируем полученное выражение с исходным урав-

нением (1.1.7).  

Тогда получим уравнение 

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 −∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡) ×

𝑇

0

𝑥

0

𝑥

0

𝑥

0

 

×∫𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −

𝑡

0

∫∫𝐾0(𝑥, 𝑠)𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)𝑑𝜏, 𝑧(𝑠, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝑠 +

𝑇

0

𝑥

0

 

+𝑔(𝑥), 

где 𝐿(𝑥, 𝑠) = 𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) − 𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈,

𝑥

𝑠

 𝑔(𝑥) = 𝜇(𝑥) + 

+𝐶0∫𝜇(𝑠)𝑑𝑠,

𝑥

0

 𝐾0(𝑥, 𝑠) = 𝐶(𝑥) + 𝐶0∫𝐶(𝜉)𝑑𝜉.

𝑥

𝑠

  

Для неизвестных функций 𝑧(𝑥, 𝑡) и 𝜑(𝑥) получим систему уравнений  

𝑧(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0
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+∫𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)𝑑𝜏, 𝑧(𝑠, 𝑡)

𝑡

0

)

𝑥

0

𝑑𝑠,     

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)

𝑥

0

𝜑(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 −

𝑥

0

     

−∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −

𝑡

0

𝑇

0

𝑥

0

 

−∫∫𝐾0(𝑥, 𝑠)𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧(𝑠, 𝑡))𝑑𝑡𝑑𝑠

𝑇

0

𝑥

0

+ 𝑔(𝑥).         (1.1.8) 

Регуляризация систем интегральных уравнений (1.1.8) построим в сле-

дующем виде 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑧𝜀(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠 +∫𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

              

+∫𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)

𝑡

0

)𝑑𝑠,                                                     

𝑥

0

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)

𝑥

0

𝜑𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑𝜀(𝑠)

𝑥

0

𝑑𝑠 −                         

−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑃(𝑠, 𝑡) ∫ 𝑧𝜀(𝑠, 𝜏)

𝑡

0

𝑑𝜏𝑑𝑡𝑑𝑠 − ∫∫𝐾0(𝑥, 𝑠) ×                         

𝑇

0

𝑥

0

× 𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝑠 + 𝜀𝜑(0) + 𝑔(𝑥),        (1.1.9) 

 

где 𝜀 малый параметр из интервала (0,1).  

Используя резольвенту 𝑅𝜀(𝑥, 𝑠) = −
1

𝜀+𝑝(𝑥)
𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀+𝑝(𝜉)

𝑥

𝑠
𝑑𝜉) 𝐺(𝑠) ядра 

(−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) второе уравнение системы (1.1.9) представим в виде:  

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×

𝑥

0
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× {∫𝐿(𝑠, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 − ∫𝐿(𝑥, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 +∫∫𝐾0(𝑥, 𝜉)

𝑇

0

𝑥

0

𝑥

0

×

𝑠

0

 

× 𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝜉 −∫∫𝐾0(𝑠, 𝜉) ×

𝑇

0

𝑠

0

 

× 𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝜉 +∫∫𝐾0(𝑥, 𝜉) ×

𝑇

0

𝑥

0

 

× 𝑃(𝜉, 𝑡)∫ 𝑧𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 −∫∫𝐾0(𝑠, 𝜉)𝑃

𝑇

0

𝑠

0

𝑡

0

(𝜉, 𝑡)∫ 𝑧𝜀(ξ, τ)𝑑𝜏𝑑𝑡𝑑𝜉 +

𝑡

0

 

+𝑔(𝑠) − 𝑔(𝑥)} 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝 (−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) {∫𝐿(𝑥, 𝑠)

𝑥

0

× 

× 𝜑𝜀(𝑠)𝑑𝑠 − ∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝑠 − 

−∫∫𝐾0(𝑥, 𝑠)𝑃(𝑥, 𝑠)

𝑇

0

𝑥

0

∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 + 𝜀𝜑(0) + 𝑔(𝑥)

𝑡

0

}. 

Тогда получим систему уравнений 

{

𝑧𝜀(𝑥, 𝑡) = (𝐴[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡),

𝜑𝜀(𝑥) = (𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥),     
 

где (𝐴[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡) = ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀

𝑡

0

(𝑠, 𝑡))

𝑥

0

𝑑𝑠, 

(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

× 
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×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
{∫𝐿(𝑠, 𝜉)

𝑠

0

𝜑𝜀(𝜉)𝑑𝜉 − ∫𝐿(𝑥, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 +

𝑥

0

 

+∫∫𝐾0(𝑥, 𝜉)

𝑇

0

𝑥

0

𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝜉 − 

−∫∫𝐾0(𝑠, 𝜉)

𝑇

0

𝑠

0

𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝜉 + 

+∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)

𝑇

0

𝑥

0

∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 −

𝑡

0

∫∫𝐾0(𝑠, 𝜉) ×

𝑇

0

𝑠

0

 

× 𝑃(𝜉, 𝑡)∫ 𝑧𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 + 𝑔(𝑠) − 𝑔(𝑥)

𝑡

0

}𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
× 

× 𝑒𝑥𝑝 (−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) {∫𝐿(𝑥, 𝑠)𝜑𝜀(𝑠)𝑑𝑠 −

𝑥

0

 

−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)

𝑡

0

)𝑑𝑡𝑑𝑠 − 

−∫∫𝐾0(𝑥, 𝑠)𝑃(𝑥, 𝑠)

𝑇

0

𝑥

0

∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 + 𝜀𝜑(0) + 𝑔(𝑥)

𝑥

0

}. 

Пусть 𝜑̅𝜀(𝑥),  𝜑̃𝜀(𝑥) ∈ Ω1, 𝑧𝜀̅(𝑥, 𝑡),  𝑧̃𝜀(𝑥, 𝑡) ∈ Ω2, 

где  Ω1 = {𝜑𝜀(𝑥) ∈ 𝐶[0, 𝑏]: |𝜑𝜀(𝑥) − 𝜑0| ≤ 𝑟1,    ∀𝑥 ∈ [0, 𝑏], 0 < 𝜑0, 

 𝑟1 = 𝑐𝑜𝑛𝑠𝑡},   Ω2 = {𝑧𝜀(𝑥, 𝑡) ∈ 𝐶(𝐷): |𝑧𝜀(𝑥, 𝑡) − 𝑧0| ≤ 𝑟2,   ∀(𝑥, 𝑡) ∈ 𝐷, 

 0 < 𝑧0,   𝑟2 = 𝑐𝑜𝑛𝑠𝑡}. 

Оценим разность 

(𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡),   (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥)  − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥). 

Из (1.1.9) получим 
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|(𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡)| ≤ |∫𝑃(𝑠, 𝑡)[𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]𝑑𝑠 +

𝑥

0

 

+∫𝑃(𝑠, 𝑡)

𝑥

0

[𝑧𝜀̅(𝑠, 𝑡) − 𝑧̃𝜀(𝑠, 𝑡)]𝑑𝑠 + ∫[𝑓(𝑠, 𝑡, 𝜑̅𝜀(𝑠) + ∫𝑧𝜀̅(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧𝜀̅(𝑠, 𝑡)) −

𝑥

0

 

−𝑓(𝑠, 𝑡, 𝜑̃𝜀(𝑠) + ∫ 𝑧̃𝜀(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧̃𝜀(𝑠, 𝑡))]𝑑𝑠| ≤ 𝑏(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓) × 

× ‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑏(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓𝑇 + 𝐿2𝑓) × 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

где 0 < 𝐿𝑖𝑓, (𝑖 = 1,2) – коэффициент Липшица по третьему и четвертому 

аргументам. 

 Для разности (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥) получим следующие 

оценки  

1) |∫ 𝐿(𝑠, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉 − ∫𝐿(𝑥, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑥

0

𝑠

0

| = 

= |∫[𝐿(𝑠, 𝜉) − 𝐿(𝑥, 𝜉)]

𝑠

0

[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉 − ∫𝐿(𝑥, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑥

𝑠

| = 

= |∫[𝐾(𝑠, 𝜉) − 𝐾(𝑥, 𝜉) − 𝐶0∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑥

𝑠

][𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑠

0

− 

−∫[𝐾(𝜉, 𝜉) −

𝑥

𝑠

𝐾(𝑥, 𝜉) − 𝐶0∫𝐾(𝜈, 𝜉)𝑑𝜈][𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑥

𝜉

| ≤ 

≤ 2𝑏(𝑥 − 𝑠)(𝐿𝐾 + 𝐶0𝐾1)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏], 

где 0 < 𝐿𝐾 – коэффициент Липшица функции 𝐾(𝑥, 𝑠) по переменной 𝑥  

𝐾1 = max
𝐷1
|𝐾(𝑥, 𝑠)|,   𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}, 

2) |∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉 −

𝑡

0

𝑇

0

𝑥

0
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−∫∫𝐾0(𝑠, 𝜉)𝑃(𝜉, 𝑡)

𝑇

0

𝑠

0

∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉

𝑡

0

| = 

= |∫∫[𝐾0(𝑥, 𝜉) − 𝐾0(𝑠, 𝜉)]𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉 +

𝑡

0

𝑇

0

𝑠

0

 

+∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]

𝑡

0

𝑇

0

𝑥

𝑠

𝑑𝜏𝑑𝑡𝑑𝜉| ≤ 

≤ (𝑥 − 𝑠)𝑏
𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 

+(𝑥 − 𝑠)
𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ (𝑥 − 𝑠)(1 + 𝑏)
𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

3) |∫∫𝐾0(𝑥, 𝜉)[𝑓(𝜉, 𝑡, 𝜑̅𝜀(𝜉) + ∫𝑧𝜀̅(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀̅(𝜉, 𝑡)

𝑡

0

) −

𝑇

0

𝑥

0

 

−𝑓(𝜉, 𝑡, 𝜑̃𝜀(𝜉) + ∫ 𝑧̃𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧̃𝜀(𝜉, 𝑡))]𝑑𝑡𝑑𝜉 −

𝑡

0

 

−∫∫𝐾0(𝑠, 𝜉)[𝑓(𝜉, 𝑡, 𝜑̅𝜀(𝜉) + ∫𝑧𝜀̅(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀̅(𝜉, 𝑡)

𝑡

0

) −

𝑇

0

𝑠

0

 

−𝑓(𝜉, 𝑡, 𝜑̃𝜀(𝜉) + ∫ 𝑧̃𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧̃𝜀(𝜉, 𝑡))]𝑑𝑡𝑑𝜉

𝑡

0

| = 

= |∫∫[𝐾0(𝑥, 𝜉) − 𝐾0(𝑠, 𝜉)][𝑓(𝜉, 𝑡, 𝜑̅𝜀(𝜉) + ∫𝑧𝜀̅(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀̅(𝜉, 𝑡)

𝑡

0

) −

𝑇

0

𝑠

0

 

−𝑓(𝜉, 𝑡, 𝜑̃𝜀(𝜉) + ∫ 𝑧̃𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧̃𝜀(𝜉, 𝑡))]𝑑𝑡𝑑𝜉

𝑡

0

+ 

+∫∫𝐾0(𝑥, 𝜉)[𝑓(𝜉, 𝑡, 𝜑̅𝜀(𝜉) + ∫𝑧𝜀̅(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀̅(𝜉, 𝑡)

𝑡

0

) −

𝑇

0

𝑥

𝑠
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−𝑓(𝜉, 𝑡, 𝜑̃𝜀(𝜉) + ∫ 𝑧̃𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧̃𝜀(𝜉, 𝑡))]𝑑𝑡𝑑𝜉

𝑡

0

| ≤ (𝑥 − 𝑠)𝑏𝑇𝐿𝐾0 × 

× [𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + (𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)] + 

+(𝑥 − 𝑠)𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)[𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + (𝐿1𝑓𝑇 + 𝐿2𝑓) × 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)] ≤ (𝑥 − 𝑠)𝑇(𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)) × 

× [𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + (𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)], 

где 0 < 𝐿𝐾0  – коэффициент Липшица функции 𝐾0(𝑥, 𝑠) по переменной 𝑥, 

4) |∫ 𝐿(𝑥, 𝑠)[𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]𝑑𝑠

𝑥

0

| = |∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) +

𝑥

0

 

+𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝜈

][𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]𝑑𝑠| ≤ 𝑥
𝑏

2
(𝐿𝐾 + 𝐶0𝐾1) × 

× ‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏], 

5) |∫∫𝐾0

𝑇

0

𝑥

0

(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫[𝑧𝜀̅(𝑠, 𝜏) − 𝑧̃𝜀(𝑠, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝑠

𝑡

0

| ≤ 

≤ 𝑥
𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

6) |∫∫𝐾0(𝑥, 𝑠)[𝑓(𝑠, 𝑡, 𝜑̅𝜀(𝑠) + ∫𝑧𝜀̅(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀̅(𝑠, 𝑡)

𝑡

0

) −

𝑇

0

𝑥

0

 

−𝑓(𝑠, 𝑡, 𝜑̃𝜀(𝑠) + ∫ 𝑧̃𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧̃𝜀(𝑠, 𝑡)

𝑡

0

)]𝑑𝑡𝑑𝑠| ≤ 𝑥𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× [𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + (𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]. 

В силу неравенств 1)–6) получим  

|(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| ≤ 𝑑1
−1∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉) ×

𝑥

0
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× (∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)𝑑𝑠{
3

2
𝑏(𝐿𝐾 + 𝐶0𝐾1)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+(1 + 𝑏)
𝑇2

2
‖𝐶(𝑥)‖𝐶[0,𝑏]𝐿𝐾0‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 

+(𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1))𝑇[𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] +

 
+(𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]} + 

+𝑑1
−1𝑒𝑥𝑝(−

1

𝜀 + 𝑝(𝑥)
∫𝐺(𝑠)𝑑𝑠

𝑥

0

)(
1

𝜀 + 𝑝(𝑥)
∫𝐺(𝑠)𝑑𝑠

𝑥

0

)× 

× {
𝑏

2
(𝐿𝐾 + 𝐶0𝐾1)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] +

𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× [𝐿1𝑓‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + (𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 

−𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)} ≤ 𝑑1
−1[
𝑏

2
(3 + 𝑒−1)(𝐿𝐾 + 𝐶0𝐾1) + 𝑏𝑇𝐿𝐾0 + 

+𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) + 𝑒
−1𝑇𝐿1𝑓‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)]‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+𝑑1
−1𝑇{

𝑇

2
(1 + 𝑏)𝐿𝐾0‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝑒

−1
𝑇

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + (𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1))(𝐿1𝑓𝑇 + 𝐿2𝑓) + 

+𝑒−1‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)(𝐿1𝑓𝑇 + 𝐿2𝑓)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)}. 

Тогда приходим к системе неравенств 
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{
  
 

  
 
|𝐴[𝜑̅𝜀 , 𝑧𝜀̅](𝑥, 𝑡) − 𝐴[𝜑̃𝜀 , 𝑧̃𝜀](𝑥, 𝑡)| ≤ 𝑞11‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] +            

        
+𝑞12‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷),                                                                          

                                                                  
|𝐵[𝜑̅𝜀 , 𝑧𝜀̅](𝑥) − 𝐵[𝜑̃𝜀 , 𝑧̃𝜀](𝑥)| ≤ 𝑞21‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] +                   

                
+𝑞22‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷),                                                           (1.1.10)

 

где 𝑞11 = 𝑏(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓), 

𝑞12 = 𝑏(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)𝐿1𝑓𝑇 + 𝐿2𝑓), 

𝑞21 = 𝑑1
−1[
𝑏

2
(3 + 𝑒−1)(𝐿𝐾 + 𝐶0𝐾1) + 𝑏𝑇𝐿𝐾0 + 𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) + 

+𝑒−1𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)𝐿1𝑓], 

𝑞22 = 𝑑1
−1𝑇[(1 + 𝑏)

𝑇

2
𝐿𝐾0‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝑒

−1
𝑇

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + (𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1))(𝐿1𝑓𝑇 + 𝐿2𝑓) + 

+𝑒−1‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)(𝐿1𝑓𝑇 + 𝐿2𝑓). 

Суммируя (1.1.10) получим 

|𝐴[𝜑̅𝜀 , 𝑧𝜀̅](𝑥, 𝑡) − 𝐴[𝜑̃𝜀 , 𝑧̃𝜀](𝑥, 𝑡)| + |𝐵[𝜑̅𝜀 , 𝑧𝜀̅](𝑥) − 𝐵[𝜑̃𝜀, 𝑧̃𝜀](𝑥)| ≤ 

≤ 𝑞1‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞2‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷),                    

где 𝑞1 = 𝑞11 + 𝑞21, 𝑞2 = 𝑞12 + 𝑞22. 

Теорема 1.1.1. Пусть выполняются условие а-в, 𝑞0 < 1 и имеет  

место неравенство 

|𝐵(𝜑0, 𝑧0) − 𝑧0| + |𝐴(𝜑0, 𝑧0) − 𝜑0| ≤ (1 − 𝑞0)𝑟, 

где 𝑞0 = 𝑚𝑎𝑥(𝑞1, 𝑞2), 𝑟 = 𝑟1 + 𝑟2. 

Тогда система уравнений (1.1.9) имеет единственное решение в паре 

(Ω1, Ω2). 

Введем следующее обозначение  

(𝐻𝜀𝜑)(𝑥) ≡
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

[𝜑(𝑥) − 
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−𝜑(𝑠)]𝑑𝑠 −
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) [𝜑(𝑥) − 𝜑(0)].        (1.1.11) 

Имеет место следующая лемма [6]. 

Лемма 1.1.1. Пусть выполняются условия а-в и 𝜑(𝑥) ∈ 𝐶1[0, 𝑏].  

Тогда справедлива оценка 

‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏] ≤ 𝜀𝑑2, 
где 𝑑2 = 𝑑1

−1(1 + 𝑒−1)‖𝜑′(𝑥)‖𝐶[0,𝑏]. 

Теорема 1.1.2. Пусть выполняются условия а-в, 

𝑞0 = 𝑚𝑎𝑥(𝑞1, 𝑞2) < 1 и 𝜑(𝑥) ∈ 𝐶1[0, 𝑏]. Тогда при 𝜀 → 0, решение си-

стемы уравнений (1.1.9) равномерно сходится к решению системы урав-

нений (1.1.8). Причем имеет место оценка 

‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ (1 − 𝑞0)
−1𝑑2𝜀, 

0 < 𝑑2 = 𝑐𝑜𝑛𝑠𝑡. 

Доказательство. Воспользуемся подстановками 

𝜑𝜀(𝑥) = 𝜑(𝑥) + 𝜂𝜀(𝑥),   

𝑧𝜀(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) + 𝜇𝜀(𝑥, 𝑡).               

Тогда из (1.1.9) приходим к системе уравнений 

𝜇𝜀(𝑥, 𝑡) = ∫𝑃(𝑠, 𝑡)𝜂𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫[𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)) −       

𝑥

0

 

−𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧(𝑠, 𝑡))]𝑑𝑠, 

(𝜀 + 𝑝(𝑥))𝜂𝜀(𝑥) + ∫𝐺(𝑠)𝜂𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜂𝜀(𝑠)

𝑥

0

𝑥

0

𝑑𝑠 − 

−∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −

𝑡

0

𝑇

0

𝑥

0
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−∫∫𝐾0(𝑥, 𝑠)

𝑇

𝑜

𝑥

0

[𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)) − 

−𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

𝑑𝜏, 𝑧(𝑠, 𝑡))]𝑑𝑡𝑑𝑠 − 𝜀[𝜑(𝑥) − 𝜑(0)].         (1.1.12) 

Перепишем второе уравнение системы (1.1.12), используя резольвенту 

ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
), в следующем виде 

𝜂𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
{∫𝐿(𝑠, 𝜉)

𝑠

0

× 

× 𝜂𝜀(𝜉)𝑑𝜉 − ∫𝐿(𝑥, 𝜉)𝜂𝜀(𝜉)𝑑𝜉 + ∫∫𝐾0(𝑥, 𝜉)𝑃(𝑥, 𝜉)∫𝜇𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 −

𝑡

0

𝑇

0

𝑥

0

𝑥

0

 

−∫∫𝐾0(𝑠, 𝜉)𝑃(𝑥, 𝜉)∫𝜇𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉

𝑡

0

+∫∫𝐾0(𝑥, 𝜉)

𝑇

0

𝑥

0

𝑇

0

𝑠

0

× 

× [𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)

𝑡

0

) − 

−𝑓(𝜉, 𝑡, 𝜑(𝜉) + ∫𝑧(𝜉, 𝜏)𝑑𝜏, 𝑧(𝜉, 𝑡)

𝑡

0

)]𝑑𝑡𝑑𝜉 − 

−∫∫𝐾0(𝑠, 𝜉)

𝑇

0

𝑠

0

[𝑓(𝜉, 𝑡, 𝜑𝜀(𝜉) + ∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏, 𝑧𝜀(𝜉, 𝑡)) −

𝑡

0

 

−𝑓(𝜉, 𝑡, 𝜑(𝜉) + ∫𝑧(𝜉, 𝜏)𝑑𝜏, 𝑧(𝜉, 𝑡))]𝑑𝑡𝑑𝜉 +

𝑡

0

 

+𝜀[𝜑(𝑥) − 𝜑(𝑠)]} 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) × 

× {∫𝐿(𝑥, 𝑠)𝜂𝜀(𝑠)𝑑𝑠 −

𝑥

0

∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏

𝑡

0

𝑑𝑡𝑑𝑠 −

𝑇

0

𝑥

0
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−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

[𝑓(𝑠, 𝑡, 𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏, 𝑧𝜀(𝑠, 𝑡)

𝑡

0

) − 

−𝑓(𝑠, 𝑡, 𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)𝑑𝜏, 𝑧(𝑠, 𝑡)

𝑡

0

)]𝑑𝑡𝑑𝑠 − 𝜀[𝜑(𝑥) − 𝜑(0)]}. 

Учитывая оценки для разности (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥) и 

обозначение (1.1.11) для 𝜇𝜀(𝑥, 𝑡) и 𝜂𝜀(𝑥) имеет место оценка 

{
 
 

 
 
‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑞11‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞12‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷),                        

                           
‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] ≤ 𝑞21‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞22‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) +                     

                                    
+‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏].                                                                      (1.1.13)

 

Из (1.1.13), учитывая лемму 1.1.1 получим 

‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] ≤ 𝑞0[‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)] + 𝜀𝑑2.

 Отсюда следует оценка теоремы 1.1.2, что и требовалось доказать. 

Теорема 1.1.3. Если выполняются условия теоремы 1.1.2, то для 

функций 𝑤(𝑥, 𝑡),    𝑤𝜀(𝑥, 𝑡)  и их производных 𝑤𝑡(𝑥, 𝑡), 𝑤𝑥𝑡(𝑥, 𝑡),

𝑤𝜀𝑡(𝑥, 𝑡),   𝑤𝜀𝑥𝑡(𝑥, 𝑡) при 𝜀 → 0, имеет место равномерная сходимость 

𝑤𝜀(𝑥, 𝑡) → 𝑤(𝑥, 𝑡),    𝑤𝜀𝑡(𝑥, 𝑡) → 𝑤𝑡(𝑥, 𝑡),     𝑤𝜀𝑥𝑡(𝑥, 𝑡) → 𝑤𝑥𝑡(𝑥, 𝑡). 
Доказательство. Функции 𝑤𝜀𝑥(𝑥, 𝑡),  𝑤𝜀𝑡(𝑥, 𝑡),  𝑤𝜀𝑡𝑥(𝑥, 𝑡) опреде-

ляются по формулам 

𝑤𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏

𝑡

0

,                       (1.1.14) 

𝑤𝜀𝑡(𝑥, 𝑡) = 𝑧𝜀(𝑥, 𝑡),       (1.1.15) 

𝑤𝜀𝑥𝑡(𝑥, 𝑡) = 𝑧𝜀𝑥(𝑥, 𝑡) = 𝑃(𝑥, 𝑡)𝜑𝜀(𝑥) + 𝑃(𝑥, 𝑡)∫ 𝑧𝜀(𝑥, 𝜏)𝑑𝜏 +       

𝑡

0

 

+𝑓(𝑥, 𝑡, 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏, 𝑧𝜀(𝑥, 𝑡)

𝑡

0

).                                          (1.1.16) 

Учитывая, что  

𝑤(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏,

𝑡

0
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𝑤𝑡(𝑥, 𝑡) = 𝑧(𝑥, 𝑡), 

𝑤𝑥𝑡(𝑥, 𝑡) = 𝑧𝑥(𝑥, 𝑡) = 𝑃(𝑥, 𝑡)𝜑(𝑥) + 𝑃(𝑥, 𝑡)∫ 𝑧(𝑥, 𝜏)𝑑𝜏 +

𝑡

0

 

+𝑓(𝑥, 𝑡, 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏, 𝑧(𝑥, 𝑡)

𝑡

0

)                                         (1.1.17) 

и (1.1.14)–(1.1.16) получим оценки 

|𝑤𝜀(𝑥, 𝑡) − 𝑤(𝑥, 𝑡)| = |𝜑𝜀(𝑥) − 𝜑(𝑥)| + |∫[𝑧𝜀(𝑥, 𝜏) − 𝑧(𝑥, 𝜏)]𝑑𝜏

𝑡

0

| ≤ 

≤ ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑇0(‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)) ≤ 

 

≤ 𝑇0(1 − 𝑞)
−1𝑑2𝜀, где 𝑇0 = 𝑚𝑎𝑥(1, 𝑇), 

|𝑤𝜀𝑡(𝑥, 𝑡) − 𝑤𝑡(𝑥, 𝑡)| = |𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)| = |∫𝑃(𝑠, 𝑡)𝜂𝜀

𝑥

0

(𝑠)𝑑𝑠 + 

+∫𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑥, 𝜏)

𝑡

0

𝑥

0

𝑑𝜏𝑑𝑠 + ∫[𝑓(𝑥, 𝑡, 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏, 𝑧𝜀(𝑥, 𝑡)

𝑡

0

) −

𝑥

0

 

−𝑓(𝑥, 𝑡, 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏, 𝑧(𝑥, 𝑡)

𝑡

0

)]𝑑𝑠| ≤ 𝑏‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 

+𝑏𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 𝑏𝐿1𝑓‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑏𝑇𝐿1𝑓 × 

× ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 𝑏𝐿2𝑓‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑏(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓) × 

× ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑏(𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝑇𝐿1𝑓 + 𝐿2𝑓)‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ 𝑑3(‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)) ≤ (1 − 𝑞)
−1𝑏𝑑2𝑑3𝜀, 

где 𝑑3 = 𝑚𝑎𝑥 ((‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓), (𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝑇𝐿1𝑓 + 𝐿2𝑓)), 

|𝑤𝜀𝑥𝑡(𝑥, 𝑡) − 𝑤𝑥𝑡(𝑥, 𝑡)| = |𝑃(𝑥, 𝑡)𝜂𝜀(𝑥) + 𝑃(𝑥, 𝑡) × 
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×∫𝜇𝜀(𝑥, 𝜏)𝑑𝜏 +

𝑡

0

[𝑓(𝑥, 𝑡, 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏, 𝑧𝜀(𝑥, 𝑡)

𝑡

0

) − 

−𝑓(𝑥, 𝑡, 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏, 𝑧𝜀(𝑥, 𝑡)

𝑡

0

)| ≤ ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) × 

× ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 

+𝐿1𝑓‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇𝐿1𝑓‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿2𝑓‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ (‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝐿1𝑓)‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + (𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + 𝑇𝐿1𝑓 + 

+𝐿2𝑓)‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑑4(‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)) ≤ 

≤ (1 − 𝑞)−1𝑑2𝑑3𝜀.
 

Теорема 1.1.3 доказано. 

Пример. Пусть 𝑓(𝑥, 𝑡,𝑤𝑡 , 𝑤) = 𝑥𝑤
2(𝑥, 𝑡) + 𝑥𝑤𝑡(𝑥, 𝑡) + (2 − 𝑥𝑡)𝑥 − 

−[𝑥3 + 0,2(1 − 𝑥)]𝑥2𝑡2, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1, 𝑃(𝑥, 𝑡) = 0,2(1 − 𝑥)𝑡, 

 𝜎(𝑡) = 0,  𝐴(𝑥) = 𝑥 − 1,   𝐶(𝑥) = 1 + 𝑥2,   𝑞(𝑥) = 𝑇(1 + 𝑥2)𝑥2.
 

Тогда  𝑝(𝑥) = 𝐴(𝑥) + 𝐶(𝑥) = 𝑥(1 + 𝑥)|𝑥=0 = 0, 

𝐾(𝑥, 𝑠) = 0,1(1 + 𝑥2)(1 − 𝑠)|𝑥=𝑠 = 0,1(1 + 𝑥2)(1 − 𝑥).
 

При 𝐶0 = 1, имеем 𝐺(𝑥) = 𝑥(1 + 𝑥) + 0,1(1 + 𝑥2)(1 − 𝑥) ≥ 𝑑1 = 0,1.  

 

𝒙 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

𝐺(𝒙) 0,1 0,20 0,32 0,47 0,63 0,81 1,01 1,23 1,47 1,73 2 
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Рис. 1. График функции 𝐺(𝑥) 

 

1.2. Нелокальная краевая задача для линейных дифференциаль-

ных уравнений в частных производных второго порядка 

 

Рассмотрим дифференциальное уравнение  

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡𝜕𝑥
= 𝑃(𝑥, 𝑡)𝑤(𝑥, 𝑡) + 𝑀(𝑥, 𝑡)𝑤𝑡(𝑥, 𝑡) + 𝑓(𝑥, 𝑡),      (1.2.1) 

с условиями 

𝑤(0, 𝑡) = 𝜎(𝑡) + 𝜑0,    (1.2.2) 

𝐴(𝑥)𝑤(𝑥, 0) + 𝐶(𝑥)𝑤(𝑥, 𝑇) = 𝑞(𝑥).  (1.2.3) 

Известные функции удовлетворяют условиям: 

а)  𝐴(𝑥),   𝐶(𝑥),   𝑞(𝑥) ∈ 𝐶[0, 𝑏],   𝑝(𝑥) ≡ 𝐴(𝑥) + 𝐶(𝑥) – неубывающая 

функция, 𝑝(0) = 0, 𝑝(𝑥) > 0, ∀𝑥 ∈ (0, 𝑏], 𝜑0 – неизвестный пара-

метр; 

б) 𝑃(𝑥, 𝑡), 𝑓(𝑥, 𝑡), 𝑀(𝑥, 𝑡) ∈ 𝐶(𝐷), 𝜎(𝑡) ∈ 𝐶1[0, 𝑇], 𝐷 = [0, 𝑏] × 

× [0, 𝑇] функции 𝑃(𝑥, 𝑡), 𝑀(𝑥, 𝑡) удовлетворяют условию Лип-

шица по первому аргументу; 

в)  𝐺(𝑥) ≡ 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1 > 0,   𝐾(𝑥, 𝑠) ≡ 𝐶(𝑥) 𝑃0(𝑠),  

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2
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𝑃0(𝑠) = ∫ 𝑃(𝑠, 𝑡)𝑑𝑡,
𝑇

0
 𝐾(𝑥, 𝑠) удовлетворяет условию Липшица по 

𝑥 в области 𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}, при этом выполняется 

условие согласования 𝐴(0)𝜎(0) + 𝐶(0)𝜎(𝑇) = 𝑞(0). 

 Используя подстановку  

𝑤(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏,                           (1.2.4)

𝑡

0

 

   𝑤(𝑥, 0) = 𝜑(𝑥),                                          (1.2.5)  

из (1.2.1), (1.2.2), получим 

𝑧(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫𝑀(𝑠, 𝑡)𝑧(𝑠, 𝑡)𝑑𝑠 +

𝑥

0

∫𝑓(𝑠, 𝑡)𝑑𝑠.                                                  (1.2.6)

𝑥

0

 

При 𝑡 = 𝑇 обе стороны равенства (1.2.4) умножим на 𝐶(𝑥) и учи-

тывая условие (1.2.3), уравнение (1.2.6), получим интегральное уравне-

ние 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)

𝑥

0

𝑑𝑠 = 𝑞0(𝑥) − 𝐶(𝑥)∫∫𝑃(𝑠, 𝑡) ×        

𝑇

0

𝑥

0

 

×∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠

𝑡

0

− 𝐶(𝑥)∫∫𝑀(𝑠, 𝑡)𝑧(𝑠, 𝑡)𝑑𝑡𝑑𝑠,                         (1.2.7)

𝑇

0

𝑥

0

 

где   𝑞0(𝑥) = 𝑞(𝑥) − 𝐶(𝑥)[𝜎(𝑇) − 𝜎(0)] − 𝐶(𝑥)∫∫𝑓(𝑠, 𝑡)𝑑𝑡𝑑𝑠.

𝑇

0

𝑥

0
 

При этом так как 𝑝(0) = 𝐴(0) + 𝐶(0) = 0, т. е. 𝐶(0) = −𝐴(0), то учиты-

вая условие согласование 

𝑞0(0) = 𝑞(0) − 𝐶(0)[𝜎(𝑇) − 𝜎(0)] = 𝑞(0) − 𝐶(0)𝜎(𝑇) − 𝐴(0)𝜎(0) = 0. 

Действуем оператором 𝐼 + 𝐶0𝐽 на (1.2.7), где 𝐼 – единичный опера-

тор,  𝐽𝜑(𝑥) = ∫ 𝜑(𝑠)𝑑𝑠, 0 < 𝐶0 = 𝑐𝑜𝑛𝑠𝑡.
𝑥

0
 

Тогда получим 

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)

𝑥

0

𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠

𝑥

0

−∫∫𝐾0(𝑥, 𝑠) ×  

𝑇

0

𝑥

0
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× 𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 − ∫∫𝐾0(𝑥, 𝑠)𝑀(𝑠, 𝑡)𝑧(𝑠, 𝑡)𝑑𝑡𝑑𝑠 + 𝑔(𝑥)

𝑇

0

𝑥

0

𝑡

0

, 

где 𝐺(𝑠) = 𝐶(𝑠)𝑝(𝑠) + 𝐾(𝑠, 𝑠), 𝐿(𝑥, 𝑠) = 𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) − 

−𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈,   

𝑥

𝑠

 𝑔(𝑥) = 𝑞0(𝑥) + 𝐶0∫𝑞0(𝑠)𝑑𝑠,    𝐾0(𝑥, 𝑠) = 𝐶(𝑥) +

𝑥

0

 

+𝐶0∫𝐶(𝑠)𝑑𝑠.

𝑥

𝑠

 

Для неизвестных функций 𝑧(𝑥, 𝑡) и 𝜑(𝑥) получим систему уравнений  

𝑧(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫𝑀(𝑠, 𝑡)𝑧(𝑠, 𝑡)𝑑𝑠 +

𝑥

0

∫𝑓(𝑠, 𝑡)

𝑥

0

𝑑𝑠,                                                    

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)

𝑥

0

𝑥

0

𝑑𝑠 −                         

−∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)

𝑇

0

𝑥

0

∫𝑧(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −                                          

𝑡

0

 

−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑀(𝑠, 𝑡)𝑧(𝑠, 𝑡)𝑑𝑡𝑑𝑠 + 𝑔(𝑥).                                     (1.2.8) 

Рассмотрим систему интегральных уравнений с малым парамет-

ром  

𝑧𝜀(𝑥, 𝑡) = 𝜎′(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫𝑀(𝑠, 𝑡)𝑧𝜀(𝑠, 𝑡)𝑑𝑠 + ∫𝑓(𝑠, 𝑡)𝑑𝑠,

𝑥

0

𝑥

0

 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)

𝑥

0

𝜑𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑𝜀(𝑠)𝑑𝑠 −

𝑥

0
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−∫∫𝐾0(𝑥, 𝑠) ×

𝑇

0

𝑥

0

𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 − ∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑡

0

×   

×𝑀(𝑠, 𝑡)𝑧𝜀(𝑠, 𝑡)𝑑𝑡𝑑𝑠 + 𝜀𝜑(0) + 𝑔(𝑥),                                               (1.2.9) 

где 𝜀 малый параметр из интервала (0,1).  

Отсюда, используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) систему (1.2.9) 

представим в виде: 

{

𝑧𝜀(𝑥, 𝑡) = (𝐴[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡),

𝜑𝜀(𝑥) = (𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥),     
 

где (𝐴[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡) = ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠

𝑥

0

+∫𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

 

+∫𝑀(𝑠, 𝑡)𝑧𝜀(𝑠, 𝑡)𝑑𝑠 + ∫𝑓(𝑠, 𝑡)𝑑𝑠,

𝑥

0

𝑥

0

 

(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

× 

× {∫𝐿(𝑠, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 − ∫𝐿(𝑥, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 + ∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡) ×

𝑇

0

𝑥

0

𝑥

0

𝑠

0

 

×∫𝑧𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 − ∫∫𝐾0(𝑠, 𝜉)𝑃(𝜉, 𝑡)∫ 𝑧𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 +

𝑡

0

𝑇

0

𝑠

0

𝑡

0

 

+∫∫𝐾0(𝑥, 𝜉)𝑀(𝜉, 𝑡)𝑧𝜀(𝜉, 𝑡)𝑑𝑡𝑑𝜉 − ∫∫𝐾0(𝑠, 𝜉)𝑀(𝜉, 𝑡)𝑧𝜀(𝜉, 𝑡)𝑑𝑡𝑑𝜉 +

𝑇

0

𝑠

0

𝑇

0

𝑥

0

 

+𝑔(𝑠) − 𝑔(𝑥)} 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝 (−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) {∫𝐿(𝑥, 𝜉) ×

𝑥

0

 

× 𝜑
𝜀
(𝑠)𝑑𝑠 −∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫ 𝑧𝜀(𝑠, 𝜏)

𝑡

0

𝑑𝜏𝑑𝑡𝑑𝜉 − ∫∫𝐾0(𝑥, 𝑠) ×

𝑇

0

𝑥

0

𝑇

0

𝑥

0
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×𝑀(𝑠, 𝑡)𝑧𝜀(𝑠, 𝑡)𝑑𝑡𝑑𝑠 − 𝜀𝜑(0) + 𝑔(𝑥)    }. 

Пусть 𝜑̅𝜀(𝑥),    𝜑̃𝜀(𝑥) ∈ Ω1,     𝑧𝜀̅(𝑥, 𝑡), 𝑧̃𝜀(𝑥, 𝑡) ∈ Ω2. Оценим раз-

ность (𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡). Из (1.2.9) получим 

|(𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡)| ≤ |∫𝑃(𝑠, 𝑡)[𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]

𝑥

0

𝑑𝑠 + 

+∫𝑃(𝑠, 𝑡)

𝑥

0

∫[𝑧𝜀̅(𝑠, 𝜏) − 𝑧̃𝜀(𝑠, 𝜏)]𝑑𝜏𝑑𝑠 +∫𝑀(𝑠, 𝑡)[𝑧𝜀̅(𝑠, 𝜏) −

𝑥

0

𝑡

0

 

−𝑧̃𝜀(𝑠, 𝜏)]𝑑𝑠| ≤ 𝑏‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+(𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) +‖𝑀(𝑥, 𝑡)‖𝐶(𝐷))𝑏‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷). 

Для разности (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥) получим следующие 

оценки  

1) |∫ 𝐿(𝑠, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉 − ∫𝐿(𝑥, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑥

0

𝑠

0

| = 

= |∫[𝐿(𝑠, 𝜉) − 𝐿(𝑥, 𝜉)][𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑠

0

−∫𝐿(𝑥, 𝜉)[𝜑̅𝜀(𝜉) −

𝑥

𝑠

 

−𝜑̃𝜀(𝜉)]𝑑𝜉| = |∫[𝐾(𝑠, 𝜉) − 𝐾(𝑥, 𝜉) − 𝐶0∫𝐾(𝜈, 𝜉)𝑑𝜈][𝜑̅𝜀(𝜉) −

𝑥

𝑠

𝑠

0

 

−𝜑̃𝜀(𝜉)]𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥, 𝜉) − 𝐶0∫𝐾(𝜈, 𝜉)𝑑𝜈]

𝑥

𝜉

[

𝑥

𝑠

𝜑̅𝜀(𝜉) − 

−𝜑̃𝜀(𝜉)]𝑑𝜉| ≤ 2𝑏(𝐿𝐾 + 𝐶0𝐾1)(𝑥 − 𝑠)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏], 

 

где 0 < 𝐿𝐾 − коэффициент Липшица функции 𝐾(𝑥, 𝑠) по переменной 𝑥, 

𝐾1 = max
𝐷1
|𝐾(𝑥, 𝑠)| , 𝐷1 = {(𝑥, 𝑡)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}, 
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2) |∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]

𝑡

0

𝑇

0

𝑥

0

𝑑𝜏𝑑𝑡𝑑𝜉 − 

−∫∫𝐾0(𝑠, 𝜉)

𝑇

0

𝑠

0

𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉

𝑡

0

| = 

= |∫∫[𝐾0(𝑥, 𝜉) − 𝐾0(𝑠, 𝜉)]𝑃(𝜉, 𝑡)∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉 +

𝑡

0

𝑇

0

𝑠

0

 

+∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)

𝑇

0

∫[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝜉

𝑡

0

𝑥

𝑠

| ≤ (𝑥 − 𝑠)𝑏 × 

×
𝑇2

2
𝐿𝐾0‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + (𝑥 − 𝑠)

𝑇2

2
× 

× ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ (𝑥 − 𝑠) × 

×
𝑇2

2
(𝑏𝐿𝐾0 +‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1))‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

3) |∫∫𝐾0(𝑥, 𝜉)𝑀(𝜉, 𝑡)[𝑧𝜀̅(𝜉, 𝑡) − 𝑧̃𝜀(𝜉, 𝑡)]𝑑𝑡𝑑𝜉 −

𝑇

0

𝑥

0

 

−∫∫𝐾0(𝑠, 𝜉)𝑀(𝜉, 𝑡)

𝑇

0

𝑠

0

[𝑧𝜀̅(𝜉, 𝜏) − 𝑧̃𝜀(𝜉, 𝜏)]𝑑𝑡𝑑𝜉| = 

= |∫∫[𝐾0(𝑥, 𝜉) − 𝐾0(𝑠, 𝜉)]

𝑇

0

𝑠

0

𝑀(𝜉, 𝑡)[𝑧𝜀̅(𝜉, 𝑡) − 𝑧̃𝜀(𝜉, 𝑡)]𝑑𝑡𝑑𝜉 + 

+∫∫𝐾0(𝑥, 𝜉)𝑀(𝜉, 𝑡)[𝑧𝜀̅(𝜉, 𝑡) − 𝑧̃𝜀(𝜉, 𝑡)]𝑑𝑡𝑑𝜉

𝑇

0

𝑥

𝑠

| ≤ 

≤ (𝑥 − 𝑠)𝑏𝑇𝐿𝐾0‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 
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+(𝑥 − 𝑠)𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

 

≤ (𝑥 − 𝑠)𝑇(𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1))‖𝑀(𝑥, 𝑡)‖𝐶(𝐷) × 

 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

4) |∫ 𝐿(𝑥, 𝑠)[𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]𝑑𝑠

𝑥

0

| = |∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) −

𝑥

0

 

−𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

][𝜑̅𝜀(𝑠) − 𝜑̃𝜀(𝑠)]𝑑𝑠| ≤ 𝑥
𝑏

2
(𝐿𝐾 + 𝐶0𝐾1) × 

× ‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏], 

5) |∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)

𝑇

0

∫[𝑧𝜀̅(𝑠, 𝜏) − 𝑧̃𝜀(𝑠, 𝜏)]𝑑𝜏𝑑𝑡𝑑𝑠

𝑡

0

𝑥

0

| ≤ 

≤ 𝑥
𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

6) |∫∫𝐾0(𝑥, 𝑠)𝑀(𝑠, 𝑡)[𝑧𝜀̅(𝑠, 𝑡) − 𝑧̃𝜀(𝑠, 𝑡)]𝑑𝑡𝑑𝑠

𝑇

0

𝑥

0

| ≤ 𝑥𝑇‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷). 

Из оценок 1)–6) имеем  

|(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| = 𝑑1
−1∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉) ×

𝑥

0

 

× (∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)𝑑𝑠 {2𝑏(𝐿𝐾 + 𝐶0𝐾1)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+[𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)]
𝑇2

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + 

+𝑇[𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1)]‖𝑀(𝑥, 𝑡)‖𝐶(𝐷) ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)} + 
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+𝑑1
−1(

1

𝜀 + 𝑝(𝑥)
∫𝐺(𝑠)𝑑𝑠

𝑥

0

)𝑒𝑥𝑝(−
1

𝜀 + 𝑝(𝑥)
∫𝐺(𝑠)𝑑𝑠

𝑥

0

) × 

× {
𝑏

2
(𝐿𝐾 + 𝐶0𝐾1)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] +

𝑇2

2
‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)+‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)} ≤ 𝑑1
−1𝑏(𝐿𝐾 + 𝐶0𝐾1) × 

× (2 +
𝑒−1

2
)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑑1

−1𝑇[𝑏𝐿𝐾0+‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× (1 + 𝑒−1)][
𝑇

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)] × 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷). 

Тогда получим  

|(𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡)| ≤ 𝑞11‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+𝑞12‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

|(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| ≤ 𝑞21‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+𝑞22‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷),                                                     (1.2.10) 

где 𝑞11 = 𝑏‖𝑃(𝑥, 𝑡)‖𝐶(𝐷),   𝑞12 = 𝑏(𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)), 

𝑞21 = 𝑑1
−1𝑏 (2 +

𝑒−1

2
) (𝐿𝐾 + 𝐶0𝐾1), 

𝑞22 = 𝑑1
−1𝑇 [

𝑇

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)] [𝑏𝐿𝐾0 + ‖𝐾0(𝑥, 𝑠)‖𝐶(𝐷1) × 

× (1 + 𝑒−1)]. 

Суммируя (1.2.10) получим
 

|(𝐴[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐴[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡)| + |(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − 

−(𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| ≤ 𝑞1‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞2‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷),  

где  𝑞1 = 𝑞11 + 𝑞21,    𝑞2 = 𝑞12 + 𝑞22. 
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Теорема 1.2.1. Пусть выполняются условие а-в, 𝑞0 < 1 и имеет 

место неравенство 

|𝐵(𝜑0, 𝑧0) − 𝑧0| + |𝐴(𝜑0, 𝑧0) − 𝜑0| ≤ (1 − 𝑞0)𝑟,      (1.2.11) 

где 𝑞0 = 𝑚𝑎𝑥(𝑞1, 𝑞2), 𝑟 = 𝑟1 + 𝑟2. 

Тогда система уравнений (1.2.9) имеет единственное решение в паре 

(Ω1, Ω2). 

Теорема 1.2.2. Пусть выполняются условия а-в, 𝑞0 < 1 и 

𝜑(𝑥) ∈ 𝐶1[0, 𝑏]. Тогда при 𝜀 → 0, решение системы уравнений (1.2.9) 

равномерно сходится к решению системы уравнений (1.2.8). Причем 

имеет место оценка 

‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ (1 − 𝑞0)
−1𝑑2𝜀, 

где 𝑑2 = 𝑑1
−1(1 + 𝑒−1)‖𝜑′(𝑥)‖𝐶[0,𝑏]. 

Доказательство. Воспользуемся подстановками 

𝜑𝜀(𝑥) = 𝜑(𝑥) + 𝜂𝜀(𝑥), 

𝑧𝜀(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) + 𝜇𝜀(𝑥, 𝑡). 

Тогда из (1.2.9) приходим к системе уравнений 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝜇𝜀(𝑥, 𝑡) = ∫𝑃(𝑠, 𝑡)𝜂𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏

𝑡

0

𝑑𝑠 +

𝑥

0

𝑥

0

                       

+∫𝑀(𝑠, 𝑡)𝜇𝜀(𝑠, 𝑡)𝑑𝑠,

𝑥

0

                                                                                        

(𝜀 + 𝑝(𝑥))𝜂𝜀(𝑥) + ∫𝐺(𝑠)𝜂𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜂𝜀(𝑠)𝑑𝑠

𝑥

0

𝑥

0

−                        

−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠

𝑡

0

−∫∫𝐾0(𝑥, 𝑠) ×                      

𝑇

0

𝑥

0

×𝑀(𝑠, 𝑡)𝜇𝜀(𝑠, 𝑡)𝑑𝑡𝑑𝑠 − 𝜀[𝜑(𝑥) − 𝜑(0)].                                       (1.2.12)

 

Перепишем второе уравнение системы (1.2.12), используя резоль-

венту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
), в следующем виде 

𝜂𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
{∫𝐿(𝑠, 𝜉)𝜂𝜀(𝜉)𝑑𝜉 −

𝑠

0
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−∫𝐿(𝑥, 𝜉)𝜂𝜀(𝜉)𝑑𝜉 +

𝑥

0

∫∫𝐾0(𝑥, 𝜉)𝑃(𝜉, 𝑡)∫𝜇𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 −

𝑡

0

𝑇

0

𝑥

0

 

−∫∫𝐾0(𝑠, 𝜉)𝑃(𝜉, 𝑡)∫𝜇𝜀(𝜉, 𝜏)𝑑𝜏𝑑𝑡𝑑𝜉 + ∫∫𝐾0(𝑥, 𝜉)

𝑇

0

𝑥

0

𝑀(𝜉, 𝑡) ×

𝑡

0

𝑇

0

𝑠

0

 

× 𝜇𝜀(𝜉, 𝜏)𝑑𝑡𝑑𝜉 − ∫∫𝐾0(𝑠, 𝜉)

𝑇

0

𝑠

0

 𝑀(𝜉, 𝑡)𝜇𝜀(𝜉, 𝜏)𝑑𝑡𝑑𝜉 + 

+𝜀[𝜑(𝑥) − 𝜑(𝜉)]} 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

) × 

× {∫𝐿(𝑥, 𝜉)𝜂𝜀(𝑠)

𝑥

0

𝑑𝑠 −∫∫𝐾0(𝑥, 𝑠)𝑃(𝑠, 𝑡)∫𝜇𝜀(𝑠, 𝜏)𝑑𝜏𝑑𝑡𝑑𝑠 −

𝑡

0

𝑇

0

𝑥

0

 

−∫∫𝐾0(𝑥, 𝑠)

𝑇

0

𝑥

0

 𝑀(𝑠, 𝑡)𝜇𝜀(𝑠, 𝜏)𝑑𝑡𝑑𝑠 − 𝜀[𝜑(𝑥) − 𝜑(0)]}. 

Учитывая оценки для разности (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)  

относительно 𝜇𝜀(𝑥, 𝑡) и 𝜂𝜀(𝑥) имеет место оценка 

{
 
 

 
 
‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑞11‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞12‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷),                       

                                                    
‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] ≤ 𝑞21‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑞22‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) +                      

                             
+‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏],                                                                       (1.2.13)

 

где оператор (𝐻𝜀𝜑)(𝑥) определяется согласно (1.1.11). 

Суммируя и учитывая лемму 1.1.1 получим 

‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] ≤ 𝑞0[‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)] + 𝜀𝑑2.

 Отсюда следует оценка теоремы 1.2.2, что и требовалось доказать. 

Функция 𝑤𝜀(𝑥, 𝑡) определяется по формуле: 

𝑤𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)

𝑡

0

𝑑𝜏                                 (1.2.14) 

и так как 

 𝑤𝜀𝑡(𝑥, 𝑡) = 𝑧𝜀(𝑥, 𝑡),    𝑤𝑡(𝑥, 𝑡) = 𝑧(𝑥, 𝑡),            (1.2.15) 

𝑤𝜀𝑥𝑡(𝑥, 𝑡) = 𝑧𝜀𝑥(𝑥, 𝑡), 𝑤𝑥𝑡(𝑥, 𝑡) = 𝑧𝑥(𝑥, 𝑡),     (1.2.16) 
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то из (1.2.14), (1.2.15), (1.2.16) соответственно, получим оценки 

1) |𝑤𝜀(𝑥, 𝑡) − 𝑤(𝑥, 𝑡)| ≤ |𝜑𝜀(𝑥) − 𝜑(𝑥)| + |∫[𝑧𝜀(𝑥, 𝜏) − 𝑧(𝑥, 𝜏)]𝑑𝜏

𝑡

0

| ≤ 

≤ ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑇0(‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷)) ≤ 

≤ 𝑇0(1 − 𝑞0)
−1𝑑2𝜀,   где 𝑇0 = 𝑚𝑎𝑥(1, 𝑇), 

2) |𝑤𝜀𝑡(𝑥, 𝑡) − 𝑤𝑡(𝑥, 𝑡)| = |𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)| = ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ ‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] ≤ (1 − 𝑞0)
−1𝑑2𝜀, 

3) |𝑤𝜀𝑥𝑡(𝑥, 𝑡) − 𝑤𝑥𝑡(𝑥, 𝑡)| = |𝑧𝜀𝑥(𝑥, 𝑡) − 𝑧𝑥(𝑥, 𝑡)| ≤ ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) × 

× |𝜑𝜀(𝑥) − 𝜑(𝑥)| + 𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)|𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)|+‖𝑀(𝑥, 𝑡)‖𝐶(𝐷) × 

× |𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)| ≤ ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + [‖𝑀(𝑥, 𝑡)‖𝐶(𝐷) + 

+𝑇‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)]‖𝜇𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑄2[‖𝜂𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)] ≤ 

≤ 𝑄2(1 − 𝑞0)
−1𝑑2𝜀, 

где 𝑄2 = 𝑚𝑎𝑥(‖𝑃(𝑥, 𝑡)‖𝐶(𝐷), 𝑇0[‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝑀(𝑥, 𝑡)‖𝐶(𝐷)]). 

Теорема 1.2.3. Если выполняются условия теоремы 1.2.2, то для 

функций 𝑤(𝑥, 𝑡),𝑤𝜀(𝑥, 𝑡) и их производных 𝑤𝑡(𝑥, 𝑡), 𝑤𝑥𝑡(𝑥, 𝑡), 𝑤𝜀𝑡(𝑥, 𝑡),

𝑤𝜀𝑥𝑡(𝑥, 𝑡) при 𝜀 → 0, имеет место равномерная сходимость 

𝑤𝜀(𝑥, 𝑡) → 𝑤(𝑥, 𝑡),𝑤𝜀𝑡(𝑥, 𝑡) → 𝑤𝑡(𝑥, 𝑡), 𝑤𝜀𝑥𝑡(𝑥, 𝑡) → 𝑤𝑥𝑡(𝑥, 𝑡).  

Пример. Пусть 𝑃(𝑥, 𝑡) = (1 − 𝑥)(1 + 𝑡), 𝑀(𝑥, 𝑡) = 𝑥2𝑡3, 𝐶0 = 1,  

𝑓(𝑥, 𝑡) = −𝑥2 − 𝑡2 − 𝑥2𝑡 − 𝑡3 + 𝑥3 + 𝑥𝑡2 + 𝑥3𝑡 + 𝑥𝑡3 − 2𝑥2𝑡4, 

 0 ≤ 𝑥 ≤ 1,   0 ≤ 𝑡 ≤ 1,  𝜎(𝑡) = 𝑡2,   𝑞(𝑥) = 1 + (1 + (1 + 𝑥))𝑥2,  

 𝐶(𝑥) = 1 + 𝑥2, 𝐴(𝑥) = 𝑥3 − 1. Тогда 𝑝(𝑥) = 𝑥2(1 + 𝑥),  

𝐾(𝑥, 𝑠) = (1 + 𝑥2)∫(1 + 𝑡)(1 − 𝑠)𝑑𝑡

1

0

=
3

2
(1 + 𝑥2)(1 − 𝑠),     
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𝐾(𝑥, 𝑥) =
3

2
(1 + 𝑥2)(1 − 𝑥), 𝐺(𝑥) = 𝑥2(1 + 𝑥) +

3

2
(1 + 𝑥2)(1 − 𝑥). 

Точным решением задачи является функция 𝑤(𝑥, 𝑡) = 𝑥2 + 𝑡2. 

При этом 𝐺(𝑥) ≥ 1,5, выполняется условия согласования 

𝐴(0)𝜎(0) + 𝐶(0)𝜎(1) = 𝑞(0). 

 

𝑥 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

𝐺(𝑥) 1,5 1,37 1,30 1,26 1,27 1,31 1,39 1,50 1,64 1,81 2 

 

 
Рис.2. График функции 𝐺(𝑥) 

 

Замечание 1.1. Если задано более общее линейное дифференци-

альное уравнение вида 

𝑤𝑥𝑡(𝑥, 𝑡) + 𝑎(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡) + 𝑚(𝑥, 𝑡)𝑤𝑡(𝑥, 𝑡) + 

+𝑐(𝑥, 𝑡)𝑤(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),                                                  (1.2.17) 

с условиями (1.1.2), (1.1.3) при выполнении требований: 

а)  𝑎(𝑥, 𝑡) ∈ 𝐶1,0(𝐷),   𝑐(𝑥, 𝑡) ∈ 𝐶1,1(𝐷),   𝐴(𝑥),  𝐶(𝑥),  𝑞(𝑥) ∈ 𝐶[0, 𝑏],  

𝑎(𝑥, 𝑡)|𝑥=0 = 0; 

б)  𝑚(𝑥, 𝑡) ∈ 𝐶0,1(𝐷),   𝑓(𝑥, 𝑡) ∈ 𝐶(𝐷),   𝜎(𝑡) ∈ 𝐶1[0, 𝑇],   

𝐷 = [0, 𝑏] × [0, 𝑇]; 

в)  𝜎(0) = 0,   С(0)𝜎(𝑇) = 𝑞(0), 

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2
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то применяя метод функции Римана задача сводится к линейному  

интегральному уравнению Вольтерра третьего рода [54] 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 = 𝜇(𝑥) + 𝐵(𝑥)

𝑥

0

𝜑0, 

где 𝐾(𝑥, 𝑠) ≡ 𝐶(𝑥)[𝑚(𝑠, 0)𝑅(𝑥, 𝑇, 𝑠, 0) + 𝑅𝑠(𝑥, 𝑇, 𝑠, 0)],  

𝜇(𝑥) ≡ 𝑞(𝑥) − 𝐶(𝑥)[𝑅(𝑥, 𝑇, 0, 𝑇)𝜎(𝑇) + ∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝜎(𝜏)𝑑𝜏 +

𝑇

0

 

+∫𝑑𝑠∫𝑅(𝑥, 𝑇, 𝑠, 𝜏)𝑓(𝑠, 𝜏)𝑑𝜏],

𝑇

0

𝑥

0

  𝑝(𝑥) ≡ 𝐴(𝑥) + 𝐶(𝑥)𝑅(𝑥, 𝑇, 𝑥, 0),  

𝐵(𝑥) ≡ 2𝐶(𝑥)[𝑅(𝑥, 𝑇, 0, 𝑇) − 𝑅(𝑥, 𝑇, 0,0)],  𝑅(𝑥, 𝑡, 𝑠, 𝜏) – функция Римана 

удовлетворяющее уравнению 𝑅𝑥𝑡 − (𝑎𝑅)𝑥 − (𝑚𝑅)𝑡 − 𝑐𝑅 = 0 и условиям 

𝑅(𝑠, 𝑡, 𝑠, 𝜏) = exp (∫ 𝑎(𝑠, 𝜏′)𝑑𝜏′
𝑡

𝜏
),  𝑅(𝑥, 𝜏, 𝑠, 𝜏) = 𝑒𝑥𝑝(∫ 𝑚(𝑠′, 𝜏)

𝑥

𝑠
𝑑𝑠′). 

Так как 𝑎(0, 𝑡) = 0, то 𝑅(0, 𝜏, 0, 𝜏) = 1, 𝑅𝜏(0, 𝑇, 0, 𝜏) = 0, 𝑅(0, 𝑇, 0, 𝑇) = 1. 

Тогда 𝐵(0) = 0, 𝑝(0) = 𝐴(0) + 𝐶(0) = 0 и если учесть, что 

 𝐶(0)𝜎(𝑇) = 𝑞(0),  то 𝜇(0) = 0. 

Решение задачи представляется соотношением: 

𝑤(𝑥, 𝑡) = 𝑅(𝑥, 𝑡, 𝑥, 0)𝜑(𝑥) + 𝑅(𝑥, 𝑡, 0, 𝑡)𝜎(𝑡) + 2[𝑅(𝑥, 𝑡, 0, 𝑡) −     

−𝑅(𝑥, 𝑡, 0,0)]𝜑0 +∫𝑅𝜏(𝑥, 𝑡, 0, 𝜏)𝜎(𝜏)𝑑𝜏 +

𝑡

0

∫[𝑚(𝑠, 0)𝑅(𝑥, 𝑡, 𝑠, 0) +

𝑥

0

 

+𝑅𝑠(𝑥, 𝑡, 𝑠, 0)]𝜑(𝑠)𝑑𝑠 + ∫𝑑𝑠∫𝑅(𝑥, 𝑡, 𝑠, 𝜏)𝑓(𝑠, 𝜏)𝑑𝜏 ≡ (𝑄𝜑)(𝑥, 𝑡).

𝑡

𝑜

𝑥

0

 

Имеет место следующая оценка [54]  

‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ 𝑑12𝜀, 0 < 𝑑12 = 𝑐𝑜𝑛𝑠𝑡, 

𝜑𝜀(𝑥) – решение регуляризованного уравнения 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑𝜀(𝑠)𝑑𝑠 + 𝑔(𝑥) +

𝑥

0

𝑥

0

 

+(𝜀 + 𝐵0(𝑥))𝜑(0),                                                                                      

где   𝐺(𝑥) = 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1 > 0,   𝐿(𝑥, 𝑠) = 𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) − 
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−𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈,

𝑥

𝑠

  𝑔(𝑥) = 𝜇(𝑥) + 𝐶0∫𝜇(𝑠)𝑑𝑠,   𝐵0(𝑥) = 𝐵(𝑥)

𝑥

0

+ 

+𝐶0∫𝐵(𝑠)𝑑𝑠,

𝑥

0

  0 < 𝐶0 = 𝑐𝑜𝑛𝑠𝑡. 

Следовательно, решение задачи (1.2.10), (1.1.2), (1.1.3) един-

ственно в паре 𝐶(𝐷), 𝐶[0, 𝑏]. 

Замечание 1.2. Из задачи (1.2.1)-(1.2.3) при 𝑀(𝑥, 𝑡) = 0, 

𝑃(𝑥, 𝑡) = 𝑎0 = 𝑐𝑜𝑛𝑠𝑡, получим следующую задачу 

𝑤𝑥𝑡(𝑥, 𝑡) + 𝑎0𝑤(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),            (1.2.18) 

𝐴(𝑥)𝑤(𝑥, 0) + 𝐶(𝑥)𝑤(𝑥, 𝑇) = 𝑞(𝑥), 

𝑤(0, 𝑡) = 𝜎(𝑡) + 𝜑0,    (1.2.19) 

𝐶(0)𝜎(𝑇) + 𝑞(0) = 0. 

Относительно 𝐴(𝑥), 𝐶(𝑥), 𝑞(𝑥), 𝜎(𝑡),  𝜑0 выполняются условия а–в. 

В (1.2.18), (1.2.19) произведя обозначение 𝑤(𝑥, 0) = 𝜑(𝑥).  

Рассмотрим задачу  

𝑤𝑥𝑡(𝑥, 𝑡) + 𝑎0𝑤(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),    (1.2.20) 

𝑤(𝑥, 0) = 𝜑(𝑥),   

𝑤(0, 𝑡) = 𝜎(𝑡) + 𝜑0, 𝜑(0) = 𝜑0                     (1.2.21) 

Тогда решение задач (1.2.20), (1.2.21) определяется по методу Ри-

мана в виде 

𝑤(𝑥, 𝑡) = 𝑅(𝑥, 𝑡, 𝑥, 0)𝜑(𝑥) + 𝑅(𝑥, 𝑡, 0, 𝑡)𝜎(𝑡) − ∫𝑅𝑠(𝑥, 𝑡, 𝑠, 0)𝜑(𝑠)𝑑𝑠 −

𝑥

0

 

−∫𝑅𝜏(𝑥, 𝑡, 0, 𝜏)𝜎(𝜏)𝑑𝜏 + ∫∫𝑅(𝑥, 𝑡, 𝑠, 𝜏)𝑓(𝑠, 𝜏)𝑑𝜏𝑑𝑠,                     (1.2.22)

𝑡

0

𝑥

0

𝑡

0

 

где 𝑅(𝑥, 𝑡, 𝑠, 𝜏)- функция Римана определяется в виде [13, с 262] 

𝑅(𝑥, 𝑡, 𝑠, 𝜏) =∑
(−1)𝑗

[Г(𝑗 + 1)]2

∞

𝑗=0

(𝑎0(𝑠 − 𝑥)(𝜏 − 𝑡))
𝑗
. 



46 

 

Для определения 𝜑(𝑥) при 𝑡 = 𝑇 умножим на 𝐶(𝑥) обе части урав-

нения (1.2.22). Тогда, учитывая условие (1.2.19), получим 

[𝐴(𝑥) − 𝐶(𝑥)]𝜑(𝑥) + 𝐶(𝑥)∫𝑅𝑠(𝑥, 𝑇, 𝑠, 0)

𝑥

0

𝜑(𝑠)𝑑𝑠 = 𝑞(𝑥) + 𝐶(𝑥)[𝜎(𝑇) − 

−∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝜎(𝜏)𝑑𝜏

𝑇

0

  + ∫∫𝑅(𝑥, 𝑇, 𝑠, 𝜏)𝑓(𝑠, 𝜏)𝑑𝜏𝑑𝑠].                (1.2.23)

𝑇

0

𝑥

0

 

Используя обозначения:  

𝐾(𝑥, 𝑠) ≡ 𝐶(𝑥)𝑅𝑠(𝑥, 𝑇, 𝑠, 0),   𝑝(𝑥) ≡ 𝐴(𝑥) − 𝐶(𝑥)   

𝜇(𝑥) ≡ 𝜎(𝑡)𝐶(𝑥) + 𝑞(𝑥) − 𝐶(𝑥) ∫ 𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝜎(𝜏)𝑑𝜏 ,
𝑇

0
 из (1.2.23) по-

лучим интегральное уравнение  

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 = 𝜇(𝑥).                  (1.2.24)

𝑥

0

 

При 𝑥 = 0,   𝑅𝜏(0, 𝑇, 0, 𝜏) = 0. Тогда из условия согласования сле-

дует, что 𝜇(0) ≡ 𝜎(𝑡)𝐶(0) + 𝑞(0) − 𝐶(0)∫ 𝑅𝜏(0, 𝑇, 0, 𝜏)𝜎(𝜏)𝑑𝜏 = 0.
𝑇

0
 

Действуем оператором 𝐼 + 𝐶0𝐽 на (1.2.24), где 𝐼 – единичный опе-

ратор, 𝐽𝜑(𝑥) = ∫ 𝜑(𝑠)𝑑𝑠,
𝑥

0
 и получим уравнение 

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 + 𝑔(𝑥),

𝑥

0

𝑥

0

 

где 𝐺(𝑠) = 𝐶0𝑝(𝑠) + 𝐾(𝑠, 𝑠),   𝐿(𝑥, 𝑠) = 𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) − 

−𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈,

𝑥

𝑠

  𝑔(𝑥) = 𝜇(𝑥) + 𝐶0∫𝜇(𝑠)𝑑𝑠.

𝑥

0

 

Регуляризованное решение задачи (1.2.18)–(1.2.19) находим из си-

стемы интегральных уравнений  

𝑤𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + 𝜎(𝑡) − ∫𝑅𝑠(𝑥, 𝑡, 𝑠, 0)𝜑𝜀(𝑠)𝑑𝑠 +

𝑥

0

 

+∫𝑅𝜏(𝑥, 𝑡, 0)𝜎(𝜏)𝑑𝜏

𝑡

0

+∫∫𝑅(𝑥, 𝑡, 𝑠, 𝜏)

𝑡

0

𝑥

0

𝑓(𝑠, 𝜏)𝑑𝜏𝑑𝑠, 
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(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝜉)𝜑𝜀(𝜉)𝑑𝜉

𝑥

0

= ∫𝐿(𝑥, 𝜉)𝜑𝜀(𝜉)𝑑𝜉

𝑥

0

+ 𝑔(𝑥) + 𝜀𝜑(0), 

где 𝜀 ∈ (0,1). 

При этом имеет место оценки 

‖𝑤𝜀(𝑥, 𝑡) − 𝑤(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑑4‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏], 

‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ 𝑑3𝜀,    0 < 𝑑3, 𝑑4 = 𝑐𝑜𝑛𝑠𝑡.    

 

1.3. Регуляризация уравнения Бенджамина–Бона-Махони  

с нелокальными краевыми условиями 

 

Рассмотрим дифференциальное уравнение  

𝑤𝑥𝑥𝑡(𝑥, 𝑡) + 𝑎1𝑤𝑡(𝑥, 𝑡) + 𝑎2𝑤𝑥(𝑥, 𝑡) + 

+𝑎3𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),                                     (1.3.1) 

с нелокальными краевыми условиями 

𝑤(0, 𝑡) = 0, 

𝑤𝑥(0, 𝑡) = 𝜓, 

𝐴(𝑥)𝑤(𝑥, 0) = 𝐶(𝑥)𝑤(𝑥, 𝑇) + 𝑞(𝑥),                     (1.3.2) 

где 𝑎𝑖 = 𝑐𝑜𝑛𝑠𝑡, 𝑖 = 1,2,3, 𝜓 – неизвестный параметр, известные функ-

ции 𝐴(𝑥), 𝐶(𝑥), 𝑞(𝑥), 𝑓(𝑥, 𝑡) подчиняются условиям:  

а)  𝑓(𝑥, 𝑡) ∈ 𝐶(𝐷),   𝐷 = [0, 𝑏] × [0, 𝑇],   𝐴(𝑥), 𝐶(𝑥), 𝑞(𝑥) ∈ 𝐶2[0, 𝑏], 

𝐶(0) = 0,    𝑞(𝑖)(0) = 0,    𝑖 = 0,1,    𝐺(𝑥) = 𝐴′(𝑥) − 𝐶′(𝑥) ≥ 𝑑1,    

0 < 𝑑1 = 𝑐𝑜𝑛𝑠𝑡, 𝑝(𝑥) = 𝐴(𝑥) − 𝐶(𝑥),   𝑝(0) = 0, 𝑝(𝑥) – неубываю-

щая функция, 𝑝(𝑥) > 0, ∀𝑥 ∈ (0, 𝑏].  

Произведем подстановку 

𝑤(𝑥, 𝑡) = ∫𝑢(𝑠, 𝑡)𝑑𝑠.                                 (1.3.3)

𝑥

0

 

Тогда из (1.3.1)–(1.3.2) получим задачу 
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𝑢𝑥𝑡(𝑥, 𝑡) + 𝑎2𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) − 𝑎1∫𝑢𝑡(𝑠, 𝑡)𝑑𝑠 − 

𝑥

0

 

−𝑎3𝑢(𝑥, 𝑡)(∫𝑢(𝑠, 𝑡)𝑑𝑠

𝑥

0

),                                                       (1.3.4) 

𝑢(0, 𝑡) = 𝜓,                                                                             

𝐴(𝑥)∫𝑢(𝑠, 0)𝑑𝑠 = 𝐶(𝑥)∫𝑢(𝑠, 𝑇)𝑑𝑠 + 𝑞(𝑥)

𝑥

0

𝑥

0

.                    (1.3.5) 

Продифференцируем второе условие (1.3.5) 

𝐴′(𝑥)∫𝜑(𝑠)𝑑𝑠 + 𝐴(𝑥)𝜑(𝑥) = 𝐶′(𝑥)∫𝑢(𝑠, 𝑇)𝑑𝑠 +

𝑥

0

𝑥

0

 

+𝐶(𝑥)𝑢(𝑥, 𝑇) + 𝑞′(𝑥).                                                                (1.3.6) 

Используя функцию Римана [13, с.262] 

𝑅(𝑥, 𝑡, 𝑠, 𝜏) = ∑(−1)𝑝
∞

𝑝=0

(𝑎2(𝑠 − 𝑥)(𝜏 − 𝑡))
𝑝

[Г(𝑝 + 1)]2
                (1.3.7) 

дифференциального уравнения  

𝑢𝑥𝑡(𝑥, 𝑡) + 𝑎2𝑢(𝑥, 𝑡) = 0, 

интегро-дифференциальное уравнение (1.3.4) с условиями Гурса 

𝑢(0, 𝑡) = 𝜓, 

𝑢(𝑥, 0) = 𝜑(𝑥)                                         (1.3.8) 

приведем к уравнению 

𝑢(𝑥, 𝑡) = 𝜑(𝑥) + (1 − 𝑅(𝑥, 𝑡, 0,0))𝜓 − ∫𝑅𝑠(𝑥, 𝑡, 𝑠, 0)𝜑(𝑠)𝑑𝑠 −            

𝑥

0

 

−∫𝑅𝜏(𝑥, 𝑡, 0, 𝜏)𝜓𝑑𝜏 + ∫∫𝑅(𝑥, 𝑡, 𝑠, 𝜏)

𝑡

0

𝑥

0

𝑡

0

[𝑓(𝑠, 𝜏) − 𝑎1∫𝑢𝜏(𝜉, 𝜏)𝑑𝜉 −    

𝑠

0

 

−𝑎3𝑢(𝑠, 𝜏)∫𝑢(𝜉, 𝜏)𝑑𝜉]𝑑𝜏𝑑𝑠.                                                                   (1.3.9)

𝑠

0

 

Проинтегрируем (1.3.9) от 0 до 𝑥 
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∫𝑢(𝑠, 𝑡)𝑑𝑠 = ∫𝜑(𝑠)

𝑥

0

𝑥

0

𝑑𝑠 + 𝑥𝜓 −∫𝑅(𝑠, 𝑡, 0,0)𝜓𝑑𝑠 −       

𝑥

0

 

−∫∫𝑅𝑠(𝜉, 𝑡, 𝑠, 0)𝜑(𝑠)𝑑𝜉𝑑𝑠 − ∫∫𝑅𝜏(𝑠, 𝑡, 0, 𝜏)𝜓𝑑𝜏𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

𝑠

𝑥

0

 

+∫𝑑𝑠∫𝑑𝜉 ∫𝑅(𝜉, 𝑡, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) − 𝑎1∫𝑢𝜏(𝜂, 𝜏)𝑑𝜂 −    

𝑠

0

𝑡

0

𝑥

𝑠

𝑥

0

 

−𝑎3𝑢(𝑠, 𝜏)∫𝑢(𝜂, 𝜏)𝑑𝜂]𝑑𝜏.                                                       (1.3.10)

𝑠

0

 

Умножим обе стороны уравнения (1.3.9) на 𝐶(𝑥) и положим 𝑡 = 𝑇. 

Тогда учитывая (1.3.6), (1.3.8) получим 

[𝐴(𝑥) − 𝐶(𝑥)]𝜑(𝑥) + 𝐶(𝑥)∫𝑅𝑠(𝑥, 𝑇, 𝑠, 0)𝜑(𝑠)

𝑥

0

𝑑𝑠 = 𝑞′(𝑥) −                

−𝐴′(𝑥)∫𝜑(𝑠)𝑑𝑠 −

𝑥

0

𝐶′(𝑥)∫𝑢(𝑠, 𝑇)𝑑𝑠 − 𝐶(𝑥)(1 − 𝑅(𝑥, 𝑇, 0,0))𝜓 −

𝑥

0

 

−𝐶(𝑥)∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝜓𝑑𝜏 + 𝐶(𝑥)∫∫𝑅(𝑥, 𝑇, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) −                   

𝑇

0

𝑥

0

𝑇

0

 

−𝑎1∫𝑢𝜏(𝜂, 𝜏)𝑑𝜂 −

𝑠

0

𝑎3𝑢(𝑠, 𝜏)∫𝑢(𝜂, 𝜏)𝑑𝜂

𝑠

0

]𝑑𝜏𝑑𝑠.                              (1.3.11) 

Далее, пологая 𝑡 = 𝑇 в (1.3.10), подставим полученное выражение 

в (1.3.11)  

[𝐴(𝑥) − 𝐶(𝑥)]𝜑(𝑥) + 𝐶(𝑥)∫𝑅𝑠(𝑥, 𝑇, 𝑠, 0)𝜑(𝑠)𝑑𝑠 = 𝑞
′(𝑥) − 𝐴′(𝑥)

𝑥

0

× 

×∫𝜑(𝑠)𝑑𝑠

𝑥

0

+ 𝐶′(𝑥)∫𝜑(𝑠)

𝑥

0

𝑑𝑠 + 𝐶′(𝑥)𝑥𝜓 − 𝐶′(𝑥)∫𝑅(𝑠, 𝑇, 0,0)

𝑥

0

𝜓𝑑𝑠 − 

−𝐶′(𝑥)∫∫𝑅𝜉(𝜉, 𝑇, 𝑠, 0)𝜑(𝑠)𝑑𝜉𝑑𝑠−𝐶
′(𝑥)∫∫𝑅𝜏(𝑠, 𝑇, 0, 𝜏)𝜓𝑑𝜏𝑑𝑠 +

𝑇

0

𝑥

0

𝑥

𝑠

𝑥

0
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+𝐶′(𝑥)∫∫∫𝑅(𝜉, 𝑇, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) − 𝑎1

𝑇

0

𝑥

𝑠

𝑥

0

∫𝑢𝜏(𝜂, 𝜏)𝑑𝜂 − 𝑎3𝑢(𝑠, 𝜏) ×

𝑠

0

 

×∫𝑢(𝜂, 𝜏)

𝑠

0

𝑑𝜂]𝑑𝜏𝑑𝜉𝑑𝑠 + 𝐶(𝑥)(1 − 𝑅(𝑥, 𝑇, 0,0))𝜓 −
 

−𝐶(𝑥)∫𝑅𝜏

𝑇

0

(𝑥, 𝑇, 0, 𝜏)𝜓𝑑𝜏 + 𝐶(𝑥)∫∫𝑅(𝑥, 𝑇, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) −

𝑇

0

𝑥

0

 

−𝑎1∫𝑢𝜏(𝜂, 𝜏)𝑑𝜂

𝑠

0

− 𝑎3𝑢(𝑠, 𝜏)∫𝑢(𝜂, 𝜏)𝑑𝜂

𝑠

0

]𝑑𝜏𝑑𝑠.                                      (1.3.12) 

Продифференцируем (1.3.9) по 𝑡. Тогда  

𝑢𝑡(𝑥, 𝑡) = −𝑅𝑡(𝑥, 𝑡, 0, 𝜏)𝜓 − ∫𝑅𝑠𝑡(𝑥, 𝑡, 𝑠, 0)𝜑(𝑠)

𝑥

0

𝑑𝑠 − 

−∫𝑅𝜏𝑡(𝑥, 𝑡, 0, 𝜏)𝜓𝑑𝜏 +

𝑡

0

∫[𝑓(𝑠, 𝑡) − 𝑎1∫𝑢𝑡(𝜉, 𝑡)𝑑𝜉 −

𝑠

0

𝑥

0

 

−𝑎3𝑢(𝑠, 𝑡)∫𝑢(𝜉, 𝑡)𝑑𝜉]𝑑𝑠 + ∫∫𝑅𝑡(𝑥, 𝑡, 𝑠, 𝜏) ×

𝑡

0

𝑥

0

𝑠

0

 

× [𝑓(𝑠, 𝜏) − 𝑎1∫𝑢𝑡(𝜉, 𝜏)

𝑠

0

𝑑𝜉 − 𝑎3𝑢(𝑠, 𝜏)∫𝑢(𝜉, 𝜏)𝑑𝜉]𝑑𝜏𝑑𝑠.            (1.3.13)

𝑠

0

 

Производим подстановку  

𝑢(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏,                         (1.3.14)

𝑡

0

 

с учетом равенства 𝜓 = 𝑢(0,0) = 𝜑(0), уравнения (1.3.12) и (1.3.13)  

перепишем в виде  

𝑧(𝑥, 𝑡) = −𝑅𝑡(𝑥, 𝑡, 0,0)𝜑(0) − ∫𝑅𝑠𝑡(𝑥, 𝑡, 𝑠, 0)𝜑(𝑠)𝑑𝑠 −

𝑥

0

 

−∫𝑅𝜏𝑡(𝑥, 𝑡, 0, 𝜏)𝜑(0)𝑑𝜏 +

𝑡

0

∫[𝑓(𝑠, 𝑡) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 −

𝑠

0

𝑥

0
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−𝑎3[𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)𝑑𝜏

𝑡

0

]∫[𝜑(𝜉) + ∫𝑧(𝜉, 𝜏)𝑑𝜏

𝑡

0

]

𝑠

0

𝑑𝜉]𝑑𝑠 + 

+∫∫𝑅𝑡

𝑡

0

𝑥

0

(𝑥, 𝑡, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 − 𝑎3

𝑠

0

[𝜑(𝑠) + 

+∫𝑧(𝑠, 𝜎)𝑑𝜎]∫[𝜑(𝜉) + ∫𝑧(𝜉, 𝜎)𝑑𝜎]𝑑𝜏𝑑𝑠.

𝜏

0

𝑠

0

𝜏

0

                       

Применяя подстановку (1.3.14), уравнение (1.3.12) перепишем в виде  

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 + 𝑞′(𝑥) + 𝐶′(𝑥)𝑥𝜑(0) −

𝑥

0

𝑥

0

 

−𝐶′(𝑥)∫𝑅(𝑠, 𝑇, 0,0)

𝑥

0

𝜑(0)𝑑𝑠 − 𝐶′(𝑥)∫∫𝑅𝜏(𝑠, 𝑇, 0, 𝜏)

𝑇

0

𝑥

0

𝜑(0)𝑑𝜏𝑑𝑠 + 

+𝐶′(𝑥)∫∫∫𝑅(𝜉, 𝑇, 𝑠, 𝜏)[𝑓(𝑠, 𝜏)

𝑇

0

𝑥

𝑠

𝑥

0

− 𝑎1∫𝑧(𝜂, 𝜏)𝑑𝜂 − 𝑎3[𝜑(𝑠) +

𝑠

0

 

+∫𝑧(𝑠, 𝜎)

𝜏

0

𝑑𝜎]∫[𝜑(𝜂) + ∫𝑧(𝜂, 𝜎)𝑑𝜎]𝑑𝜂]]𝑑𝜏𝑑𝜉𝑑𝑠 +

𝜏

0

𝑠

0

𝐶(𝑥) × 

× (1 − 𝑅(𝑥, 𝑇, 0,0))𝜑(0) − 𝐶(𝑥)∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝜑(0)𝑑𝜏 +

𝑇

0

 

+𝐶(𝑥)∫∫𝑅(𝑥, 𝑇, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜂, 𝜏)𝑑𝜂 −

𝑠

0

𝑇

0

𝑥

0

 

−𝑎3[𝜑(𝑠) + ∫𝑧(𝑠, 𝜎)𝑑𝜎]∫[𝜑(𝜂) + ∫𝑧(𝜂, 𝜎)𝑑𝜎]]𝑑𝜏𝑑𝑠,

𝜏

0

𝑠

0

𝜏

0

 

где 𝐾(𝑥, 𝑠) = 𝐶(𝑥)𝑅𝑠(𝑥, 𝑇, 𝑠, 0) − 𝐶
′(𝑥)∫𝑅𝜉(𝜉, 𝑇, 𝑠, 0)𝑑𝜉 + 𝐴

′(𝑥) −

𝑥

𝑠

 

−𝐶′(𝑥) − 𝐴′(𝑠) + 𝐶′(𝑠),    𝐺(𝑥) = 𝐴′(𝑥) − 𝐶′(𝑥). 

Тогда для определения неизвестных функций получим систему  
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{

𝑧(𝑥, 𝑡) ≡ (𝐹[𝜑, 𝑧])(𝑥, 𝑡),                                                                              

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 ≡ (𝐵[𝜑, 𝑧])(𝑥) + 𝑚(𝑥)𝜑(0),    (1.3.5)

𝑥

0

 

где (𝐹[𝜑, 𝑧])(𝑥, 𝑡) = −𝑅𝑡(𝑥, 𝑡, 0,0)𝜑(0) − ∫𝑅𝑠𝑡(𝑥, 𝑡, 𝑠, 0)𝜑(𝑠)𝑑𝑠 −

𝑥

0

 

−∫𝑅𝜏𝑡(𝑥, 𝑡, 0, 𝜏)𝜓𝑑𝜏 + ∫[𝑓(𝑠, 𝑡) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 − 𝑎3[𝜑(𝑠) +

𝑠

0

𝑥

0

𝑡

0

 

+∫𝑧(𝑠, 𝜏)𝑑𝜏]∫[𝜑(𝜉) + ∫𝑧(𝜉, 𝜏)𝑑𝜏]𝑑𝜉]𝑑𝑠 + ∫∫𝑅𝑡(𝑥, 𝑡, 𝑠, 𝜏) ×

𝑡

0

𝑥

0

𝑡

0

𝑠

0

𝑡

0

 

× [𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 − 𝑎3[𝜑(𝑠) + ∫𝑧(𝑠, 𝜎)𝑑𝜎] ×

𝜏

0

𝑠

0

 

×∫[𝜑(𝜉) + ∫𝑧(𝜉, 𝜎)𝑑𝜎]]𝑑𝜏𝑑𝑠,

𝜏

0

𝑠

0

 

(𝐵[𝜑, 𝑧])(𝑥) = ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 + 𝑞′(𝑥) + 𝐶′(𝑥)∫∫∫𝑅(𝜉, 𝑇, 𝑠, 𝜏) ×

𝑇

0

𝑥

𝑠

𝑥

0

𝑥

0

 

× [𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜂, 𝜏)𝑑𝜂 − 𝑎3[𝜑(𝑠) + ∫𝑧(𝑠, 𝜎)𝑑𝜎]∫[𝜑(𝜂) +

𝑠

0

𝜏

0

𝑠

0

 

+∫𝑧(𝜂, 𝜎)𝑑𝜎]𝑑𝜂]𝑑𝜏𝑑𝜉𝑑𝑠 + 𝐶(𝑥)∫∫[𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜂, 𝜏)𝑑𝜂 −

𝑠

0

𝑇

0

𝑥

0

𝜏

0

 

−𝑎3[𝜑(𝑠) + ∫𝑧(𝑠, 𝜎)𝑑𝜎]∫[𝜑(𝜂) + ∫𝑧(𝜂, 𝜎)𝑑𝜎]]𝑑𝜏𝑑𝑠,

𝜏

0

𝑠

0

𝜏

0

 

𝑚(𝑥) = 𝑥𝐶′(𝑥) − 𝐶′(𝑥)∫𝑅(𝑠, 𝑇, 0,0)𝑑𝑠 − 𝐶′(𝑥)∫∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)

𝑇

0

𝑥

0

𝑥

0

𝑑𝜏𝑑𝑠 + 

+𝐶(𝑥)(1 − 𝑅(𝑥, 𝑇, 0,0)) − 𝐶(𝑥)∫𝑅𝜏(𝑥, 𝑇, 0, 𝜏)𝑑𝜏.

𝑇

0
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Пусть   малый параметр из интервала (0,1). Рассмотрим систему   

{
 
 

 
 
𝑧𝜀(𝑥, 𝑡) ≡ (𝐹[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡),                                                                           

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 ≡ (𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) +                        

𝑥

0

+(𝜀 + 𝑚(𝑥))𝜑(0).                                                                           (1.3.16)

 

Перепишем второе уравнение системы (1.3.16), используя резольвенту 

ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
), в следующем виде 

{
 
 
 
 

 
 
 
 
𝑧𝜀(𝑥, 𝑡) ≡ (𝐹[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡),                                                                                      

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×  

𝑥

0

                           

× [(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑠) − [(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥)]𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
×                                      

× 𝑒𝑥𝑝(−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) [(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) + (𝜀 + 𝑚(𝑥))𝜑(0)].     (1.3.17)

 

Пусть 

𝜑̅𝜀(𝑥), 𝜑̃𝜀(𝑥) ∈ Ω1 = {𝜑(𝑥) ∈ 𝐶
1[0, 𝑏]/|𝜑(𝑥)| ≤ 𝑟1 = 𝑐𝑜𝑛𝑠𝑡},       

𝑧𝜀̅(𝑥, 𝑡), 𝑧̃𝜀(𝑥, 𝑡) ∈ Ω2 = {𝑧(𝑥, 𝑡) ∈ 𝐶(𝐷)/|𝑧(𝑥, 𝑡)| ≤ 𝑟2 = 𝑐𝑜𝑛𝑠𝑡}. 

Оценим разности: 

|(𝐹[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥, 𝑡) − (𝐹[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥, 𝑡)| ≤ 𝑁1‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+𝑁2‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷), 

где 𝑁1 = max
𝐷
[∫|𝑅𝑠𝑡(𝑥, 𝑡, 𝑠, 0)|𝑑𝑠 + ∫|𝑅𝜏𝑡(𝑥, 𝑡, 0, 𝜏)|𝑑𝜏

𝑡

0

𝑥

0

] + 

+2|𝑎3|max
𝐷
{∫∫|𝑅𝑡(𝑥, 𝑡, 𝑠, 𝜏)|𝑑𝜏𝑑𝑠

𝑡

0

𝑥

0

} 𝑏(𝑟1 + 𝑟2𝑇) + 2|𝑎3| 𝑏
2(𝑟1 + 𝑟2𝑇), 
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𝑁2 = max
𝐷
[∫∫|𝑅𝑡(𝑥, 𝑡, 𝑠, 𝜏)|𝑑𝜏𝑑𝑠

𝑡

0

𝑥

0

] {𝑏|𝑎1| + 2|𝑎3|𝑏(𝑟1𝑇 + 𝑇
2) + |𝑎1|

𝑏2

2
+ 

+|𝑎3| {𝑏𝑇 (
𝑏

2
+ 𝑇) +

𝑏2

2
𝑇(1 + 𝑇)}, 

1) |∫𝐾(𝑥, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉 − ∫𝐾(𝑠, 𝜉)[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]𝑑𝜉

𝑠

0

𝑥

0

| ≤ 

≤ ∫|𝐾(𝑥, 𝜉) − 𝐾(𝑠, 𝜉)||𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)|𝑑𝜉 + ∫|𝐾(𝑥, 𝜉) − 𝐾(𝜉, 𝜉)|

𝑥

𝑠

𝑠

0

× 

× |𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)|𝑑𝜉 ≤ (𝑥 − 𝑠)𝐿𝐾𝑏‖|𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)|‖𝐶[0,𝑏], 

2) |С′(𝑠)∫∫𝑑𝜇∫𝑅(𝜇, 𝑇, 𝜉, 𝜏)

𝑇

0

𝑠

𝜉

𝑠

0

{𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))

𝜉

0

𝑑𝜂 + 

+𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎

𝜏

0

]∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂) +

𝜉

0

 

+∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎

𝜏

0

]𝑑𝜂} 𝑑𝜏𝑑𝑠 − 𝐶′(𝑥)∫∫𝑑𝜇∫𝑅(𝜇, 𝑇, 𝜉, 𝜏)

𝑇

0

𝑥

𝜉

𝑥

0

× 

× {𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))𝑑𝜂 + 𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜂, 𝜎) −

𝜏

0

𝜉

0

 

−𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂) + ∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]𝑑𝜂

𝜏

0

𝜉

0

}𝑑𝜏𝑑𝑠| = 

= |[𝐶′(𝑠) − 𝐶′(𝑥)]∫∫𝑑𝜇∫𝑅(𝜇, 𝑇, 𝜉, 𝜏) {𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))𝑑𝜂

𝜉

0

+

𝑇

0

𝑠

𝜉

𝑠

0

 

+𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂)

𝜉

0

𝜏

0

+ 
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+∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]

𝜏

0

𝑑𝜂} 𝑑𝜏𝑑𝑠 − 𝐶′(𝑥)∫∫𝑑𝜇

𝑥

𝜉

𝑥

𝑠

∫𝑅(𝜇, 𝑇, 𝜉, 𝜏)

𝑇

0

× 

× {𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))𝑑𝜂 + 𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜂, 𝜎) −

𝜏

0

𝜉

0

 

−𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂) +

𝜉

0

∫(𝑧𝜀̅(𝜂, 𝜎) − 𝑧̃𝜀(𝜂, 𝜎))𝑑𝜎]𝑑𝜂

𝜏

0

} 𝑑𝜏𝑑𝑠| ≤ 

≤ (𝑥 − 𝑠)‖𝐶′′(𝑥)‖𝐶[0,𝑏]𝑏∫∫|𝑅(𝜇, 𝑇, 𝜉, 𝜏)|𝑑𝜏𝑑𝜉{|𝑎1|𝑏‖𝑧𝜀̅(𝑥, 𝑡) −   

𝑇

0

𝑠

0

 

−𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + |𝑎3|[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇𝑏‖𝑧𝜀̅(𝑥, 𝑡) − 

 

−𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)][‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]} + 

+(𝑥 − 𝑠)‖𝐶′(𝑥)‖𝐶[0,𝑏]∫∫|𝑅(𝜇, 𝑡0, 𝜉, 𝜏)|𝑑𝜏𝑑𝜇{

𝑡0

0

𝑥

𝜉

|𝑎1|𝑏‖𝑧𝜀̅(𝑥, 𝑡) − 

−𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + |𝑎3|‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)] × 

× 𝑇𝑏[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]} ≤ 

≤ (𝑥 − 𝑠)[‖𝐶′′(𝑥)‖𝐶[0,𝑏] + ‖𝐶
′(𝑥)‖𝐶[0,𝑏]]∫∫|𝑅(𝜇, 𝑡0, 𝜉, 𝜏)|𝑑𝜏𝑑𝜇 ×

𝑡0

0

𝑥

0

 

× {(|𝑎3| + 𝑏)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + [(|𝑎3| + 𝑏)𝑇 + |𝑎1|𝑏] × 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)} ≤ (𝑥 − 𝑠)𝑁3[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

+‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)],   𝑁3 = (‖𝐶
′(𝑥)‖𝐶[0,𝑏] + ‖𝐶

′′(𝑥)‖𝐶[0,𝑏])𝑁5, 

𝑁5 = max
𝐷
{∫∫|𝑅(𝜇, 𝑡0, 𝑥, 𝜏)|

𝑡

0

𝑥

0

𝑑𝜏𝑑𝜇}{(|𝑎3| + 𝑏), (|𝑎3| + 𝑏)𝑇 + |𝑎1|𝑏}, 
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3) |𝐶(𝑠)∫∫{𝑎1∫[𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏)]𝑑𝜂 + 𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) +

𝜉

0

𝑇

0

𝑠

0

 

+∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎]∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂) + ∫(𝑧𝜀̅(𝜉, 𝜎) −

𝜏

0

𝜉

0

𝜏

0

 

− 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎} 𝑑𝜏𝑑𝜉 − 𝐶(𝑥)∫∫{𝑎1∫[𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏)]

𝜉

0

𝑇

0

𝑥

0

𝑑𝜂 + 

+𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎∫[𝜑̅𝜀(𝜂) − 𝜑̃𝜀(𝜂) +

𝜉

0

𝜏

0

 

+∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎

𝜏

0

} 𝑑𝜏𝑑𝜉| = |[𝐶(𝑠) − 𝐶(𝑥)] × 

×∫∫{𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))𝑑𝜂 + 𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) +

𝜉

0

𝑇

0

𝑠

0

 

+∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎∫[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) +

𝜉

0

∫(𝑧𝜀̅(𝜉, 𝜎) −

𝜉

0

𝜏

0

 

−𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎} 𝑑𝜏𝑑𝜉 − 𝐶(𝑥)∫∫{𝑎1∫(𝑧𝜀̅(𝜂, 𝜏) − 𝑧̃𝜀(𝜂, 𝜏))𝑑𝜂 +

𝜉

0

𝑇

0

𝑥

𝑠

 

+𝑎3[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉) + ∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎]∫[𝜑̅𝜀(𝜉) − 𝜑̃𝜀(𝜉)]

𝜉

0

𝜏

0

+ 

+∫(𝑧𝜀̅(𝜉, 𝜎) − 𝑧̃𝜀(𝜉, 𝜎))𝑑𝜎

𝜉

0

}𝑑𝜏𝑑𝜉| ≤ (𝑥 − 𝑠)‖𝐶′(𝑥)‖𝐶[0,𝑏]𝑏𝑇 × 

× {|𝑎1|𝑏‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + |𝑎3|[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]𝑏[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 
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+𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]} + (𝑥 − 𝑠)‖𝐶(𝑥)‖𝐶[0,𝑏]𝑇{|𝑎1|𝑏 × 

 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + |𝑎3|[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]𝑏[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+𝑇‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]} ≤ (𝑥 − 𝑠)[‖𝐶
′(𝑥)‖𝐶[0,𝑏] + ‖𝐶(𝑥)‖𝐶[0,𝑏]] × 

 

× (1 + 𝑏)𝑇{(|𝑎3| + 𝑏)‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + [|𝑎1|𝑏 + (|𝑎3| + 𝑏)𝑇] × 

 

× ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)} ≤ (𝑥 − 𝑠)𝑁4[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)], 

 

𝑁4 = (‖𝐶(𝑥)‖𝐶[0,𝑏] + ‖𝐶
′(𝑥)‖𝐶[0,𝑏])(𝑁6 + 2|𝑎3|{(1 + 𝑇)(𝑟1 + 𝑇𝑟2)𝑏}), 

 

𝑁6 = 𝑚𝑎𝑥{(1 + 𝑏)𝑇(|𝑎3| + 𝑏), (1 + 𝑏)𝑇[|𝑎1|𝑏 + (|𝑎3| + 𝑏)𝑇]} + 

 

+2|𝑎3|{(1 + 𝑇)(𝑟1 + 𝑇𝑟2)𝑏}, 

 

|(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑠) − (𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑠) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| ≤ 

 

≤ (𝑥 − 𝑠)(𝑁3 + 𝑁4)[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)]. 

Аналогично 

|(𝐵[𝜑̅𝜀 , 𝑧𝜀̅])(𝑥) − (𝐵[𝜑̃𝜀 , 𝑧̃𝜀])(𝑥)| ≤ 𝑥(𝑁7 + 𝑁8){‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)},    

 

𝑁7 = 2‖𝐶
′(𝑥)‖𝐶[0,𝑏]𝑁5 + 𝐿𝐾𝑏,      𝑁8 = ‖𝐶(𝑥)‖𝐶[0,𝑏]𝑁6 + 𝐿𝐾𝑏. 

Из (1.3.17) учитывая выше полученные оценки имеем   

|𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)| = [
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×

𝑥

0
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× (𝑥 − 𝑠)(𝑁3 − 𝑁4)𝑑𝑠 +
𝑥

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) (𝑁7 +𝑁8)] × 

× [‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)] ≤ 

 

≤ [𝑑1
−1(𝑁3 +𝑁4) + 𝑒

−1(𝑁7 + 𝑁8)][‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + 

 

+‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)], 

 

‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏]+‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

 

≤ 𝑞[‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷)],                 (1.3.18) 

𝑞 = 𝑁1 +𝑁2 + 𝑑1
−1(𝑁3 + 𝑁4) + 𝑒

−1(𝑁7 +𝑁8). 

Если 𝑞 < 1, то можно показать [73, с.392] существования единственного 

решения системы (1.3.17) в паре (Ω1, Ω2). 

Теорема 1.3.1. Пусть имеет место условие a), тогда, если 𝑞 < 1, то 

решение системы (1.3.16) равномерно сходится при 𝜀 → 0 к решению си-

стемы (1.3.15), причем имеет место оценка 

‖𝑧𝜀̅(𝑥, 𝑡) − 𝑧̃𝜀(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜑̅𝜀(𝑥) − 𝜑̃𝜀(𝑥)‖𝐶[0,𝑏] ≤ 𝑁9𝜀, 

0 < 𝑁9 = 𝑐𝑜𝑛𝑠𝑡. 

Доказательство. С помощью подстановки 

𝜃𝜀(𝑥, 𝑡) = 𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡),   𝜗𝜀 = 𝜑𝜀(𝑥) − 𝜑(𝑥), 

из (1.3.17) получим 

𝜃𝜀(𝑥, 𝑡) = (𝐹[𝜑𝜀 , 𝑧𝜀])(𝑥, 𝑡) − (𝐹[𝜑, 𝑧])(𝑥, 𝑡), 

𝜗𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

[(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑠) − 

−(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) − (𝐵[𝜑, 𝑧])(𝑠) + (𝐵[𝜑, 𝑧])(𝑥)]𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
× 

× 𝑒𝑥𝑝 (−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) {[(𝐵[𝜑𝜀 , 𝑧𝜀])(𝑥) − (𝐵[𝜑, 𝑧])(𝑥)]𝑑𝑠 + 

+𝜀(𝐻𝜀𝜑)(𝑥), 

где 



59 

 

(𝐻𝜀𝜑)(𝑥) ≡
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝜑(𝑥) − 𝜑(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠 − 

−
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

) [𝜑(𝑥) − 𝜑(0)]. 

Используя (1.3.18) получим 

‖𝜗𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 𝑞(‖𝜗𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜃𝜀(𝑥, 𝑡)‖𝐶(𝐷)) + 

+‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏] или при 𝑞 < 1, ‖𝜗𝜀(𝑥)‖𝐶[0,𝑏] + ‖𝜃𝜀(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ (1 − 𝑞)−1‖(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏],  откуда в силу оценки леммы 

1.1.1: ‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏] ≤ 𝑁10𝜀, 0 < 𝑁10 = 𝑐𝑜𝑛𝑠𝑡, следует утверждение 

теоремы 1.3.1.  

Теорема 1.3.1 доказано. 

Регуляризованное решение задачи (1.3.1), (1.3.2) определим по 

правилу 

𝑤𝜀(𝑥, 𝑡) = ∫𝑢𝜀(𝑠, 𝑡)𝑑𝑠,

𝑥

0

 

𝑢𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏.

𝑡

0

 

Причем, при выполнении условия теоремы 1.3.1 имеет место оценка 

‖𝑤𝜀(𝑥, 𝑡) − 𝑤(𝑥, 𝑡)‖𝐶(𝐷) ≤ (1 − 𝑞)
−1𝑏(1 + 𝑇)‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏]. 

Так как 

1) 𝑤(𝑥, 𝑡) = ∫𝑢(𝑠, 𝑡)𝑑𝑠 = ∫(𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

𝑑𝜏)𝑑𝑠

𝑥

0

𝑥

0

, 

𝑤𝜀(𝑥, 𝑡) = ∫𝑢𝜀(𝑠, 𝑡)𝑑𝑠 = ∫(𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)

𝑡

0

)

𝑥

0

𝑥

0

𝑑𝑠, 

то 

|𝑤𝜀(𝑥, 𝑡) − 𝑤(𝑥, 𝑡)| ≤ 𝑏‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] + 
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+𝑏𝑇‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) → 0,  при ε → 0, 

2)  𝑤𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏,

𝑡

0

 

 𝑤𝜀𝑥(𝑥, 𝑡) = 𝑢𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏,

𝑡

0

 

|𝑤𝜀𝑥(𝑥, 𝑡) − 𝑤𝑥(𝑥, 𝑡)| ≤ 𝑏‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] + 

+𝑇‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) → 0, при 𝜀 → 0, 

3) 𝑤𝑡(𝑥, 𝑡) = ∫𝑢𝑡(𝑠, 𝑡)𝑑𝜏 = ∫𝑧(𝑠, 𝜏)𝑑𝑠,    𝑢𝑡

𝑥

0

𝑥

0

(𝑥, 𝑡) = 𝑧(𝑥, 𝑡),  

𝑤𝑡𝜀(𝑥, 𝑡) = ∫𝑧𝜀(𝑠, 𝑡)𝑑𝑠,

𝑥

0

 

|𝑤𝑡𝜀(𝑥, 𝑡) − 𝑤𝑡(𝑥, 𝑡)| ≤ 𝑏‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) ≤ 

≤ 𝑏(‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) + ‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏]) → 0,   𝜀 → 0, 

4) 𝑤𝑥𝑥𝑡(𝑥, 𝑡) = 𝑧𝑥(𝑥, 𝑡), 𝑤𝑥𝑥𝑡𝜀(𝑥, 𝑡) = 𝑧𝑥𝜀(𝑥, 𝑡),  

𝑧𝑥(𝑥, 𝑡) = −𝑅𝑡𝑥(𝑥, 𝑡, 0,0)𝜑(0) − 𝑅𝑠𝑡(𝑥, 𝑡, 𝑥, 0)𝜑(𝑥) − 

−∫𝑅𝑠𝑡𝑥(𝑥, 𝑡, 𝑠, 0)

𝑥

0

𝜑(𝑠)𝑑𝑠 − ∫𝑅𝜏𝑡𝑥(𝑥, 𝑡, 0,0)𝜑(0)

𝑡

0

𝑑𝜏 − 

−∫∫𝑅𝑡𝑥(𝑥, 𝑡, 𝑠, 𝜏)[𝑓(𝑠, 𝜏) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 − 𝑎3[𝜑(𝑠) +

𝑠

0

𝑡

0

𝑥

0

 

+∫𝑧(𝑠, 𝜎)𝑑𝜎

𝜏

0

]∫[𝜑(𝑠) + ∫𝑧(𝑠, 𝜎)𝑑𝜎

𝜏

0

]𝑑𝜏𝑑𝑠 + ∫𝑅𝑡(𝑥, 𝑡, 𝑥, 𝜏) ×

𝑡

0

𝑠

0

 

× [𝑓(𝑥, 𝜏) − 𝑎1∫𝑧(𝜉, 𝑡)𝑑𝜉 − 𝑎3[𝜑(𝑥) + ∫𝑧(𝑥, 𝜎)𝑑𝜎]∫[𝜑(𝜉) +

𝑥

0

𝜏

0

𝑥

0
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+∫𝑧(𝑥, 𝜎)𝑑𝜎]∫[𝜑(𝜉) + ∫𝑧(𝜉, 𝜎)𝑑𝜎

𝜏

0

𝑥

0

𝜏

0

]𝑑𝜏 + [𝑓(𝑥, 𝑡) − 𝑎1∫𝑧(𝑠, 𝑡)𝑑𝑠 −

𝑥

0

 

−𝑎3[𝜑(𝑥) + ∫𝑧(𝑥, 𝜏)𝑑𝜏]∫[𝜑(𝑠) + ∫𝑧(𝑠, 𝜏)

𝑡

0

𝑥

0

𝑡

0

𝑑𝜏]𝑑𝑠, 

𝑧𝜀𝑥(𝑥, 𝑡) = −𝑅𝑡𝑥(𝑥, 𝑡, 0,0)𝜑𝜀(0) − 𝑅𝑠𝑡(𝑥, 𝑡, 𝑥, 0)𝜑𝜀(𝑥) − 

−∫𝑅𝑠𝑡𝑥(𝑥, 𝑡, 𝑠, 0)𝜑𝜀(𝑠)𝑑𝑠 −

𝑥

0

∫𝑅𝜏𝑡𝑥

𝑡

0

(𝑥, 𝑡, 0,0)𝜑𝜀(0)𝑑𝜏 − 

−∫∫𝑅𝑡𝑥(𝑥, 𝑡, 𝑠, 𝜏)[𝑓(𝑠, 𝜏)

𝑡

0

𝑥

0

− 𝑎1∫𝑧𝜀(𝜉, 𝑡)𝑑𝜉 − 𝑎3[𝜑𝜀(𝑠) +

𝑠

0

 

+∫𝑧𝜀(𝑠, 𝜎)𝑑𝜎

𝜏

0

]∫[𝜑(𝑠) + ∫𝑧𝜀(𝑠, 𝜎)𝑑𝜎]𝑑𝜏𝑑𝑠 + ∫𝑅𝑡(𝑥, 𝑡, 𝑥, 𝜏) ×

𝑡

0

𝜏

0

𝑠

0

 

× [𝑓(𝑥, 𝜏) − 𝑎1∫𝑧𝜀(𝜉, 𝑡)𝑑𝜉 −

𝑥

0

𝑎3[𝜑𝜀(𝑥) + ∫𝑧𝜀

𝜏

0

(𝑥, 𝜎)𝑑𝜎]∫[𝜑𝜀(𝜉) +

𝑥

0

 

+∫𝑧𝜀

𝜏

0

(𝜉, 𝜎)𝑑𝜎]𝑑𝜏 + [𝑓(𝑥, 𝑡) − 𝑎1∫𝑧𝜀(𝑠, 𝑡)𝑑𝑠 − 𝑎3[𝜑𝜀(𝑥)

𝑥

0

+ 

+∫𝑧𝜀(𝑥, 𝜏)𝑑𝜏]∫[𝜑𝜀(𝑠) + ∫𝑧𝜀(𝑠, 𝜏)𝑑𝜏]𝑑𝑠,

𝑡

0

𝑥

0

𝑡

0

 

|𝑧𝜀𝑥(𝑥, 𝑡) − 𝑧𝑥(𝑥, 𝑡)| ≤ 𝑁̅‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] + 

+𝑁̃‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷). 

|𝑤𝑥𝑥𝑡𝜀(𝑥, 𝑡) − 𝑤𝑥𝑥𝑡(𝑥, 𝑡)| ≤ |𝑧𝑥𝜀(𝑥, 𝑡) − 𝑧𝑡(𝑥, 𝑡)| ≤ 

≤ 𝑁̅‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] + 𝑁̃‖𝑧𝜀(𝑥, 𝑡) − 𝑧(𝑥, 𝑡)‖𝐶(𝐷) → 0,   𝜀 → 0.
 

Таким образом, при выполнении условий теоремы 1.3.1 функции 

𝑤𝜀(𝑥, 𝑡), 𝑤𝑡𝜀(𝑥, 𝑡),  𝑤𝑥𝑥𝑡𝜀(𝑥, 𝑡) равномерно сходятся, соответственно, к 

функциям  𝑤(𝑥, 𝑡), 𝑤𝑡(𝑥, 𝑡), 𝑤𝑥𝑥𝑡(𝑥, 𝑡), когда 𝜀 → 0. 



62 

 

1.4. Регуляризация интегральных уравнений  

Вольтерра  третьего рода 

В этом параграфе метод регуляризации, изложенный в предыду-

щих параграфах распространяется для линейных и нелинейных инте-

гральных уравнений Вольтерра третьего рода с неубывающей коэффи-

циентной функцией вне интеграла и непрерывным ядром, который на 

диагонали обращается в нуль в некоторых точках отрезка.  

 

1.4.1. Рассмотрим линейное интегральное уравнение Вольтерра треть-

его рода 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 = 𝑔(𝑥),                       (1.4.1)

𝑥

0

 

где известные функции 𝑝(𝑥), 𝐾(𝑥, 𝑠), 𝑔(𝑥) удовлетворяют условиям: 

а) 𝐾(𝑥, 𝑠) ∈ 𝐶(𝐷1),   𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏},  𝐾(𝑥, 𝑥) ≥ 0,  𝐾(𝑥, 𝑠) 

является липшицевой по 𝑥; 

б) 𝑝(𝑥),   𝑔(𝑥) ∈ 𝐶[0, 𝑏],   𝑝(0) = 𝑔(0) = 0,  𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1 > 0, 

𝑝(𝑥) − неубывающая функция, 𝑝(𝑥) > 0, ∀𝑥 ∈ (0, 𝑏].  

Действуем оператором 𝐼 + 𝐶0𝐽, где 𝐼 – единичный оператор, 𝐽 – оператор 

Вольтерра (𝐽𝜑)(𝑥) = ∫ 𝜑(𝑠)𝑑𝑠
𝑥

0
. Тогда из (1.4.1) получим уравнение  

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 + 𝜇(𝑥),          (1.4.2)

𝑥

0

𝑥

0

 

где  𝐺(𝑥) = 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥),   𝐿(𝑥, 𝑠) = 𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠) − 

−𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈,   

𝑥

𝑠

𝜇(𝑥) = 𝑔(𝑥) + 𝐶0∫𝑔(𝑠)𝑑𝑠,   0 < 𝐶0 = 𝑐𝑜𝑛𝑠𝑡.

𝑥

0

 

Уравнение (1.4.2) является интегральным уравнением Вольтерра 

третьего рода и эквивалентно [43, с.23] исходному уравнению (1.4.1).  

Изучим вопросы регуляризации уравнения (1.4.2). Пусть 𝜀 – малый 

параметр из интервала (0,1). Рассмотрим уравнение вида 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫𝐿(𝑥, 𝑠)𝜑𝜀(𝑠)

𝑥

0

𝑥

0

𝑑𝑠 + 

+𝜇(𝑥) + 𝜀𝜑𝛿(0),                                                                               (1.4.3) 
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где величина 𝜑𝛿(0), такая что  

|𝜑𝛿 − 𝜑(0)| ≤ 𝛿(𝜀) → 0,   𝜀 → 0.                  (1.4.4) 

Уравнение (1.4.3) представим, используя резольвенту ядра 

(−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) в следующем виде: 

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

× 

× {∫𝐿(𝑠, 𝜉)𝜑𝜀(𝜉)𝑑𝜉

𝑠

0

−∫𝐿(𝑥, 𝜉)𝜑𝜀(𝜉)𝑑𝜉 + 𝜇(𝑥) − 𝜇(𝑠)

𝑥

0

} 𝑑𝑠 + 

+
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) {∫𝐿(𝑥, 𝜉)𝜑𝜀(𝑠)𝑑𝑠 + 𝜇(𝑥) + 𝜀𝜑𝛿(0)

𝑥

0

}. 

Через 𝐻𝜀 обозначим оператор, имеющий вид  

(𝐻𝜀𝜑)(𝑥) ≡
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[𝜑(𝑥)

𝑥

0

− 

−𝜑(𝑠)]𝑑𝑠 −
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) [𝜑(𝑥) − 𝜑(0)].     (1.4.5) 

Имеет место следующая лемма [6]. 

Лемма 1.4.1. Если 𝜑(𝑥) ∈ 𝐶𝛾[0, 𝑏], 0 < 𝛾 ≤ 1 и выполняются 

условия а-б, то для оператора 𝜀(𝐻𝜀𝜑)(𝑥) справедлива оценка 

‖𝜀(𝐻𝜀𝜑)(𝑥)‖С ≤ 𝑑1
−𝛾
𝑑0(𝑑3 + 𝑑4)𝜀

𝛾,                     (1.4.6) 

где    0 < 𝑑0 = 𝑐𝑜𝑛𝑠𝑡,         𝑑3 = ∫ 𝜎𝛾𝑒−𝜎𝑑𝜎, 𝑑4 = sup
𝜎≥0

(𝜎𝛾𝑒−𝜎)

∞

0

. 

Теорема 1.4.1. Пусть выполняются условия а-б и уравнение (1.4.2) 

имеет решение 𝜑(𝑥) ∈ 𝐶𝛾[0, 𝑏], 0 < 𝛾 ≤ 1. Тогда при 𝜀 → 0, решение 

уравнение (1.4.3) равномерно сходится к решению уравнения (1.4.2). 

Причем имеет место оценка 

‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ 𝑑6[𝑑5𝜀
𝛾 + 𝛿(𝜀)], 

𝑑5 = 𝑑1
−(1+𝛾)

𝑑0(𝑑3 + 𝑑4),   𝑑6 = 𝑒𝑥𝑝(𝑑1
−1(2 + 𝑒−1)(𝐿𝐾 + 𝐶0𝐾1)𝑏),    
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 0 < 𝐿𝐾  – коэффициент Липшица функции 𝐾(𝑥, 𝑠)  по переменной 𝑥,  

𝐾1 = max
𝐷1
|𝐾(𝑥, 𝑠)|,     𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}. 

Доказательство. Используя подстановку 

𝜑𝜀(𝑥) = 𝜑(𝑥) + 𝜂𝜀(𝑥),                               (1.4.7) 

из (1.4.3) получим уравнение  

(𝜀 + 𝑝(𝑥))𝜂𝜀(𝑥) + ∫𝐺(𝑠)𝜂𝜀(𝑠)𝑑𝑠

𝑥

0

= ∫𝐿(𝑥, 𝑠)𝜂𝜀(𝑠)𝑑𝑠 −

𝑥

0

 

−𝜀𝜑(𝑥) + 𝜀𝜑𝛿(0).                                                                           (1.4.8) 

Перепишем уравнение (1.4.8), используя резольвенту ядра 

(−
𝐺(𝑠)

𝜀+𝑝(𝑥)
), в следующем виде 

𝜂𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×

𝑥

0

 

× {∫𝐿(𝑠, 𝜉)𝜂𝜀(𝜉)𝑑𝜉

𝑠

0

−∫𝐿(𝑥, 𝜉)𝜂𝜀(𝜉)𝑑𝜉

𝑥

0

} 𝑑𝑠 + 

+
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠)∫𝐿(𝑥, 𝑠)𝜂𝜀(𝑠)𝑑𝑠 −

𝑥

0

 

−
𝜀

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

)(𝜑𝛿 − 𝜑(0)) + 𝜀(𝐻𝜀𝜑)(𝑥).         (1.4.9) 

Так как  

|∫𝐿(𝑠, 𝜉)𝜂(𝜉)𝑑𝜉 − ∫𝐿(𝑥, 𝜉)𝜂(𝜉)𝑑𝜉

𝑥

0

𝑠

0

| ≤ 2(𝐿𝐾 + 𝐶0𝐾1)(𝑥 − 𝑠)∫|𝜂(𝜉)|𝑑𝜉,

𝑥

0

 

то из (1.4.9) получим 

|𝜂𝜀(𝑥)| ≤ 𝑑1
−1(2 + 𝑒−1)(𝐿𝐾 + 𝐶0𝐾1)∫|𝜂𝜀(𝜉)|𝑑𝜉 +

𝑥

0

 

+‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏] + 𝛿(𝜀).                                                                  

В силу неравенства Гронуолло-Беллмана [20, с.108] имеем  
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|𝜂𝜀(𝑥)| ≤ [𝑑1
−(1+𝛾)

𝑑0(𝑑3 + 𝑑4)𝜀
𝛾 + 𝛿(𝜀)] 𝑑6. 

Теорема доказано. 

Теорема 1.4.2. Пусть выполняются условия а-б и уравнение (1.4.1) 

имеет решение 𝜑(𝑥) ∈ 𝐶[0, 𝑏]. Тогда, при 𝜀 → 0, решение уравнения 

(1.4.4) равномерно сходится к решению уравнения (1.4.1) и  

‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ [4𝑒
−1‖𝜑(𝑥)‖𝐶[0,𝑏]𝑑1

−1𝜀1−𝛽 + 𝜔𝜑(𝜀
𝛽) + 𝛿(𝜀)]𝑑6, 

где 𝑑6 = 𝑒𝑥𝑝(𝑑1
−1(2 + 𝑒−1)(𝐿𝐾 + 𝐶0𝐾1)𝑏), 

𝜔𝜑(𝜀
𝛽) = sup

|𝑥−𝜈|≤𝜀𝛽
|𝜑(𝑥) − 𝜑(𝜈)| ,   𝑥, 𝜈 ∈ [0, 𝑏]. 

Доказательство теоремы 1.4.2 проводится аналогично доказатель-

ству теоремы 1.4.1, используя оценку [6]: 

‖𝜀(𝐻𝜀𝜑)(𝑥)‖𝐶[0,𝑏] ≤ 4𝑒
−1‖𝜑(𝑥)‖𝐶[0,𝑏]𝑑1

−1𝜀1−𝛽 + 𝜔𝜑(𝜀
𝛽), 

где  𝜔𝜑(𝜀
𝛽) = sup

|𝑥−𝜈|≤𝜀𝛽
|𝜑(𝑥) − 𝜑(𝜈)| ,   𝑥, 𝜈 ∈ [0, 𝑏]. 

 

1.4.2.  Пусть для известных непрерывных функций 𝑝(𝑥), 𝐾(𝑥, 𝑠), 𝑔(𝑥), 

выполняются условия а-б для заданной функции 𝑁(𝑥, 𝑠, 𝜑) имеет  

место условие  

в) 𝑁(𝑥, 𝑠, 𝜑) ∈ 𝐶1,0,0(𝐷 × 𝑅1),   𝑁(𝑥, 𝑥, 𝜑) = 0,   |𝑁(𝑥, 𝑠, 𝜑) −  

−𝑁(𝑥, 𝑠, 𝜑0) − 𝑁(𝜈, 𝑠, 𝜑) + 𝑁(𝜈, 𝑠, 𝜑0)| ≤ 𝐿𝑁(𝑥 − 𝜈)|𝜑 − 𝜑0|,   

0 ≤ 𝑠 ≤ 𝜈 ≤ 𝑥 ≤ 𝑏,  0 < 𝐿𝑁 = 𝑐𝑜𝑛𝑠𝑡,   𝑥 ≥ 𝜈. 

Рассмотрим нелинейное интегральное уравнение Вольтерра треть-

его рода 

𝑝(𝑥)𝜑(𝑥) + ∫𝑁0(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 = 𝑔(𝑥),                  (1.4.10)

𝑥

0

 

где 𝑁0(𝑥, 𝑠, 𝜑(𝑠)) ≡ 𝐾(𝑥, 𝑠)𝜑(𝑠) + 𝑁(𝑥, 𝑠, 𝜑(𝑠)). 

Уравнение (1.4.10) эквивалентно уравнению 
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𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝑀

𝑥

0

(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 + 𝜇(𝑥),       (1.4.11)

𝑥

0

 

где   𝐺(𝑥) = 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥),   𝜇(𝑥) = 𝑔(𝑥) + 𝐶0∫𝑔(𝑠)𝑑𝑠,

𝑥

0

 

𝑀(𝑥, 𝑠, 𝜑(𝑠)) = −𝐶0∫𝑁(𝜈, 𝑠, 𝜑(𝑠))𝑑𝜈 − 𝑁(𝑥, 𝑠, 𝜑(𝑠))

𝑥

𝑠

+              

+[[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)] − 𝐶0∫𝐾(𝜈, 𝑠)𝑑𝜈]𝜑(𝑠).                               (1.4.12)

𝑥

𝑠

 

Рассмотрим уравнение 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫𝑀(𝑥, 𝑠, 𝜑𝜀(𝑠))𝑑𝑠 +

𝑥

0

𝑥

0

 

+𝜀𝜑𝛿(0) + 𝜇(𝑥),                                                                               (1.4.13) 

величина 𝜑𝛿(0) такая, что имеет место (1.4.4).
 

Уравнение (1.4.13), используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
), приве-

дем к виду  

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
× 

× {∫𝑀(𝑠, 𝜉, 𝜑𝜀(𝜉))𝑑𝜉 −

𝑠

0

∫𝑀(𝑥, 𝜉, 𝜑𝜀(𝜉))𝑑𝜉 + 𝜇(𝑠) − 𝜇(𝑥)

𝑥

0

} 𝑑𝑠 + 

+
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

){∫𝑀(𝑥, 𝑠, 𝜑𝜀(𝑠))𝑑𝑠 + 𝜇(𝑥) +

𝑥

0

 

+𝜀𝜑𝛿(0)}. 

Теорема 1.4.3. Пусть выполняются условия а-в и уравнение 

(1.4.10) имеет решение 𝜑(𝑥) ∈ 𝐶𝛾[0, 𝑏], 0 < 𝛾 ≤ 1. Тогда, при 𝜀 → 0 ре-

шение уравнения (1.4.13) равномерно сходится к решению уравнения 

(1.4.11), причем  
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‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ 𝑑1
−(1+𝛾)

𝑑0(𝑑3 + 𝑑4)𝜀
𝛾𝑑7 + 𝛿(𝜀)𝑑7, 

𝑑7 = 𝑒𝑥𝑝(𝐾2𝑑1
−1(2 + 𝑒−1)),      𝐾2 = 2[(𝐿𝐾 + 𝐶0𝐾0) + 𝐿𝑁(1 + 𝑏𝐶0)],  

0 < 𝑑0 = 𝑐𝑜𝑛𝑠𝑡,  𝑑3, 𝑑4 − определены в пункте 1.4.1.  

Доказательство. Используя подстановку 

𝜑𝜀(𝑥) = 𝜑(𝑥) + 𝜂𝜀(𝑥),                                   (1.4.14) 

из (1.4.13) получим уравнение  

(𝜀 + 𝑝(𝑥))𝜂𝜀(𝑥) + ∫𝐺(𝑠)𝜂𝜀(𝑠)𝑑𝑠 = ∫[𝑀(𝑥, 𝑠, 𝜑𝜀(𝑠)) −

𝑥

0

𝑥

0

 

−𝑀(𝑥, 𝑠, 𝜑(𝑠))]𝑑𝑠 − 𝜀(𝜑(𝑥) − 𝜑𝛿(0)).                                 (1.4.15) 

Используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) уравнение (1.4.15) приве-

дем к виду 

𝜂𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
× 

× {∫[𝑀(𝑠, 𝜉, 𝜑𝜀(𝜉))

𝑠

0

−𝑀(𝑠, 𝜉, 𝜑(𝜉))]𝑑𝜉 −∫[

𝑥

0

𝑀(𝑥, 𝑠, 𝜑𝜀(𝑠)) − 

−𝑀(𝑥, 𝑠, 𝜑(𝑠)))]𝑑𝜉}𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) × 

× {𝜑𝛿(0) − 𝜑(0) + ∫[𝑀(𝑥, 𝑠, 𝜑𝜀(𝑠)) −

𝑥

0

 𝑀(𝑥, 𝑠, 𝜑(𝑠))]𝑑𝑠} + 

+𝜀(𝐻𝜀𝜑)(𝑥).                                                                                                     (1.4.16) 

Из (1.2.12) при условий а-в получим оценки 

1) |∫[𝑁(𝑥, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝑥, 𝜉, 𝜑(𝜉))]𝑑𝜉 −∫[𝑁(𝑠, 𝜉, 𝜑𝜀(𝜉)) +

𝑠

0

𝑥

0

 

+𝑁(𝑠, 𝜉, 𝜑(𝜉))]| 𝑑𝜉 = |∫[𝑁(𝑥, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝑥, 𝜉, 𝜑(𝜉)) − 𝑁(𝑠, 𝜉, 𝜑𝜀(𝜉)) +

𝑠

0
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+𝑁(𝑠, 𝜉, 𝜑(𝜉))]𝑑𝜉 + ∫[𝑁(𝑥, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝑥, 𝜉, 𝜑(𝜉))]𝑑𝜉

𝑥

𝑠

| ≤ 

≤ 𝐿𝑁(𝑥 − 𝑠)∫|𝜑𝜀(𝜉) − 𝜑(𝜉)|𝑑𝜉 + |∫[

𝑥

𝑠

𝑠

0

𝑁(𝑥, 𝜉, 𝜑𝜀(𝜉)) − 

−𝑁(𝑥, 𝜉, 𝜑(𝜉)) − 𝑁(𝜉, 𝜉, 𝜑𝜀(𝜉)) + 𝑁(𝜉, 𝜉, 𝜑(𝜉))]𝑑𝜉| ≤ 

≤ 𝐿𝑁(𝑥 − 𝑠)∫|𝜑𝜀(𝜉) − 𝜑(𝜉)|𝑑𝜉 + 𝐿𝑁(𝑥 − 𝜉)∫(𝑥 − 𝜉) ×

𝑥

𝑠

𝑠

0

 

× |𝜑𝜀(𝜉) − 𝜑(𝜉)|𝑑𝜉 ≤ 2𝐿𝑁(𝑥 − 𝑠)∫|𝜂𝜀(𝜉)|𝑑𝜉,

𝑠

0

 

2) |𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]𝑑𝜈𝑑𝜉

𝑥

𝜉

𝑥

0

− 

−𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]

𝑠

𝜉

𝑠

0

𝑑𝜈𝑑𝜉| = 

= |𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]𝑑𝜈𝑑𝜉

𝑥

𝜉

𝑠

0

+ 

+𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]𝑑𝜈𝑑𝜉 −

𝑥

𝜉

𝑥

𝑠

 

−𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]

𝑠

𝜉

𝑠

0

𝑑𝜈𝑑𝜉| = 

= |𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉))]𝑑𝜈𝑑𝜉

𝑥

𝑠

𝑠

0

+ 

+𝐶0∫∫[𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) + 𝑁(𝜈, 𝜉, 𝜑(𝜉))]𝑑𝜈𝑑𝜉

𝑥

𝜉

𝑥

𝑠

| ≤ 
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≤ 𝐶0∫∫|𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) − 𝑁(𝜈, 𝜉, 𝜑(𝜉)) − 𝑁(𝜉, 𝜉, 𝜑𝜀(𝜉)) +

𝑥

𝑠

𝑠

0

 

+𝑁(𝜉, 𝜉, 𝜑(𝜉))|𝑑𝜈𝑑𝜉 + 𝐶0∫∫|𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉)) + 𝑁(𝜈, 𝜉, 𝜑(𝜉)) −

𝑥

𝜉

𝑥

𝑠

 

−𝑁(𝜉, 𝜉, 𝜑𝜀(𝜉)) + 𝑁(𝜉, 𝜉, 𝜑(𝜉))|𝑑𝜈𝑑𝜉 ≤ 𝐶0𝐿𝑁∫∫(𝜈 − 𝜉) ×

𝑥

𝑠

𝑠

0

 

× |𝜑𝜀(𝜉) − 𝜑(𝜉)|𝑑𝜈𝑑𝜉 + 𝐶0𝐿𝑁∫∫(𝜈 − 𝜉)|𝜑𝜀(𝜉) − 𝜑(𝜉)|𝑑𝜈𝑑𝜉 ≤

𝑥

𝜉

𝑥

𝑠

 

≤ 2𝐶0𝑏𝐿𝑁(𝑥 − 𝑠)∫|𝜂𝜀(𝜉)|𝑑𝜉.

𝑥

0

 

Учитывая данные оценки, из (1.4.16) получим
 

|𝜂𝜀(𝑥)| ≤ 𝑑1
−1(2 + 𝑒−1)𝐾2∫|𝜂𝜀(𝑠)|𝑑𝑠 + |𝜀(𝐻𝜀𝜑)(𝑥)|

𝑥

0

+ 𝛿(𝜀). 

Тогда в силу неравенства Гронуолло-Беллмана и леммы 1.4.1 имеем  

|𝜂𝜀(𝑥)| ≤ (𝑑1
−(1+𝛾)

𝑑0(𝑑3 + 𝑑4)𝜀
𝛾 + 𝛿(𝜀)) 𝑒𝑥𝑝(𝑑1

−1(2 + 𝑒−1)𝐾2). 

Теорема 1.4.3 доказано. 

Теорема 1.4.4. Пусть выполняются условия а-б и уравнение 

(1.4.10) имеет решение 𝜑(𝑥) ∈ 𝐶[0, 𝑏]. Тогда, при 𝜀 → 0, решение урав-

нения (1.4.15) равномерно сходится к решению уравнения (1.4.11) и  

‖𝜑𝜀(𝑥) − 𝜑(𝑥)‖𝐶[0,𝑏] ≤ [4𝑒−1‖𝜑(𝑥)‖𝐶[0,𝑏]𝑑1
−1𝜀1−𝛽 +𝜔𝜑(𝜀

𝛽) + 𝛿(𝜀)]𝑑5, 

где   𝑑5 = 𝑒𝑥𝑝(𝐾3𝑑1
−1(2 + 𝑒−1)),   𝜔𝜑(𝜀

𝛽) = sup
|𝑥−𝜈|≤𝜀𝛽

|𝜑(𝑥) − 𝜑(𝜈)|,  

𝑥, 𝜈 ∈ [0, 𝑏]. 
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ГЛАВА 2. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛОКАЛЬНЫХ КРАЕВЫХ 

ЗАДАЧ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В 

ЧАСТНЫХ ПРОИЗВОДНЫХ И ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 

ВОЛЬТЕРРА ТРЕТЬЕГО РОДА 

 

В этой главе рассматриваются вопросы численного решения нело-

кальных краевых задач для дифференциальных уравнений в частных 

производных и интегральных уравнений Вольтера третьего рода. 

 

2.1. Разностная схема для линейных дифференциальных уравнений 

в частных производных с нелокальными краевыми условиями 

 

Из уравнения (1.1.1) при  𝑓(𝑥, 𝑡, 𝑤(𝑥, 𝑡), 𝑤𝑡(𝑥, 𝑡)) ≡ 𝑓(𝑥, 𝑡) получим 

уравнения  

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡𝜕𝑥
= 𝑃(𝑥, 𝑡)𝑤(𝑥, 𝑡) + 𝑓(𝑥, 𝑡),                  (2.1.1) 

с условиями 

𝑤(0, 𝑡) = 𝜎(𝑡) + 𝜑0,                                           (2.1.2) 

 

𝐴(𝑥)𝑤(𝑥, 0) + 𝐶(𝑥)𝑤(𝑥, 𝑇) = 𝑞(𝑥).                           (2.1.3) 

Известные функции удовлетворяют условиям: 

а)  𝐴(𝑥), 𝐶(𝑥) ∈ 𝐶2[0, 𝑏], 𝑞(𝑥) ∈ 𝐶1[0, 𝑏],   𝑝(𝑥) = 𝐴(𝑥) + 𝐶(𝑥) – неубы-

вающая функция, 𝑝(0) = 0,   𝑝(𝑥) > 0,   ∀𝑥 ∈ (0, 𝑏]; 

б)  𝑃(𝑥, 𝑡), 𝑓(𝑥, 𝑡) ∈ 𝐶1,0(𝐷), 𝜎(𝑡) ∈ 𝐶1[0, 𝑇], 𝜎(0) = 0, 𝐶(0)𝜎(𝑇) = 𝑞(0),  

𝐷 = [0, 𝑏] × [0, 𝑇], 𝜑0 – неизвестный параметр; 

в)  𝐺(𝑥) ≡ 𝐶0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1 > 0, 𝑑1 = 𝑐𝑜𝑛𝑠𝑡,   𝐾(𝑥, 𝑠) ≡ 𝐶(𝑥)𝑃0(𝑠), 

𝑃0(𝑠) = ∫𝑃(𝑠, 𝜏)𝑑𝜏,

𝑇

0

0 ≤ 𝑠 ≤ 𝑥,  𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏}. 

В разделе 1.1 показано, что задача (2.1.1)–(2.1.3) сводится к  

системе интегральных уравнений 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑤(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝑦)𝑑𝑦, 𝜑(0) = 𝜑0,

𝑡

0

                                          

𝑧(𝑥, 𝑡) = 𝜎0(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)

𝑥

0

∫𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 +           

𝑡

0

𝑥

0

+∫𝑓(𝑠, 𝑡)𝑑𝑠,

𝑥

0

                                                                                                       

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]

𝑥

0

𝑥

0

𝜑(𝑠)𝑑𝑠 −              

−𝐶0∫∫𝐾(𝜈, 𝑠)

𝑥

𝑠

𝑥

0

𝑑𝜈𝜑(𝑠)𝑑𝑠 − ∫𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥 − 𝑠)) ×

𝑥

0

                      

× ∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 +

𝑇

0

𝑄(𝑥),                                                                   (2.1.4)

 

где 𝑄(𝑥) = ∫∫𝐶(𝑠)𝑓(𝑠, 𝑡)𝑑𝑡𝑑𝑠 + 𝐶0∫(𝑥 − 𝑠)∫𝐶(𝑠)𝑓(𝑠, 𝑡)𝑑𝑡𝑑𝑠 − 𝑔(𝑥)

𝑇

0

𝑥

0

𝑇

0

𝑥

0

,  

𝜎0 = 𝜎
′(𝑡),   𝑔(𝑥) = 𝑞(𝑥) + 𝐶0∫𝑞(𝑠)𝑑𝑠.

𝑥

0

 

Регуляризация систем интегральных уравнений (2.1.4) построена в сле-

дующем виде 

𝑤𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝑦)𝑑𝑦,                                                           

𝑡

0

 

𝑧𝜀(𝑥, 𝑡) = 𝜎0(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)

𝑥

0

∫𝑧𝜀(𝑠, 𝑦)𝑑𝑦𝑑𝑠 +

𝑡

0

𝑥

0

 

+∫𝑓(𝑠, 𝑡)𝑑𝑠,                                                                                                

𝑥

0
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(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]

𝑥

0

𝑥

0

𝜑𝜀(𝑠)𝑑𝑠 − 

−𝐶0∫∫𝐾(𝜈, 𝑠)

𝑥

𝑠

𝑥

0

𝑑𝜈𝜑𝜀(𝑠)𝑑𝑠 − ∫𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥 − 𝑠)) ×              

𝑥

0

 

× ∫𝑧𝜀(𝑠, 𝑦)𝑑𝑦𝑑𝑠 + 𝜀𝜑(0)

𝑇

0

+ 𝑄(𝑥),                                                     (2.1.5) 

где 𝜀 малый параметр из интервала (0; 1). 

Третье уравнение системы (2.1.5) используя резольвенту 

ядра(−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) представим в виде: 

𝑤𝜀(𝑥, 𝑡) = 𝜑𝜀(𝑥) + ∫𝑧𝜀(𝑥, 𝑦)𝑑𝑦,     

𝑡

0

 

𝑧𝜀(𝑥, 𝑡) = 𝜎0(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑𝜀(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)

𝑥

0

∫𝑧𝜀(𝑠, 𝑦)𝑑𝑦𝑑𝑠 +

𝑡

0

𝑥

0

 

+∫𝑓(𝑠, 𝑡)𝑑𝑠,

𝑥

0

 

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

× 

× {∫[𝐾(𝜉, 𝜉) − 𝐾(𝑠, 𝜉)]

𝑠

0

𝜑𝜀(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝜉

)𝜑𝜀(𝜉)𝑑𝜉 − 

𝑠

0

 

−∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥, 𝜉)]𝜑𝜀(𝜉)𝑑𝜉 + 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑥

𝜉

)𝜑𝜀(𝜉)𝑑𝜉 + 

𝑥

0

𝑥

0

 

+∫𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥 − 𝜉))∫𝑧𝜀(𝜉, 𝑦)𝑑𝑦𝑑𝜉 − ∫𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑠 − 𝜉)) ×

𝑠

0

𝑇

0

𝑥

0

 

×∫𝑧𝜀(𝜉, 𝑦)𝑑𝑦𝑑𝜉 +

𝑇

0

𝑄(𝑠) − 𝑄(𝑥)}𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) × 
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× {∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]

𝑠

0

𝜑𝜀(𝑠)𝑑𝑠 − 𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑𝜀(𝑠)𝑑𝑠 − 

𝑥

0

 

−∫𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥 − 𝑠))∫ 𝑧𝜀(𝑠, 𝑦)𝑑𝑦𝑑𝑠 + 𝜀𝜑(0) + 𝑄(𝑥)

𝑇

0

𝑥

0

}.        (2.1.6) 

На отрезке [0, 𝑏] и [0, 𝑇] введем равномерные сетки 

 𝜔ℎ = {𝑥𝑖 = 𝑖ℎ, 𝑖 = 0. . 𝑛, 𝑏 = 𝑛ℎ},   𝜔𝜏 = {𝑡𝑗 = 𝑗𝜏, 𝑗 = 0. .1, 𝑇 = 𝑛0𝜏}𝑛, 𝑛0-

натуральные числа. Пространство сеточных функций 𝑧𝑖
𝑗
= 𝑧(𝑥𝑖 , 𝑡𝑗),   

 (𝑥𝑖 , 𝑡𝑗) ∈ 𝜔ℎ,𝜏 = 𝜔ℎ × 𝜔𝜏 обозначим через 𝐶ℎ,𝜏 с нормой 

‖𝑧𝑖
𝑗
‖
𝐶ℎ,𝜏

= max
0≤𝑖≤𝑛
0≤𝑗≤𝑛0

|𝑧𝑖
𝑗
|, 

пространство сеточных функций 𝜑𝑖 = 𝜑(𝑥𝑖) обозначим через 𝐶ℎ с нор-

мой 

‖𝜑𝑖‖𝐶ℎ = max
0≤𝑖≤𝑛

|𝜑𝑖|. 

Применяя квадратурную формулу правых прямоугольников для 

интегралов в (2.1.6), получим систему линейных алгебраических урав-

нений 

𝑤𝜀,𝑖
𝑗
= 𝜑𝜀,𝑖 + 𝜏∑𝑧𝜀,𝑖

𝑝

𝑗

𝑝=1

, 

𝑧𝜀,𝑖
𝑗
= 𝜎0

𝑗
+ ℎ∑𝑃𝑘

𝑗

𝑖

𝑘=1

𝜑𝜀,𝑘 + ℎ∑𝑃𝑘
𝑗

𝑖

𝑘=1

𝜏∑𝑧𝜀,𝑘
𝑝

𝑗

𝑝=1

+ ℎ∑𝑓𝑘
𝑗

𝑖

𝑘=1

, 

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝜀,𝑙 −

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

− ℎ∑[𝐾𝑙,𝑙 −𝐾𝑖,𝑙]

𝑖−1

𝑙=1

𝜑𝜀,𝑙 + 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙 ×

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

 

× 𝜑𝜀,𝑙 + ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝜀,𝑙
𝑗

𝑛0

𝑗=1

𝑖−1

𝑙=1

− ℎ∑𝐾𝑙,𝑙

𝑘−1

𝑙=1

(1 + 𝐶0 × 
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× (𝑥𝑘 − 𝑥𝑙))𝑧𝜀,𝑙
𝑚 +𝑄𝑘 − 𝑄𝑖] +

1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘

𝑖−1

𝑘=1

− 

−𝐾𝑖,𝑘]𝜑𝜀,𝑘 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

𝜑𝜀,𝑘 − ℎ∑𝐾𝑘,𝑘

𝑖−1

𝑘=1

(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘)) × 

× 𝜏∑𝑧𝜀,𝑘
𝑗

𝑛0

𝑗=1

+ 𝜀𝜑ℎ,0 + 𝑄𝑖],                                                                              (2.1.7) 

где 𝑄𝑖 = 𝑔𝑖 − ℎ∑𝜏

𝑖

𝑘=1

∑𝐶𝑘𝑓𝑘
𝑗

𝑛0

𝑗=1

− 𝐶0ℎ∑(𝑥𝑖 − 𝑥𝑘)𝜏∑𝐶𝑘𝑓𝑘
𝑗
,

𝑛0

𝑗=1

𝑖

𝑘=1

 

𝑔𝑖 = 𝑞𝑖 + 𝐶0ℎ∑𝑞𝑘 .

𝑖

𝑘=1

 

Величину 𝜑0,ℎ выбираем в виде 𝜑0,ℎ =
ℎ𝐾11+𝑄1

𝑝1+ℎ𝐺1
,  

где 𝑄1 = ℎ𝐶(𝑥1) ∫ 𝑓(𝑥1, 𝑡)𝑑𝑡 − 𝑞(𝑥1) − 𝐶0ℎ𝑞(𝑥1)
𝑇

0
 для которой, учиты-

вая, 𝑄(𝑥0) = 𝑄(0) = 0, что из условия а-в следуют оценки  

|𝜑0,ℎ| = |
𝑄(𝑥1) − 𝑄(𝑥0)

𝑝(𝑥1) + ℎ𝐺(𝑥1)
| ≤ |

𝑄(𝑥1) − 𝑄(𝑥0)

𝑝(𝑥1) − 𝑝(𝑥0) + ℎ𝐺(𝑥1)
| ≤   

≤
ℎ‖𝑄′(𝑥)‖𝐶[0,𝑏]

ℎ|𝑝′(𝑥̅) + 𝐺(𝑥1)|
≤
‖𝑄′(𝑥)‖𝐶[0,𝑏]

min
𝑥∈[0,𝑏]

|𝐺(𝑥)|
≤
𝑁1
𝑑1
,                              

𝑁1 = max
𝑥∈[0,𝑏]

‖𝑄′(𝑥)‖𝐶[0,𝑏]. 

Так как 𝜑1 = 𝜑0,ℎ + 𝑅1
0, 𝑅1

0 – остаточный член интеграла, то 

|𝜑0,ℎ − 𝜑0| = |
ℎ𝐾11 + 𝑄(𝑥1)

𝑝(𝑥1) + ℎ𝐺(𝑥1)
− 𝜑(𝑥0)| ≤ |𝜑(𝑥1) − 𝜑(𝑥0)| + |𝑅1| ≤ 

≤ ℎ‖𝜑′(𝑥)‖𝐶[0,𝑏] + |𝑅1
0|, где |𝑅1

0| ≤ |𝑅11| + |𝑅12| + |𝑅13| + |𝑅14|.  

При этом |𝑅11| = |∫ [𝐺(𝜉)𝜑(𝜉) − 𝐺(𝑥1)𝜑(𝑥1)]

𝑥1

𝑥0

| 𝑑𝜉 ≤
ℎ2

2
‖𝜑(𝑥)‖𝐶[0,𝑏] × 
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× ‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝜑
′(𝑥)‖𝐶[0,𝑏]

ℎ2

2
≤ [‖𝜑(𝑥)‖𝐶[0,𝑏] × 

× ‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝜑
′(𝑥)‖𝐶[0,𝑏]]

ℎ2

2
= 𝑑13

ℎ2

2
, 

где 𝑑13 = ‖𝜑(𝑥)‖𝐶[0,𝑏]‖𝐺
′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝜑

′(𝑥)‖𝐶[0,𝑏]. 

Оценки для 𝑅1𝑖,   𝑖 = 2,3,4 получаем аналогично, т.е. |𝑅1𝑖| ≤ 𝐾𝑖ℎ,    

0 < 𝐾𝑖 = 𝑐𝑜𝑛𝑠𝑡,   𝑖 = 2,3,4. 

Тогда 
 

|𝜑0,ℎ − 𝜑0| ≤ ℎ‖𝜑′(𝑥)‖𝐶[0,𝑏] + 𝑑4
ℎ2

2
+ ℎ∑𝐾𝑖

4

𝑖=2

≤ ℎ𝑁2, 

где  𝑁2 =
𝑑4

2𝑑1
+ ‖𝜑′(𝑥)‖𝐶[0,𝑏] + ∑ 𝐾𝑖

4
𝑖=2 . 

Лемма 2.1.1. При выполнении условий а-в и связи 𝜀 = 𝑂(ℎ𝛼), 

0 < 𝛼 <
1

2
 справедливо неравенство 

|∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉 − ℎ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=1

𝑥𝑖

0

| ≤ 𝐶1
ℎ

𝜀2
,   𝑖 = 0. . 𝑛,   0 < 𝐶1 = 𝑐𝑜𝑛𝑠𝑡. 

Доказательство. Имеем 

|∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉 − ℎ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=1

𝑥𝑖

0

| ≤∑ ∫ |
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
−

𝐺𝑙
𝜀 + 𝑝𝑙

|

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝑑𝜉 ≤ 

≤∑ ∫ |
𝐺(𝜉) − 𝐺𝑙
𝜀 + 𝑝(𝜉)

| 𝑑𝜉 +∑ ∫ |
𝐺𝑙[𝑝𝑙 − 𝑝(𝜉)]

(𝜀 + 𝑝(𝜉))(𝜀 + 𝑝𝑙)
| 𝑑𝜉 ≤

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

≤ [
1

𝜀
‖𝐺′(𝑥)‖𝐶[0,𝑏] +

‖𝐺(𝑥)‖𝐶[0,𝑏]

𝜀2
‖𝑝′(𝑥)‖𝐶[0,𝑏]]∑ ∫(𝑥𝑙 − 𝜉)𝑑𝜉 ≤

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

≤
𝑏

2
[𝜀‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏]]
ℎ

𝜀2
≤ 𝐶1

ℎ

𝜀2
, 

где 𝐶1 =
𝑏

2
[𝜀‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏]]. 

Лемма 2.1.2. Если функция 𝜑(𝑥) ∈ 𝐶1[0, 𝑏] и выполняются усло-

вия а-в, то справедлива оценка 

‖𝐻𝜀
ℎ[𝜑𝑖]‖𝐶ℎ ≤ 𝑑1

−1(𝑑4𝑑5 + 𝑒
−1)‖𝜑′(𝑥)‖𝐶[0,𝑏], 



76 

 

где действие оператора 𝐻𝜀
ℎ на сеточную функцию 𝑤0, 𝑤1, … , 𝑤𝑛  опреде-

ляется по формуле  

𝐻𝜀
ℎ[𝜑𝑖] =

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
[𝜑𝑖 − 𝜑𝑘] −

𝑖

𝑘=1

 

−
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) [𝜑𝑖 − 𝜑0],                                               

𝑑4 = max
𝑥∈[0,𝑏]

|𝐺(𝑥)|,   𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
)

𝑖

𝑘=1

|. 

Доказательство. 

|𝐻𝜀
ℎ[𝜑𝑖]| = |−

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[𝜑𝑘 − 𝜑𝑖] + 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[𝜑𝑖 − 𝜑0]| ≤ 𝑑4∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑖

𝑘=1

 

×
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

ℎ

𝜀 + 𝑝𝑘
‖𝜑′(𝑥)‖𝐶[0,𝑏] +

𝑥𝑖
𝜀 + 𝑝𝑖

𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏] ≤ 𝑑1
−1𝑑4‖𝜑

′(𝑥)‖𝐶[0,𝑏] |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

× 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)| + ‖𝜑′(𝑥)‖𝐶[0,𝑏]𝑑1
−1 |(

𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)| ≤ 

≤ 𝑑1
−1(𝑑4𝑑5 + 𝑒

−1)‖𝜑′(𝑥)‖𝐶[0,𝑏]. 

Лемма 2.1.3. Пусть выполняются условия а-в и 𝜑(𝑥) ∈ 𝐶1[0, 𝑏]. То-

гда найдется такое число 0 < 𝑁4, что для остаточного члена 

 𝑅̃𝑖 = (𝐻𝜀𝜑)(𝑥𝑖) − 𝐻𝜀
ℎ[𝜑𝑖] имеет место оценка  

𝑅̃𝑖 = ‖(𝐻𝜀𝜑)(𝑥𝑖) − 𝐻𝜀
ℎ[𝜑𝑖]‖𝐶ℎ ≤ 𝑁4ℎ + 𝑁5

ℎ

𝜀
,   0 < 𝑁4,   𝑁5 = 𝑐𝑜𝑛𝑠𝑡, 

где  
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(𝐻𝜀𝜑)(𝑥𝑖) =
1

𝜀 + 𝑝𝑖
∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

[𝜑(𝑥) − 𝜑(𝑠)] − 

−
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) [𝜑(𝑥𝑖) − 𝜑(0)],   𝑖 = 0. . 𝑛. 

Доказательство.  Остаточный член определяется в следующем 

виде  

(𝐻𝜀𝜑)(𝑥𝑖) − 𝐻𝜀
ℎ[𝜑𝑖] = 𝑅̃𝑖 , 

𝑅̃𝑖 = (𝐻𝜀𝜑)(𝑥𝑖) − 𝐻𝜀
ℎ[𝜑𝑖] =

𝜀

𝜀 + 𝑝𝑖
∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

) ×

𝑥𝑖

0

 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
(𝜑𝑖 − 𝜑(𝑠))𝑑𝑠 −

𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) × 

× (𝜑𝑖 − 𝜑0) −
𝜀

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× (𝜑𝑖 − 𝜑𝑘) +
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑𝑖 − 𝜑0). 

Разбивая остаточный член на суммы выражений, имеем оценки  

|𝑅̃𝑖| ≤ |𝑅̃1,𝑖| + |𝑅̃2,𝑖| + |𝑅̃3,𝑖| + |𝑅̃4,𝑖|, 

1) |𝑅̃1,𝑖| = |
𝜀

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘+1

𝑥𝑘

𝑖−1

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
( 𝜑𝑘 − 

−𝜑(𝑠))𝑑𝑠| ≤
𝜀

𝜀 + 𝑝𝑖
‖𝜑′(𝑥)‖𝐶[0,𝑏]∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
× 

× ∫ (𝑠 − 𝑥𝑘)𝑑𝑠 ≤

𝑥𝑘+1

𝑥𝑘

𝑑4
ℎ

2
‖𝜑′(𝑥)‖𝐶[0,𝑏]∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

ℎ

𝜀 + 𝑝𝑖
≤ 

≤ 𝑑1
−1𝑑4

ℎ

2
‖𝜑′(𝑥)‖𝐶[0,𝑏] |∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖−1

𝑘=1

| ≤ 
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≤
1

2
𝑑1
−1𝑑4𝑑5‖𝜑

′(𝑥)‖𝐶[0,𝑏]ℎ,  𝑑4, 𝑑5 – определены в лемме 2.1.2, 

2) |𝑅̃2,𝑖| = |
𝜀

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘+1

𝑥𝑘

𝑖−1

𝑘=1

× 

× (
𝐺𝑘

𝜀 + 𝑝𝑘
−

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
) (𝜑𝑘 − 𝜑𝑖)𝑑𝑠| ≤

𝜀

𝜀 + 𝑝𝑖
‖𝜑′(𝑥)‖𝐶[0,𝑏] × 

×
ℎ

𝜀2
𝐶1(𝑥𝑖 − 𝑥𝑘)∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ≤ 𝑑1
−1
ℎ

𝜀
𝐶1 ×

𝑖−1

𝑘=1

 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏]∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖−1

𝑘=1

≤ 

≤ 𝑑1
−1𝑑5𝐶1‖𝜑

′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
, 

𝐶1 = [𝜀‖𝐺
′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏]], 

3) |𝑅̃3,𝑖| = |
𝜀

𝜀 + 𝑝𝑖
∑ ∫ [𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) −

𝑥𝑘+1

𝑥𝑘

𝑖−1

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑖

𝑖

𝑙=𝑘+1

)]
𝐺(𝑠)(𝜑(𝑠) − 𝜑𝑖)

𝜀 + 𝑝(𝑠)
𝑑𝑠| ≤ 

≤ ‖𝜑′(𝑥)‖𝐶[0,𝑏]
𝑑4

𝜀 + 𝑝𝑖
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

× 

× [1 − 𝑒𝑥𝑝(ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙
−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑖

𝑙=𝑘+1

𝑑𝜉)] × 

× ∫ (𝑥𝑖 − 𝑠)𝑑𝑠 ≤
1

2
𝑑4𝑇4‖𝜑

′(𝑥)‖𝐶[0,𝑏] ×

𝑥𝑘+1

𝑥𝑘

 

×∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

𝑖−1

𝑘=1

ℎ ≤ 
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≤
1

2
𝑑1
−1𝑑4‖𝜑

′(𝑥)‖𝐶[0,𝑏]𝑇4ℎ∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖−1

𝑘=1

 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ℎ ≤
1

2
𝑑1
−1𝑑4𝑑5ℎ𝑇4‖𝜑

′(𝑥)‖𝐶[0,𝑏], 

𝑇4 = 𝑠𝑢𝑝 |1 − 𝑒𝑥𝑝(ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙
−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑖

𝑙=𝑘+1

𝑑𝜉)|, 

4) |𝑅̃4,𝑖| = |
𝜀

𝜀 + 𝑝𝑖
(𝑒𝑥𝑝 (−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥𝑖

0

)− 𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)) × 

× (𝜑𝑖 − 𝜑0)| ≤ ‖𝜑
′(𝑥)‖𝐶[0,𝑏] |

𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× [𝑒𝑥𝑝(ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 1] 𝑥𝑖| ≤ 𝑑1
−1𝜀‖𝜑′(𝑥)‖𝐶[0,𝑏] × 

× 𝐶1
ℎ

𝜀2
|(
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)| ≤ 𝑑1
−1𝐶1𝑒

−1‖𝜑′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
. 

Тогда 

|𝑅̃𝑖| ≤ 𝑁4ℎ + 𝑁5
ℎ

𝜀
,
 

где  𝑁4 =
1

2
 𝑑1
−1𝑑4𝑑5(1 + 𝑇4)‖𝜑

′(𝑥)‖𝐶[0,𝑏],   𝑁5 = 𝑑1
−1𝐶1(𝑑5 + 𝑒

−1) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏]. 

Лемма 2.1.3 доказана. 

Введем следующие обозначения 

𝑞0 = 𝑃0 +𝑀0,    𝑃0 = 𝑏𝑃(𝑥, 𝑡)𝑚𝑎𝑥(1, 𝑇),    𝑀0 = 𝑚𝑎𝑥(𝑇12, 𝑇13),  

𝑑4 = max
[0,𝑏]

|𝐺(𝑥)|,   𝑇12 = 𝑑1
−1(𝑑4𝑑5 + 𝑒

−1)𝐾2𝑏,  

 𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

|, 

𝐾2 = 𝐾1 + 𝐶0𝐾0,      𝐾1 = max
𝐷1
|𝐾𝑥

′(𝑥, 𝑠)| ,     𝐾0 = max
𝐷1
|𝐾(𝑥, 𝑠)|, 
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𝑇13 =  𝑑1
−1𝑇[𝑑4𝑑5 (1 + 2𝑏𝐶0) + 𝑒

−1(1 + 𝐶0𝑏)‖𝐾(𝑥, 𝑥)‖𝐶[0,𝑏]. 

Теорема 2.1.1. При выполнении условий а-в, 𝑞0 < 1 и  

𝜀 = 𝑂(ℎ𝛼), 0 < 𝛼 ≤
1

2
, решение системы (2.1.7) при ℎ → 0, 𝜏 → 0, равно-

мерно сходится к точному решению задачи (2.1.1)-(2.1.3), причем имеет 

место оценка 

|𝑤𝜀,𝑖
𝑗
− 𝑤𝑖

𝑗
| < 𝑀1𝜏 +𝑀2ℎ + 𝑀3ℎ

𝛼 +𝑀4ℎ
1−𝛼 +𝑀5ℎ

2−𝛼,  

0 < 𝑀𝑖 = 𝑐𝑜𝑛𝑠𝑡,   𝑖 = 1,5̅̅ ̅̅ . 

Доказательство. К третьему уравнению системы (2.1.4) в обе ча-

сти прибавляя 𝜀𝜑(𝑥) и используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) эту си-

стему представим в следующем виде: 

𝑤(𝑥, 𝑡) = 𝜑(𝑥) + ∫𝑧(𝑥, 𝑦)𝑑𝑦,

𝑡

0

 

𝑧(𝑥, 𝑦) = 𝜎0(𝑡) + ∫𝑃(𝑠, 𝑡)𝜑(𝑠)𝑑𝑠 + ∫𝑃(𝑠, 𝑡)∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 +

𝑡

0

𝑥

0

𝑥

0

 

+∫𝑓(𝑠, 𝑡)𝑑𝑠,

𝑥

0

 

𝜑(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
× 

× {∫[𝐾(𝜉, 𝜉) − 𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝜉

)𝜑(𝜉)𝑑𝜉 −

𝑠

0

𝑠

0

 

−∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥, 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑥

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥

0

𝑥

0

 

+∫𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 − ∫𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑠 − 𝜉)) ×

𝑠

0

𝑇

0

𝑥

0
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×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 + 𝑄(𝑠) − 𝑄(𝑥)

𝑇

0

}𝑑𝑠 −
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) × 

× {∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑(𝑠)𝑑𝑠 − 𝐶0∫(∫𝐾(𝜈, 𝑠)

𝑥

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠 −

𝑥

0

𝑥

0

 

−∫𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥 − 𝑠))∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 + 𝜀𝜑(𝑥) + 𝑄(𝑥)

𝑇

0

𝑥

0

}.        (2.1.8) 

Полагая 𝑥 = 𝑥𝑖 , 𝑡 = 𝑡𝑗 , 𝑖 = 1. . 𝑛, 𝑗 = 1. . 𝑛0 в (2.1.8), применим 

формулу правых прямоугольников для интегралов. Тогда получим си-

стему  

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
𝑤𝑖
𝑗
= 𝜑𝑖 + 𝜏∑𝑧𝑖

𝑝
+ 𝑅𝑖,𝑗

∗ ,

𝑗

𝑝=1

                                                                                             

𝑧𝑖
𝑗
= 𝜎0

𝑗
+ ℎ∑𝑃𝑘

𝑗
𝜑𝑘 + ℎ∑𝑃𝑘

𝑗
𝜏∑𝑧𝑘

𝑝
+ ℎ∑𝑓𝑘

𝑗
+ 𝑅𝑖,𝑗

0 ,

𝑖

𝑘=1

𝑗

𝑝=1

𝑖

𝑘=1

𝑖

𝑘=1

                               

𝜑𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑃𝑘
{ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙 −

𝑘−1

𝑙=1

𝑖−1

𝑘=1

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙

𝑘

𝑚=𝑙+1

𝜑𝑙 − ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙 + 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑖−1

𝑙=1

𝑘−1

𝑙=1

+ℎ∑𝐾𝑙,𝑙

𝑖−1

𝑙=1

(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

− ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑘 − 𝑥𝑙))𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

𝑘−1

𝑙=1

+

+𝑄𝑘 − 𝑄𝑖} +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

){ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑘,𝑙]

𝑖−1

𝑘=1

𝜑𝑘 −                 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘

𝑖

𝑚=𝑘+1

− ℎ∑𝐾𝑘,𝑘

𝑖−1

𝑘=1

(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))𝜏∑𝑧𝑘
𝑗

𝑛0

𝑗=1

𝑖−1

𝑘=1

+                 

+𝜀𝜑ℎ,0 + 𝑄𝑖} + 𝑅𝑖
1,                                                                                          (2.1.9)

 

где 𝑅𝑖,𝑗
∗ , 𝑅𝑖,𝑗

0 ,  𝑅𝑖
1 – остаточные члены интегралов.  
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Введем вектор погрешности 𝜂𝜀,𝑖
ℎ = 𝜑𝜀(𝑥𝑖) − 𝜑(𝑥𝑖) = 𝜑𝜀,𝑖 − 𝜑𝑖 , 

 𝑖 = 1. . 𝑛,   𝜇𝜀,𝑖
𝑗
= 𝑧𝜀(𝑥𝑖 , 𝑡𝑗) − 𝑧(𝑥𝑖 , 𝑡𝑗) = 𝑧𝜀,𝑖

𝑗
− 𝑧𝑖

𝑗
, 𝑗 = 1. . 𝑛0,   𝑖 = 1. . 𝑛. 

Тогда из (2.1.7) и (2.1.9) получим  

𝑤𝜀,𝑖
𝑗
−𝑤𝑖

𝑗
= 𝜂𝜀,𝑙

ℎ + 𝜏∑𝜇𝜀,𝑖
𝑝

𝑗

𝑝=1

+ 𝑅𝑖,𝑗
∗ , 

𝜇𝜀,𝑖
𝑗
= ℎ∑𝑃𝑘

𝑗
𝜂𝜀,𝑘

𝑖

𝑘=1

+ ℎ∑𝑃𝑘
𝑗
𝜏∑𝜇𝜀,𝑘

𝑝
− 𝑅𝑖,𝑗

0

𝑗

𝑝=1

,

𝑖

𝑘=1

 

𝜂𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
{ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜂𝜀,𝑙

ℎ

𝑘−1

𝑙=1

−

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙

𝑘

𝑚=𝑙+1

𝜂𝜀,𝑙
ℎ − ℎ∑[𝐾𝑙,𝑙 −𝐾𝑖,𝑙]𝜂𝜀,𝑙

ℎ +

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙

𝑖

𝑚=𝑙+1

𝜂𝜀,𝑙
ℎ + ℎ∑𝐾𝑙,𝑙

𝑖−1

𝑙=1

(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝜇𝜀,𝑙
𝑗

𝑛0

𝑗=1

−

𝑖−1

𝑙=1

 

−ℎ∑𝐾𝑙,𝑙

𝑘−1

𝑙=1

(1 + 𝐶0(𝑥𝑘 − 𝑥𝑙))𝜏∑𝜇𝜀,𝑙
𝑗
+ 𝜀(𝜑(𝑥𝑙) − 𝜑(𝑥𝑖))} +

𝑛0

𝑗=1

 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

){ℎ∑[𝐾𝑘,𝑘 −𝐾𝑖,𝑘]𝜂𝜀,𝑘
ℎ −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘

𝑖

𝑚=𝑘+1

𝜂𝜀,𝑘
ℎ − ℎ∑𝐾𝑘,𝑘(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))𝜏∑𝜇𝜀,𝑘

𝑗

𝑛0

𝑗=1

𝑖−1

𝑘=1

𝑖−1

𝑘=1

+ 

+𝜀(𝜑𝑖 − 𝜑0)} +
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑0 − 𝜑ℎ,0) − 𝑅𝑖
1.      (2.1.10) 

Произведя оценки из (2.1.10) получим  

|𝑤𝜀,𝑖
𝑗
− 𝑤𝑖

𝑗
| ≤ |𝜑𝜀,𝑖 − 𝜑𝑖| + 𝜏∑|𝑧𝜀,𝑖

𝑝
− 𝑧𝑖

𝑝
|

𝑗

𝑝=1

+ |𝑅𝑖,𝑗
∗ | ≤ ‖𝜂𝜀,𝑖‖𝐶ℎ

+ 

+𝑇‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏

+ |𝑅𝑖,𝑗
∗ | ≤ ‖𝜂𝜀,𝑖‖𝐶ℎ

+ 𝑇‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏

+𝑀1
0𝜏,               (2.1.11) 
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где 𝑅𝑖,𝑗
∗ = ∫ 𝑧(𝑥𝑖 , 𝜈)𝑑𝜈 − 𝜏∑𝑧𝑖

𝑝

𝑗

𝑝=1

𝑡𝑗

0

,   𝑀1
0 =

𝑇

2
‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷), 

|𝑧𝜀,𝑖
𝑗
− 𝑧𝑖

𝑗
| = |ℎ∑𝑃𝑘

𝑗

𝑖

𝑘=1

𝜂𝜀,𝑘
ℎ + ℎ∑𝑃𝑘

𝑗
𝜏∑𝜇𝜀,𝑘

𝑝
− 𝑅𝑖,𝑗

0

𝑗

𝑝=1

𝑖

𝑘=1

| ≤ 

≤ ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)ℎ∑|𝜂𝜀,𝑘
ℎ |

𝑖

𝑘=1

+ ‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)ℎ∑𝜏∑|𝜇𝜀,𝑘
𝑝
|

𝑗

𝑝=1

𝑖

𝑘=1

+ |𝑅𝑖,𝑗
0 | ≤ 

≤ 𝑇0 (‖𝜂𝜀,𝑘
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑘

𝑚 ‖
𝐶ℎ,𝜏
) + |∫ 𝑃(𝑠, 𝑡𝑗)𝜑(𝑠)𝑑𝑠 − ℎ∑𝑃(𝑥𝑘 , 𝑡𝑗)𝜑𝑘

𝑖

𝑘=1

𝑥𝑖

0

| + 

+ |∫ 𝑃(𝑠, 𝑡𝑗)∫ 𝑧(𝑥𝑘 , 𝑦)𝑑𝑦𝑑𝑠

𝑡𝑗

0

𝑥𝑖

0

− ℎ∑𝑃𝑘
𝑗
𝜏∑𝑧𝑘

𝑝

𝑗

𝑝=1

𝑖

𝑘=1

| + 

+ |∫ 𝑓(𝑠, 𝑡𝑗)𝑑𝑠 − ℎ∑𝑓𝑘
𝑗

𝑖

𝑘=1

𝑥𝑖

0

| ≤ 𝑇0 (‖𝜂𝜀,𝑘
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑘

𝑚 ‖
𝐶ℎ,𝜏
) + 

+ |∑ ∫ 𝑃(𝑠, 𝑡𝑗)[𝜑(𝑠) − 𝜑(𝑥𝑘)]𝑑𝑠

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

| + |∑ ∫ [𝑃(𝑠, 𝑡𝑗) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑃(𝑥𝑘 , 𝑡𝑗)]𝜑(𝑥𝑘)𝑑𝑠| + |∫ 𝑃(𝑠, 𝑡𝑗)[∫ 𝑧(𝑥𝑘 , 𝑦)𝑑𝑦 − 𝜏∑𝑧𝑘
𝑝

𝑗

𝑝=1

]𝑑𝑠

𝑡𝑗

0

𝑥𝑖

0

| + 

+ |∑ ∫ [𝑃(𝑠, 𝑡𝑗) − 𝑃(𝑥𝑘 , 𝑡𝑗)]

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝜏∑𝑧𝑘
𝑝
𝑑𝑠

𝑗

𝑝=1

| + |∑ ∫ [𝑓(𝑠, 𝑡𝑗) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−[𝑓(𝑥𝑘 , 𝑡𝑗)]𝑑𝑠| ≤ 𝑇0 (‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) +

𝑏

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏]ℎ +
𝑏

2
‖𝑃𝑥(𝑥, 𝑡)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]ℎ +

𝑇𝑏

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷) × 

× ‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏 +
𝑇

2
𝑏‖𝑃𝑥(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧(𝑥, 𝑡)‖𝐶(𝐷)ℎ +

𝑏

2
‖𝑓𝑥(𝑥, 𝑡)‖𝐶(𝐷)ℎ ≤ 
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≤ 𝑃0 (‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) + 𝑀2ℎ + 𝑀3𝜏,                                            (2.1.12) 

где 𝑅𝑖,𝑗
0 = ∫𝑃(𝑠, 𝑡𝑗)

𝑥

0

𝜑(𝑠)𝑑𝑠 − ℎ∑𝑃𝑘
𝑗
𝜑𝑘

𝑖

𝑘=1

+∫𝑃(𝑠, 𝑡𝑗)∫𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 −

𝑡

0

𝑥

0

 

−ℎ∑𝑃𝑘
𝑗
𝜏∑𝑧𝑘

𝑝
+∫ 𝑓(𝑠, 𝑡𝑗)𝑑𝑠 − ℎ∑𝑓𝑘

𝑗

𝑖

𝑘=1

𝑥𝑖

0

𝑗

𝑝=1

𝑖

𝑘=1

,   

𝑃0 = 𝑏‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)𝑚𝑎𝑥(1, 𝑇), 

𝑀2 =
𝑏

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] +
𝑏

2
‖𝑃𝑥(𝑥, 𝑡)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 

+𝑇
𝑏

2
‖𝑃𝑥(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧(𝑥, 𝑡)‖𝐶(𝐷) +

𝑏

2
‖𝑓𝑥(𝑥, 𝑡)‖𝐶(𝐷),   

𝑀3 = 𝑇
𝑏

2
‖𝑃(𝑥, 𝑡)‖𝐶(𝐷)‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷). 

|𝜑𝜀,𝑖 − 𝜑𝑖| = |−
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
×

𝑖−1

𝑘=1

 

× {ℎ∑[𝐾𝑙,𝑙 −𝐾𝑘,𝑙]

𝑘−1

𝑙=1

𝜂𝜀,𝑙
ℎ − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙

ℎ − ℎ∑[𝐾𝑙,𝑙 −𝐾𝑖,𝑙]

𝑖−1

𝑙=1

×

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

× 𝜂𝜀,𝑙
ℎ + 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙

ℎ +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝜇𝜀,𝑙
𝑗
−

𝑛0

𝑗=1

𝑖−1

𝑙=1

 

−ℎ∑𝐾𝑙,𝑙

𝑘−1

𝑙=1

(1 + 𝐶0(𝑥𝑘 − 𝑥𝑙))𝜏∑𝜇𝜀,𝑙
𝑗
+

𝑛0

𝑗=1

𝜀(𝜑(𝑥𝑙) − 𝜑(𝑥𝑖))} + 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

){ℎ∑[𝐾𝑘,𝑘 −𝐾𝑖,𝑘]𝜂𝜀,𝑘
ℎ −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜂𝜀,𝑘
ℎ − ℎ∑𝐾𝑘,𝑘(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))𝜏∑𝜇𝜀,𝑘

𝑗
+

𝑛0

𝑗=1

𝑖−1

𝑘=1

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1
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+𝜀(𝜑𝑖 − 𝜑ℎ,0)} +
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑0 − 𝜑ℎ,0) − 𝑅𝑖
1| ≤ 

≤ 𝑑1
−1𝑑4∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

ℎ

𝜀 + 𝑝𝑘
[2𝐾2ℎ∑|𝜂𝜀,𝑙

ℎ |

𝑖−1

𝑙=1

+ 

+(1 + 2𝑏𝐶0)‖𝐾𝑙,𝑙‖𝐶ℎ,𝜏
ℎ∑𝜏∑|𝜇𝜀,𝑙

𝑗
|

𝑛0

𝑗=1

𝑖−1

𝑙=1

] +
(𝑥𝑖 − 𝑥0)

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑃𝑘

𝑖

𝑘=1

) × 

× [𝐾2ℎ∑|𝜂𝜀,𝑘
ℎ | + (1 + 𝐶0𝑏)‖𝐾𝑘,𝑘‖𝐶ℎ,𝜏

ℎ∑𝜏∑|𝜇𝜀,𝑘
𝑗
|

𝑛0

𝑗=1

𝑖−1

𝑘=1

𝑖−1

𝑘=1

] + |𝜀(𝐻𝜀
ℎ[𝜑𝑖])| + 

+|𝜑0 −𝜑ℎ,0| + |𝑅𝑖
1| ≤ 𝑑1

−1𝑑4∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1

 

× [2𝑏𝐾2‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ 𝑏𝑇(1 + 2𝐶0𝑏)‖𝐾𝑙,𝑙‖𝐶ℎ,𝜏

‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏
]
ℎ

𝜀
+ 𝑑1

−1 (
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) × 

× exp (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) [𝑏𝐾2‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ 𝑏𝑇(1 + 𝐶0𝑏)‖𝐾𝑘,𝑘‖𝐶ℎ,𝜏

‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏
] + 

+|𝜀(𝐻𝜀
ℎ[𝜑𝑖])| + ℎ𝑁2 + |𝑅𝑖

1| ≤ [2𝑏𝐾2‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ 𝑏𝑇(1 + 𝐶0𝑏)‖𝐾𝑙,𝑙‖𝐶ℎ,𝜏

× 

× ‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏
]𝑑1
−1𝑑4𝑑5

ℎ

𝜀
+ 𝑑1

−1𝑒−1[𝑏𝐾2‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ 𝑏𝑇(1 + 𝐶0𝑏)‖𝐾𝑘,𝑘‖𝐶ℎ,𝜏

× 

× ‖𝜇𝜀,𝑖
𝑚‖

𝐶ℎ,𝜏
] + 𝜀|(𝐻𝜀

ℎ[𝜑𝑖])| + ℎ𝑁2 + |𝑅𝑖
1| ≤ 𝑑1

−1𝑏(𝑑4𝑑5 + 𝑒
−1)𝐾2 × 

× ‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+
𝑏𝑇

𝑑1
[𝑑4𝑑5(1 + 2𝑏𝐶0) + 𝑒

−1(1 + 𝑏𝐶0)]‖𝐾𝑘,𝑘‖𝐶ℎ,𝜏
‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏

+ 

+𝜀|(𝐻𝜀
ℎ[𝜑𝑖])| + ℎ𝑁2 + |𝑅𝑖

1| ≤ 𝑇12‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ 𝑇13‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏

+ 𝜀|(𝐻𝜀
ℎ[𝜑𝑖])| + 

+|𝑅𝑖
1| ≤ 𝑀0 (‖𝜂𝜀,𝑖

ℎ ‖
𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) + 𝜀|(𝐻𝜀

ℎ[𝜑𝑖])| + ℎ𝑁2 + |𝑅𝑖
1|, 

где   𝑀0 = 𝑚𝑎𝑥(𝑇12, 𝑇13),   𝑇12 = 𝑑1
−1(𝑑4𝑑5 + 𝑒

−1)𝐾2𝑏,  𝑑4 = max
𝑥∈[0,𝑏]

|𝐺(𝑥)|,  
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𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)| ,   𝐾2 = 𝐾1 + 𝐶0𝐾0, 

 𝐾1 = max
𝐷1
|𝐾𝑥(𝑥, 𝑠)|,   𝐾0 = max

𝐷1
|𝐾(𝑥, 𝑠)|,  𝑇13 = 𝑑1

−1𝑇[𝑑4𝑑5(1 + 2𝑏𝐶0) + 

+𝑒−1(1 + 𝑏𝐶0)‖𝐾(𝑥, 𝑥)‖𝐶[0,𝑏]]. 

Тогда, учитывая лемму 2.1.2, получим 

‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
≤ 𝑀0 (‖𝜂𝜀,𝑖

ℎ ‖
𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) + 𝑀4ℎ

𝛼 +𝑁2ℎ + |𝑅𝑖
1|.     (2.1.13) 

Запишем остаточный член 𝑅𝑖
1 в развернутом виде 

𝑅𝑖
1 = −

1

𝜀 + 𝑝𝑖
{∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉) −

𝑠

0

 

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝜉

)𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

𝑠

0

 

× 𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 + ∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉)) ×

𝑥𝑖

0

𝑥𝑖

0

 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

∫𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

𝑠

0

] 𝑑𝑠 + 

+∑ ∫ [𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) − 𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)]

𝑥𝑘

𝑥𝑘−1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×

𝑖

𝑘=1

 

× [∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − 

−∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

𝑥𝑖

0

 

+∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 − ∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0 ×

𝑥𝑘

0

𝑇

0

𝑥𝑖

0
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× (𝑥𝑘 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠 +∑ ∫ [𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)]
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 + ∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉)) ×

𝑥𝑖

0

𝑥𝑖

0

 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

𝑥𝑘

0

] 𝑑𝑠 + 

+∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

(𝐺(𝑠) − 𝐺𝑘)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) −

𝑥𝑘

0

 

−𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) −

𝑥𝑖

0

 

−𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

∫ 𝐾(𝜉, 𝜉) ×

𝑥𝑖

0

 

× (1 + 𝐶0(𝑥𝑖 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 − ∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))

𝑥𝑘

0

𝑇

0

× 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠 +∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)[
𝐺𝑘

𝜀 + 𝑝(𝑠)
−

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−
𝐺𝑘

𝜀 + 𝑝𝑘
] [∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)

𝑥𝑘

0

× 



88 

 

× 𝜑(𝜉)𝑑𝜉 − ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙

𝑘

𝑙=1

+ 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑘

𝑚=𝑙+1

+∫[𝐾(𝜉, 𝜉) −

𝑥𝑖

0

𝑘

𝑙=1

 

−𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 −

𝑥𝑖

0

ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙

𝑖

𝑙=1

+ 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑙+1

+

𝑖

𝑙=1

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

𝑥𝑖

0

 

−∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

+ ℎ∑𝐾𝑙,𝑙(1 + 𝐶0 ×

𝑖

𝑙=1

𝑥𝑘

0

 

× (𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝑖
𝑗

𝑛0

𝑗=1

− ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝑖
𝑗

𝑛0

𝑗=1

] 𝑑𝑠 +

𝑖

𝑙=1

 

+∑ ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

)[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 − ℎ∑[𝐾𝑙,𝑙 −𝐾𝑘,𝑙]𝜑𝑙

𝑘

𝑙=1

+

𝑥𝑘

0

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑘

𝑚=𝑙+1

+∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 −

𝑥𝑖

0

𝑘

𝑙=1

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 − ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙

𝑖

𝑙=1

+

𝑥𝑖

0

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑙+1

+

𝑖

𝑙=1

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

𝑥𝑖

0

 

−∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))

𝑥𝑘

0

∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

+ ℎ∑𝐾𝑙,𝑙(1 + 𝐶0 ×

𝑖

𝑙=1

 

× (𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝑖
𝑗
−

𝑛0

𝑗=1

ℎ∑𝐾𝑙,𝑙

𝑘

𝑙=1

(1 + 𝐶0(𝑥𝑘 − 𝑥𝑙))𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

] 𝑑𝑠} + 
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+
𝜀

𝜀 + 𝑝𝑖
∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

(𝜑𝑖 −𝜑(𝑠))𝑑𝑠 + 

+
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) (𝜑𝑖 − 𝜑0) −
𝜀

𝜀 + 𝑝𝑖
× 

× ℎ∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

(𝜑𝑖 − 𝜑𝑘)𝑑𝑠 −
𝜀

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) (𝜑𝑖 −𝜑0) −
1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 

−𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] [∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 +

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

)𝜑(𝑠)𝑑𝑠 +∫ 𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥𝑖 − 𝑠)) ×

𝑥𝑖

0

𝑥𝑖

0

 

×∫𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠

𝑇

0

+𝑔𝑖 − 𝜀𝜑𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[∫[𝐾(𝑠, 𝑠) −

𝑥𝑖

0

 

−𝐾(𝑥𝑖, 𝑠)]𝜑(𝑠)𝑑𝑠− 𝐶0∫ (∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

)𝜑(𝑠)𝑑𝑠 − ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜑𝑘 +

𝑖

𝑘=1

𝑥𝑖

0

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘

𝑖

𝑚=𝑘+1

𝑖

𝑘=1

+∫ 𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠 −

𝑇

0

𝑥𝑖

0

 

−ℎ∑𝐾𝑘,𝑘(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))

𝑖

𝑘=1

𝜏∑𝑧𝑘
𝑗
+

𝑛0

𝑗=1

𝐶0∫ 𝑔(𝑠)𝑑𝑠 − 𝐶0ℎ∑𝑔𝑖

𝑖

𝑘=1

𝑥𝑖

0

]. 

Разбивая остаточный член 𝑅𝑖
1 на суммы выражений, имеем оценки  

|𝑅𝑖
1| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
× 
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× [∫[𝐾(𝜉, 𝜉)

𝑠

0

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝑠

)𝜑(𝜉)𝑑𝜉 −

𝑠

0

 

−∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑘

0

𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

+ 

+∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 − ∫𝐾(𝜉, 𝜉)(1 + 𝐶0

𝑠

0

×

𝑇

0

𝑥𝑘

0

 

× (𝑠 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠| ≤ ∑ ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

×

𝑖

𝑘=1

 

×
(𝑥𝑘 − 𝑠)

𝜀 + 𝑝𝑖

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[
3

2
𝑏𝐾2𝑟0 + (1 +

3

2
𝐶0𝑏)𝑇‖𝐾(𝑥, 𝑥)‖𝐶[0,𝑏] × 

× ‖𝑧(𝑥, 𝑡)‖𝐶(𝐷)]𝑑𝑠 ≤ [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3]

ℎ

𝜀
× 

×∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑖

0

𝑑𝑠 (−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) ≤ 

≤ 𝑑5 [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏)𝑟1𝐾3]

ℎ

𝜀
, 

𝑟0 = max
[0,𝑏]

|𝜑(𝑥)|,    𝑟1 = max
𝐷
|𝑧(𝑥, 𝑡)|,     𝐾3 = max

[0,𝑏]
𝐾(𝑥, 𝑥); 

|𝑅𝑖
2| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ [𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)]
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [

𝑥𝑘

0

𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)] × 

× 𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑(𝜉)𝑑𝜉 − ∫[

𝑥𝑖

0

𝐾(𝜉, 𝜉) −

𝑥𝑘

0
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−𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

∫ 𝐾(𝜉, 𝜉) ×

𝑥𝑖

0

 

× (1 + 𝐶0(𝑥𝑖 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))

𝑥𝑘

0

× 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠| ≤ 𝑑4∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

𝑖

𝑘=1

× 

× ∫
1

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

|𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) − 1| 𝑑𝑠 × 

× [
3

2
𝑏𝐾2𝑟0 + (1 +

3

2
𝐶0𝑏)𝑟1𝐾3] ≤

𝑑4𝑑5
𝑑1

[
3

2
𝑏𝐾2𝑟0 + (1 +

3

2
𝐶0𝑏)𝑟1𝐾3]

ℎ

𝜀
, 

𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

| ; 

|𝑅𝑖
3| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ [𝑒𝑥𝑝(− ∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)]
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

− 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉)) ×

𝑥𝑖

0

 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))

𝑥𝑘

0

∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠| ≤ 

≤ 𝑑4∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
∫

𝑑𝑠

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

×
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× |𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)− 1| [
3

2
𝑏𝐾2𝑟0 + 

+𝑇 (1 +
3

2
𝐶0𝑏) 𝑟1𝐾3] ≤

𝑑4𝑑6
𝑑1

ℎ

𝜀
[
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3] × 

×∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑑1
−1𝑑4𝑑5𝑑6 ×

𝑖

𝑘=1

 

× [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3]

ℎ

𝜀
, 

𝑑6 = 𝑠𝑢𝑝 |𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)− 1| ; 

|𝑅𝑖
4| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝐺(𝑠) − 𝐺𝑘)

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

− 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

 

−∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

𝑥𝑖

0

 

+∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

𝑥𝑖

0

∫ 𝐾(𝜉, 𝜉) ×

𝑥𝑘

0

 

× (1 + 𝐶0(𝑥𝑘 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠| ≤
1

2
‖𝐺′(𝑥)‖𝐶[0,𝑏] × 

×∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

ℎ2

𝜀
[
3

2
𝑏𝐾2𝑟0 + 𝑇𝑟1𝐾3 ×

𝑖

𝑘=1

 

× (1 +
3

2
𝐶0𝑏)] ≤

1

2
𝑑1
−1‖𝐺′(𝑥)‖𝐶[0,𝑏]∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

× 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) × 
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× 𝑟1𝐾3]
ℎ2

𝜀
≤
1

2
𝑑1
−1𝑑5‖𝐺

′(𝑥)‖𝐶[0,𝑏] [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3]

ℎ2

𝜀
; 

|𝑅𝑖
5| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

[∫ [𝐾(𝜉, 𝜉, ) −

𝑥𝑘

0

 

−𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 − ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙 −∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

𝑘

𝑙=1

 

× 𝜑(𝜉)𝑑𝜉 + ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙 +∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉)) ×

𝑥𝑖

0

𝑖

𝑙=1

 

×∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉 −

𝑇

0

∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑘 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

−

𝑥𝑘

0

 

−ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))𝜏∑𝑧𝑖
𝑗
+ ℎ∑𝐾𝑙,𝑙(1 + 𝐶0(𝑥𝑘 − 𝑥𝑙)) ×

𝑘

𝑙=1

𝑛0

𝑗=1

𝑖

𝑙=1

 

× 𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

] 𝑑𝑠| ≤
1

𝜀 + 𝑝𝑖
𝑑4∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×
1

𝜀 + 𝑝𝑘
|[∫ [𝐾(𝑥𝑖 , 𝜉, ) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑘

0

ℎ∑[𝐾𝑘,𝑙 −𝐾𝑖,𝑙]𝜑𝑙 −

𝑖

𝑙=1

 

− ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

𝑥𝑘

ℎ ∑ [𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙 +

𝑖

𝑙=𝑘+1

 

+∫ 𝐾(𝜉, 𝜉)𝐶0(𝑥𝑖 − 𝑥𝑘)∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

+ ℎ∑𝐾𝑙,𝑙𝐶0(𝑥𝑘 − 𝑥𝑖)𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

+

𝑘

𝑙=1

𝑥𝑘

0

 

+ ∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

− ℎ ∑ 𝐾𝑙,𝑙(1 + 𝐶0 ×

𝑖

𝑙=𝑘+1

𝑥𝑖

𝑥𝑘

 

× (𝑥𝑖 − 𝑥𝑙)) 𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

]| 𝑑𝑠 ≤
𝑑4

𝜀 + 𝑝𝑖
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
ℎ

𝜀 + 𝑝𝑘
×

𝑖

𝑘=1
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× [∑ ∫|[𝐾(𝑥𝑖 , 𝜉) −

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝐾(𝑥𝑘 , 𝜉) + 𝐾𝑘,𝑙 − 𝐾𝑖,𝑙]𝜑(𝜉)|𝑑𝜉 + 

+∑ ∫ |[𝐾𝑘,𝑙 − 𝐾𝑖,𝑙][𝜑𝑙 −𝜑(𝜉)]|𝑑𝜉 + ∑ ∫|[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙 −

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

−𝐾(𝜉, 𝜉) + 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)|𝑑𝜉 + ∑ ∫|[𝐾𝑙,𝑙 −𝐾𝑖,𝑙]

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

[𝜑𝑙 − 𝜑(𝜉)]|𝑑𝜉 +   

+∑ ∫|[𝐾(𝜉, 𝜉) − 𝐾𝑙,𝑙]𝐶0(𝑥𝑖 − 𝑥𝑘)|∫|𝑧(𝜉, 𝑦)|𝑑𝑦

𝑇

0

𝑑𝜉 +

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

+∑ ∫|𝐾𝑙,𝑙|

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝐶0(𝑥𝑖 − 𝑥𝑘) |[𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

−∫𝑧(𝜉, 𝑦)𝑑𝑦

𝑇

0

]| 𝑑𝜉 + 

+ ∑ ∫|[𝐾(𝜉, 𝜉) −

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

𝐾𝑙,𝑙]|(1 + 𝐶0(𝑥𝑖 − 𝜉)) × 

×∫|𝑧(𝜉, 𝑦)|𝑑𝑦𝑑𝜉 + ∑ ∫|𝐾(𝜉, 𝜉)|(1 + 𝐶0(𝑥𝑖 − 𝑥𝑙))

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

𝑇

0

× 

× |[𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

−∫𝑧(𝜉, 𝑦)𝑑𝑦

𝑇

0

]| 𝑑𝜉] ≤
𝑑4

𝜀 + 𝑝𝑘
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

× 

×
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑘
ℎ[(3𝑏‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1)𝑟0 + 𝑏‖𝐾

′(𝑥, 𝑥)‖𝐶[0,𝑏]𝑟0)
ℎ

2
+ 

+𝑏𝐾1‖𝜑
′(𝑥)‖𝐶[0,𝑏]ℎ + (1 + (1 + 𝑏)𝐶0)𝑇‖𝐾

′(𝑥, 𝑥)‖𝐶[0,𝑏]𝑟1ℎ + 

+(1 + (1 + 𝑏)𝐶0)
𝑇

2
‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏] ≤

𝑑4
𝑑1
∑𝑒𝑥𝑝 (−

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1

 

× (
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) [(3𝑏‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1)𝑟0 + 𝑏𝐾3𝑟0)
ℎ

2
+ 𝑏𝐾3‖𝜑

′(𝑥)‖𝐶[0,𝑏]ℎ + 

+(1 + (1 + 𝑏)𝐶0)𝑇‖𝐾
′(𝑥, 𝑥)‖𝐶[0,𝑏]𝑟1ℎ + (1 + (1 + 𝑏)𝐶0)

𝑇

2
× 
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× ‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏] ≤ 𝑑1
−1𝑑4𝑑5[(3𝑏‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1)𝑟0 + 𝑏𝐾3𝑟0)

ℎ

2
+ 

+𝑏𝐾1‖𝜑
′(𝑥)‖𝐶[0,𝑏]ℎ + (1 + (1 + 𝑏)𝐶0)𝑇‖𝐾

′(𝑥, 𝑥)‖𝐶[0,𝑏]𝑟1ℎ + 

+(1 + (1 + 𝑏)𝐶0)
𝑇

2
‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏]; 

|𝑅𝑖
6| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑(𝜉)𝑑𝜉 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑘

𝑚=𝑙+1

−

𝑘

𝑙=1

𝑥𝑘

0

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)

𝑥𝑖

0

𝜑(𝜉)𝑑𝜉 +𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑙+1

𝑖

𝑙=1

] 𝑑𝑠| ≤ 

≤
𝑑4

𝜀 + 𝑝𝑖
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
ℎ

𝜀 + 𝑝𝑘

𝑖

𝑘=1

× 

× [|𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝑥𝑘

)

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑘+1

𝑘

𝑙=1

| + 

+𝐶0ℎ ∑ |ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 + ∫ (∫ 𝐾(𝜈, 𝜉)𝜑(𝜉)𝑑𝜈 −

𝑥𝑖

𝑥𝑙

𝑥𝑖

𝑥𝑘

𝑖

𝑚=𝑙+1

𝑖

𝑙=𝑘+1

 

−∫ 𝐾(𝜈, 𝜉)𝜑(𝜉)𝑑𝜈

𝑥𝑙

𝜉

)𝑑𝜉| ] ≤
𝑑4

𝜀 + 𝑝𝑖
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

× 

×
ℎ

𝜀 + 𝑝𝑘
[𝐶0∑ ∫ ∑ ∫ |[𝐾𝑚,𝑙 − 𝐾(𝜈, 𝜉)]𝜑𝑙|𝑑𝜈𝑑𝜉 +

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑘+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

 

+𝐶0∑ ∫ ∑ ∫ |[𝐾(𝜈, 𝜉)[𝜑(𝜉) − 𝜑𝑙]𝑑𝜈𝑑𝜉 +

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑘+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1
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+𝐶0 ∑ ∫ ∑ ∫ |[𝐾𝑚,𝑙 − 𝐾(𝜈, 𝜉)]𝜑𝑙|𝑑𝜈𝑑𝜉 +

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=𝑘+1

 

+𝐶0 ∑ ∫ ∑ ∫ |𝐾𝑚,𝑙[𝜑(𝜉) − 𝜑𝑙]|𝑑𝜈𝑑𝜉 + 𝐶0 ∑ ∫|𝐾(𝜈, 𝜉) ×

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

 

× 𝜑(𝜉)|𝑑𝜈𝑑𝜉] ≤ 𝑑4∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
ℎ

𝜀 + 𝑝𝑖

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑘
𝐶0𝑏 ×

𝑖

𝑘=1

 

× [(𝐾1 + ‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1))𝑟0ℎ + 𝐾0‖𝜑
′(𝑥)‖𝐶[0,𝑏]ℎ +

1

2
𝐾0𝑟0ℎ] ≤ 

≤ 𝑑1
−1𝑑4𝑑5𝐶0𝑏 [(𝐾1 + ‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1))𝑟0 +𝐾0‖𝜑

′(𝑥)‖𝐶[0,𝑏] +
1

2
𝐾0𝑟0]

ℎ2

𝜀
; 

|𝑅𝑖
7| = |−

1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)𝐺𝑘 [
1

𝜀 + 𝑝𝑘
−

1

𝜀 + 𝑝(𝑠)
]

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [∫ [𝐾(𝜉, 𝜉) −𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

 

−∫[𝐾(𝜉, 𝜉) −𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

)

𝑥𝑖

0

𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

 

+∫ 𝐾(𝜉, 𝜉)(1 + 𝐶0(𝑥𝑖 − 𝜉))∫𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

−∫ 𝐾(𝜉, 𝜉) ×

𝑥𝑘

0

𝑥𝑖

0

 

× (1 + 𝐶0(𝑥𝑘 − 𝜉))∫ 𝑧(𝜉, 𝑦)𝑑𝑦𝑑𝜉

𝑇

0

] 𝑑𝑠| ≤ 𝑑4[
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) × 

× 𝑟1𝐾3]‖𝑝
′(𝑥)‖𝐶[0,𝑏]∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘) × 

× ∫
(𝑥𝑘 − 𝑠)

(𝜀 + 𝑝𝑘)(𝜀 + 𝑝(𝑠))

𝑥𝑘

𝑥𝑘−1

𝑑𝑠 ≤
1

2
𝑑1
−1𝑑4‖𝑝

′(𝑥)‖𝐶[0,𝑏]
ℎ2

𝜀2
[
3

2
𝑏𝐾2𝑟0 + 
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+𝑇 (1 +
3

2
𝐶0𝑏)𝑟1𝐾3]∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 

≤
1

2
𝑑1
−1𝑑4𝑑5 [

3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3] ‖𝑝

′(𝑥)‖𝐶[0,𝑏]
ℎ2

𝜀2
; 

|𝑅𝑖
8| = |

1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] × 

× [∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 + 𝐶0∫ (∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

)

𝑥𝑖

0

𝜑(𝑠)𝑑𝑠 +

𝑥𝑖

0

 

+∫ 𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥𝑖 − 𝑠))∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠

𝑇

0

𝑥𝑖

0

]| ≤
1

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) |𝑒𝑥𝑝(ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 1| × 

× (𝑥𝑖 − 𝑥0)𝑏[(‖𝐾𝑥(𝑥, 𝑠)‖𝐶(𝐷1) + 𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷1))𝑟0 + 𝑇(1 + 𝐶0𝑏) × 

× 𝐾3𝑟1‖𝑧(𝑥, 𝑡)‖𝐶(𝐷)] ≤ 𝑑1
−2𝑒𝑥𝑝 (−ℎ𝜃1

𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝(−ℎ𝜃2∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)𝐶1
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

ℎ

𝜀
𝑑7𝐶1[𝑏𝐶0(𝐾0 +𝐾1)𝑟0 + (1 + 𝐶0𝑏)𝑇𝐾3𝑟1] ≤ 

≤
𝑑1
−2𝑒−2

𝜃1𝜃2
𝐶1[𝑏𝐶0(𝐾0 + 𝐾1)𝑟0 + (1 + 𝐶0𝑏)𝑇𝐾3𝑟1]

ℎ

𝜀
,   𝜃1 + 𝜃2 = 1,  

0 < 𝜃1 < 1,  𝑑7 = 𝑠𝑢𝑝 |𝑒𝑥𝑝(−𝜃∑
𝐺𝑘

𝜀 + 𝑝𝑘
− 𝜃∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥𝑖

0

𝑖

𝑘=1

)|, 

0 < 𝜃 < 1, 

|𝑅𝑖
9| = |

1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 −

𝑥𝑖

0
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−𝐶0∫ (∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

)

𝑥𝑖

0

𝜑(𝑠)𝑑𝑠 − ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜑𝑘 +

𝑖

𝑘=1

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘 +∫ 𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥𝑖 − 𝑠))∫ 𝑧(𝑠, 𝑦)𝑑𝑦𝑑𝑠

𝑇

0

𝑥𝑖

0

−

𝑖

𝑚=𝑘+1

𝑖

𝑘=1

 

−∑𝐾𝑘,𝑘(1 + 𝐶0(𝑥𝑖 − 𝑥𝑘))𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

𝑖

𝑘=1

]| ≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× [∑ ∫ |𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)||𝜑(𝜉) − 𝜑(𝑥𝑙)|𝑑𝑠 + |∑ ∫ [𝐾(𝑠, 𝑠) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝐾(𝑥𝑖 , 𝑠) − 𝐾𝑘,𝑘 + 𝐾𝑖,𝑘]𝜑(𝑥𝑘)𝑑𝑠| + |𝐶0∑ ∫ ℎ ∑ 𝐾𝑚,𝑘 ×

𝑖

𝑚=𝑘+1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

× [𝜑𝑘 − 𝜑(𝑠)]𝑑𝑠 + |𝐶0∑ ∫ [ℎ ∑ 𝐾𝑚,𝑘 −∫ 𝐾(𝜈, 𝑠)

𝑥𝑖

𝑠

𝑖

𝑚=𝑙+1

𝑑𝜈]𝜑(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑑𝑠 

𝑖

𝑘=1

| +  

+ |∑ ∫ 𝐾(𝑠, 𝑠)(1 + 𝐶0(𝑥𝑖 − 𝑠))[∫𝑧(𝑠, 𝑦)𝑑𝑦 − 𝜏∑𝑧𝑖
𝑗

𝑛0

𝑗=1

𝑇

0

]𝑑𝑠

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

| + 

+∑ ∫ [𝐾(𝑠, 𝑠) − 𝐾𝑘,𝑘] [(1 + 𝐶0(𝑥𝑖 − 𝑠) + 𝐶0|𝐾𝑘,𝑘|(𝑥𝑘 − 𝑠))] 𝑑𝑠

𝑥𝑘

𝑥𝑘−1

𝑖−1

𝑘=1

× 

× 𝜏∑𝑧𝑙
𝑗

𝑛0

𝑗=1

] ≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=1

) [‖𝐾𝑥(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ (𝑥𝑖 − 𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

(𝑥𝑘 − 𝑠)𝑑𝑠 + [2‖𝐾𝑥(𝑥, 𝑠)‖𝐶(𝐷1) + ‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1)]𝑟0 × 

×∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 +

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝑏𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷1)‖𝜑
′(𝑥)‖𝐶[0,𝑏] + 
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+∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 +

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

|𝐶0∑ ∫ [ ∑ 𝐾𝑚,𝑘 − ∫ 𝐾(𝜈, 𝑠)𝑑𝜈 −

𝑥𝑖

𝑥𝑘

𝑖

𝑚=𝑘+1

   

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑘

𝑠

] 𝜑(𝑠)𝑑𝑠| + (1 + 𝐶0𝑏)𝐾3‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)∑𝜏2
𝑇

2

𝑖−1

𝑙=1

+ 

+[(1 + 𝐶0𝑏)‖𝐾
′(𝑥, 𝑥)‖𝐶[0,𝑏] + 𝐶0𝐾3]𝑟1𝑇∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠

𝑥𝑘

𝑥𝑘−1

𝑖−1

𝑘=1

] ≤ 

≤ 𝑑1
−1 (

𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) [
𝑏

2
𝐾1‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 

+(𝑏𝐾1 +
1

2
‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷))𝑟0 + 𝐶0𝐾0‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 

+
𝑇

2
𝐾3(1 + 𝐶0𝑏)‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏 + ℎ

𝑇

2
‖𝑧(𝑥, 𝑡)‖𝐶(𝐷)[(1 + 

+𝐶0𝑏)‖𝐾
′(𝑥, 𝑥)‖𝐶[0,𝑏] + 𝐶0𝐾3] ≤ 𝑑1

−1𝑒−1[
𝑏

2
𝐾1‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 

+(𝑏‖𝐾𝑥(𝑥, 𝑠)‖𝐶(𝐷1) +
1

2
‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1)) 𝑟0 + ‖𝜑

′(𝑥)‖𝐶[0,𝑏] × 

× 𝐶0𝐾0 +
𝑇

2
𝐾3(1 + 𝐶0𝑏)‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷)𝜏 + ℎ

𝑇

2
‖𝑧(𝑥, 𝑡)‖𝐶(𝐷) × 

× [(1 + 𝐶0𝑏)‖𝐾
′(𝑥, 𝑥)‖𝐶[0,𝑏]+𝐶0𝐾3]; 

|𝑅𝑖
10| = |

1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[𝐶0∫ 𝑔(𝑠)𝑑𝑠 − 𝐶0ℎ∑𝑔𝑘

𝑖

𝑘=1

𝑥𝑖

0

]| ≤ 

≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)𝐶0‖𝑔
′(𝑥)‖𝐶[0,𝑏]∑ ∫ (𝑥𝑙 − 𝑠)𝑑𝑠 ≤

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

≤ 𝑑1
−1𝐶0‖𝑔

′(𝑥)‖𝐶[0,𝑏]
ℎ

2
|(
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)| ≤
1

2
𝑒−1𝑑1

−1𝐶0 × 

× ‖𝑔′(𝑥)‖𝐶[0,𝑏]ℎ. 
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В итоге, учитывая лемму 2.1.2, получим  

|𝑅𝑖| ≤ 𝑀11ℎ +𝑀12𝜏 +𝑀13
ℎ

𝜀
+ 𝑀14

ℎ2

𝜀
, 

где 𝑀11 = 𝑁2 + 𝑑1
−1𝑑4𝑑5 [

𝑏

2
𝑟0(3‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1) + 𝐾3)] + 𝑏𝐾1 × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏] + (1 + (1 + 𝑏)𝐶0)𝑇‖𝐾
′(𝑥, 𝑥)‖𝐶[0,𝑏]𝑟1 + 𝑑1

−1𝑒−1 × 

× [
𝐾1
2
‖𝜑′(𝑥)‖𝐶[0,𝑏] + (𝑏𝐾1 +

1

2
‖𝐾𝑠(𝑥, 𝑡)‖𝐶(𝐷1)) 𝑟0 + 𝐶0𝐾0‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 

+
𝑇

2
‖𝑧(𝑥, 𝑡)‖𝐶(𝐷) + [(1 + 𝐶0𝑏)‖𝐾

′(𝑥, 𝑥)‖𝐶[0,𝑏] + 𝐶0𝐾3] +
1

2
𝑑1
−1𝐶0𝑒

−1 × 

× ‖𝑔′(𝑥)‖𝐶[0,𝑏], 

𝑀12 = 𝑑1
−1
𝑇

2
[𝑑4𝑑5(1 + (1 + 𝑏)𝐶0) + 𝐾3(1 + 𝑏𝐶0)]‖𝑧𝑡(𝑥, 𝑡)‖𝐶(𝐷), 

𝑀13 = (𝑑5 + 𝑑1
−1𝑑4𝑑5(1 + 𝑑6)) [

3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏) 𝑟1𝐾3] + 

+𝑑1
−2𝑒−2𝜃1

−1𝜃2
−1𝐶1[𝑏𝐶0(𝐾0 +𝐾1)𝑟0 + 𝑇(1 + 𝐶0𝑏)𝑟1𝐾3], 

𝑀14 =
1

2
𝑑1
−1𝑑5‖𝐺

′(𝑥)‖𝐶[0,𝑏] [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏)𝐾3𝑟1] + 

+𝑑1
−1𝑑4𝑑5𝐶0𝑏 [(𝐾1 + ‖𝐾𝑠(𝑥, 𝑠)‖𝐶(𝐷1))𝑟0 +𝐾0 (‖𝜑

′(𝑥)‖𝐶[0,𝑏] +
1

2
𝑟0)] ; 

𝑀15 =
1

2
𝑑1
−1𝑑4𝑑5‖𝑝

′(𝑥)‖𝐶[0,𝑏] [
3

2
𝑏𝐾2𝑟0 + 𝑇 (1 +

3

2
𝐶0𝑏)𝐾3𝑟1]. 

Тогда из (2.1.11), (2.1.12), (2.1.13), приходим к неравенствам 

|𝑤𝜀,𝑖
𝑗
− 𝑤𝑖

𝑗
| ≤ ‖𝜂𝜀,𝑖‖𝐶ℎ

+ 𝑇‖𝜇𝜀,𝑖
𝑗
‖
𝐶ℎ,𝜏

+𝑀1𝜏, 

‖𝜇𝜀,𝑘
𝑗
‖
𝐶ℎ,𝜏

≤ 𝑃0 (‖𝜂𝜀,𝑘
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑘

𝑗
‖
𝐶ℎ,𝜏
) + 𝑀2ℎ + 𝑀3𝜏, 

‖𝜂𝜀,𝑘
ℎ ‖

𝐶ℎ
≤ 𝑀0 (‖𝜂𝜀,𝑖

ℎ ‖
𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) +𝑀4ℎ

𝛼 + (𝑁2 +𝑀11)ℎ + 
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+𝑀12𝜏 + 𝑀13
ℎ

𝜀
+𝑀14

ℎ2

𝜀
.                                                                       

Суммируя последнее два неравенства получим 

‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏

≤ 𝑞0 (‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) + 𝜀𝑑1

−1(𝑑4𝑑5 + 𝑒
−1) × 

× ‖𝜑𝑖‖𝐶ℎ + (𝑀10 +𝑁4 +𝑀11)ℎ + 𝑀12𝜏 + (𝑀13 +𝑀15
ℎ

𝜀
)
ℎ

𝜀
+ 𝑀14

ℎ2

𝜀
. 

Тогда 

‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏

≤ (1 − 𝑞0)
−1[𝜀𝑑1

−1(𝑑4𝑑5 + 𝑒
−1)‖𝜑𝑖‖𝐶ℎ + 

+(𝑀10 + 𝑁4 +𝑀11)ℎ +𝑀12𝜏 + (𝑀13 +𝑀15
ℎ

𝜀
)
ℎ

𝜀
+ 𝑀14

ℎ2

𝜀
,        

‖𝑤𝜀,𝑖
𝑗
−𝑤𝑖

𝑗
‖ ≤ ‖𝜂𝜀,𝑖

ℎ ‖
𝐶ℎ
+ 𝑇‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏

+𝑀1𝜏 ≤ 𝑏0 (‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
+ ‖𝜇𝜀,𝑖

𝑗
‖
𝐶ℎ,𝜏
) + 

+𝑀1𝜏,      𝑏0 = 𝑚𝑎𝑥(1, 𝑇).                                                                                           

Отсюда следует оценка теоремы 2.1.1.
 Вычисление приближенного решения нелокальной краевой задачи  

(1.2.18)–(1.2.19) рассмотренной в замечании 1.2 из раздела 1.2, при из-

вестных функциях  

𝑓(𝑥, 𝑡) = 1 + 𝑡2 + 𝑥(𝑥 + 2)𝑒𝑡 , 𝜎(𝑡) = 𝑡
2,  𝑎0 = 1, 𝑞(𝑥) = (3 − 𝑒)𝑥2 +

+𝑒𝑥4 − 1,  𝐴(𝑥) = 1,   𝐶(𝑥) = 1 − 𝑥2 показывает, что погрешность 
 

|𝜑𝑖 −𝜑𝜀,𝑖| ≤ 0.32658,     |𝑤𝑖
𝑗
− 𝑤𝜀,𝑖

𝑗
| ≤ 0.32658  при шаге ℎ = 𝜏 = 0.1, 

|𝜑𝑖 − 𝜑𝜀,𝑖| ≤ 0.23155,      |𝑤𝑖
𝑗
− 𝑤𝜀,𝑖

𝑗
| ≤ 0.2165  при шаге ℎ = 𝜏 = 0.02, 

 |𝜑𝑖 − 𝜑𝜀,𝑖| ≤ 0.14968,   |𝑤𝑖
𝑗
−𝑤𝜀,𝑖

𝑗
| ≤ 0.1493  при шаге  ℎ = 𝜏 = 0.005. 

Значения 𝜑𝜀,𝑖 ,   𝑖 = 1. . 𝑛,    𝑤𝜀,𝑖 ,   𝑖 = 1. . 𝑛,   𝑗 = 1. . 𝑛0 вычислены по 

методу (2.1.7), который для задачи (1.2.18), (1.2.19) имеет вид 
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𝑤𝜀,𝑖
𝑗
= 𝜑𝜀,𝑖 + 𝜎𝑗 − ℎ∑𝑅𝑠(𝑥𝑖, 𝑡𝑗 , 𝑥𝑘 , 0)𝜑𝜀,𝑘 + 𝜏∑𝑅𝜏

𝑗

𝑝=1

𝑖

𝑘=1

(𝑥𝑖 , 𝑡𝑗, 0, 𝑡𝑝)𝜎𝑗 + 

+ℎ∑𝜏∑𝑅(𝑥𝑖 , 𝑡𝑗 , 𝑥𝑘 , 𝑡𝑝)𝑓𝑘
𝑝
,

𝑗

𝑝=1

𝑖

𝑘=1

 

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
[ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝜀,𝑙 −

𝑘−1

𝑙=1

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙 −

𝑘

𝑚=𝑙+1

ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝜀,𝑙 +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙 ×

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

× 𝜑𝜀,𝑙 + 𝜇𝑘 − 𝜇𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜑𝜀,𝑘 −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑙,𝑘𝜑𝜀,𝑘 +

𝑖

𝑙=𝑘+1

𝑖−1

𝑘=1

𝜇𝑖 + 𝜀𝜑ℎ,0] ,   𝑖 = 1. . 𝑛.                              (2.1.14) 

При этом значения погрешности 𝑤𝑖
𝑗
− 𝑤𝜀,𝑖

𝑗
 вычислено согласно формуле  

𝑤𝑖
𝑗
− 𝑤𝜀,𝑖

𝑗
= 𝜑𝑖 − 𝜑𝜀,𝑖 − ℎ∑𝑅𝜉(𝑥𝑖 , 𝑡𝑗, 𝑥𝑘 , 0)

𝑖

𝑘=1

[𝜑(𝑥𝑘) − 𝜑𝜀(𝑥𝑘)]. 

Ниже приведены таблицы значений точного решении, приближенного 

решения вычисленного согласно (2.1.14) и допущенных погрешностей 

при ℎ = 𝜏 = 0.02  

𝑥𝑖 𝜑𝑖 𝜑𝜀,𝑖 погрешность 

0.1 1.01000 1.22654 0.21654 

0.2 1.04000 1.21296 0.17296 

0.3 1.09000 1.20406 0.11406 

0.4 1.16000 1.21214 0.05214 

0.5 1.25000 1.24487 0.00513 

0.6 1.36000 1.30535 0.05465 

0.7 1.49000 1.39399 0.09601 

0.8 1.64000 1.50993 0.13007 

0.9 1.81000 1.65195 0.15805 

1 2.00000 1.81888 0.18112 

𝜑𝑖 – точное решение уравнения (1.2.25), 𝜑𝜀,𝑖 – приближенное решение.  
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Таблица отклонений приближенного решения 𝑤𝜀,𝑖
𝑗
,   𝑖 = 1. . 𝑛, 

 𝑗 = 1. . 𝑛0 задачи (1.2.18), (1.2.19) от точного решения 𝑤(𝑥, 𝑡) = 1 + 𝑡2 +

+𝑥2𝑒𝑡, при ℎ = 𝜏 = 0.02 имеет вид 

 

 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 
𝑥1 0.21650 0.21647 0.21644 0.21641 0.21639 0.21638 0.21636 0.21635 0.21634 0.21633 

𝑥2 0.17290 0.17284 0.17278 0.17273 0.17269 0.17266 0.17263 0.17261 0.17259 0.17257 

𝑥3 0.11397 0.11389 0.11381 0.11375 0.11370 0.11365 0.11361 0.11358 0.11356 0.11353 

𝑥4 0.05204 0.05195 0.05187 0.05179 0.05173 0.05168 0.05164 0.05160 0.05157 0.05155 

𝑥5 0.00524 0.00534 0.00542 0.00550 0.00556 0.00561 0.00565 0.00569 0.00572 0.00575 

𝑥6 0.05474 0.05484 0.05492 0.05499 0.05505 0.05510 0.05514 0.05517 0.05520 0.05522 

𝑥7 0.09609 0.09617 0.09624 0.09630 0.09635 0.09640 0.09643 0.09646 0.09649 0.09651 

𝑥8 0.13014 0.13020 0.13025 0.13030 0.13034 0.13037 0.13040 0.13042 0.13044 0.13046 

𝑥9 0.15809 0.15813 0.15816 0.15820 0.15822 0.15824 0.15826 0.15828 0.15829 0.15830 

𝑥10 0.18114 0.18115 0.18117 0.18118 0.18119 0.18119 0.18120 0.18121 0.18121 0.18121 

 

 

2.2. Численное решение интегральных уравнений  

Вольтерра третьего рода 

 

2.2.1. Рассмотрим интегральное уравнение Вольтерра третьего рода 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 = 𝑔(𝑥),                         (2.2.1)

𝑥

0

 

где известные функции 𝑝(𝑥), 𝐾(𝑥, 𝑠), 𝑔(𝑥) удовлетворяют условиям 

а)  𝑝(𝑥), 𝑔(𝑥) ∈ 𝐶1[0, 𝑏],  𝐾(𝑥, 𝑠) ∈ 𝐶1,1(𝐷),  𝐷 = {(𝑥, 𝜉)/0 ≤ 𝜉 ≤ 𝑥 ≤ 𝑏}, 

𝑝(0) = 𝑔(0) = 0, 0 ≤ 𝐾(𝑥, 𝑥), 0 ≤ 𝑥 ≤ 𝑏, 𝑝(𝑥) – неубывающая 

функция, 𝑝(𝑥) > 0,   ∀𝑥 ∈ (0, 𝑥]; 

б)  С0𝑝(𝑥) + 𝐾(𝑥, 𝑥) ≥ 𝑑1,   0 < 𝑑1,  𝐶0 = 𝑐𝑜𝑛𝑠𝑡. 

Преобразовав уравнение (2.2.1) как в разделе 1.4 приводим к виду  

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑(𝑠)

𝑥

0

𝑑𝑠 −   

𝑥

0
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    −𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑(𝑠)𝑑𝑠 + 𝜇(𝑥),         

𝑥

0

                                  (2.2.2) 

где 𝐺(𝑠) = 𝐶0𝑝(𝑠) + 𝐾(𝑠, 𝑠),   𝜇(𝑥) = 𝑔(𝑥) + 𝐶0∫𝑔(𝑠)𝑑𝑠.

𝑥

0

 

Рассмотрим уравнение с малым параметром 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑𝜀(𝑠)

𝑥

0

𝑑𝑠 −   

𝑥

0

 

    −𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑𝜀(𝑠)𝑑𝑠 + 𝜇(𝑥) + 𝜀𝜑ℎ(0),         

𝑥

0

                    (2.2.3) 

которое представим в виде  

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉)

𝑠

𝑜

− 

−𝐾(𝑠, 𝜉)]𝜑𝜀(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑠

𝜉

𝑑𝜈)

𝑠

0

𝜑𝜀(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) −

𝑥

0

 

−𝐾(𝑥, 𝜉)]𝜑𝜀(𝜉)𝑑𝜉 +𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑥

𝜉

𝑑𝜈)

𝑥

0

𝜑𝜀(𝜉)𝑑𝜉 + 𝜇(𝑠) − 𝜇(𝑥)] 𝑑𝑠 + 

+
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

)[∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑𝜀(𝑠)𝑑𝑠 −

𝑥

0

 

−𝐶0∫(∫𝐾(𝜈, 𝑠)

𝑥

𝑠

𝑑𝜈)

𝑥

0

𝜑𝜀(𝑠)𝑑𝑠 + 𝜇(𝑥) + 𝜀𝜑ℎ(0)].                              (2.2.4) 

На отрезке [0, 𝑏] введем равномерную сетку 𝜔ℎ = {𝑥𝑖 = 𝑖ℎ, 

 𝑖 = 0. . 𝑛, 𝑏 = 𝑛ℎ}, 𝑛 – натуральное число. Пространство сеточных 

функций 𝜑𝑖 = 𝜑(𝑥𝑖) обозначим через 𝐶ℎ, с нормой  

‖𝜑𝑖‖𝐶ℎ = max
0≤𝑖≤𝑛

𝜑𝑖 . 
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Используя квадратурную формулу правых прямоугольников для 

интегралов в (2.2.4), получим систему линейных алгебраических урав-

нений 

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]

𝑘−1

𝑙=1

× 

× 𝜑𝜀,𝑙 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙 −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]

𝑖−1

𝑙=1

𝜑𝜀,𝑙 + 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙+𝜇𝑘 − 𝜇𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) ×

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

 

× [ℎ∑[𝐾𝑘,𝑘 −𝐾𝑖,𝑘]

𝑖−1

𝑘=1

𝜑𝜀,𝑘 −𝐶0ℎ∑ℎ ∑ 𝐾𝑙,𝑘𝜑𝜀,𝑘 + 𝜇𝑖 + 𝜀𝜑ℎ,0

𝑖

𝑙=𝑘+1

𝑖−1

𝑘=1

], 

 𝑖 = 1. . 𝑛.                                                                                                            (2.2.5) 

где  𝐾𝑖,𝑘 = 𝐾(𝑥𝑖 , 𝑥𝑘),  𝜑𝜀,𝑖 = 𝜑𝜀(𝑥𝑙),  𝜇𝑖 = 𝜇(𝑥𝑖),  𝑝𝑖 = 𝑝(𝑥𝑖),   𝑥𝑖 = 𝑖ℎ,  

𝑘 = 1. . 𝑖,  𝑖 = 1. . 𝑛. 

Величину 𝜑0,ℎ выбираем в виде 𝜑0,ℎ =
𝜇1

𝑝1+ℎ𝐺1
, для которой из усло-

вия а-б следуют оценки:  

|𝜑0,ℎ − 𝜑(0)| ≤ 𝑁2ℎ,    |𝜑0,ℎ| ≤
𝑁1
𝑑1
,   0 < 𝑁1,   𝑁2 = 𝑐𝑜𝑛𝑠𝑡. 

В самом деле  

|𝜑0,ℎ| = |
𝜇(𝑥1)

𝑝(𝑥1) + ℎ𝐺(𝑥1)
| = |

𝜇(𝑥1) − 𝜇(𝑥0)

𝑝(𝑥1) − 𝑝(𝑥0) + ℎ𝐺(𝑥1)
| ≤ 

≤
ℎ|𝜇′(𝑥)|

ℎ[|𝑝′(𝑥)| + |𝐺(𝑥)|]
≤
𝑁1
𝑑1
,     𝑁1 = max

𝑥∈[0,𝑏]
|𝜇′(𝑥)| ;              

|𝜑0,ℎ −𝜑0| = |
𝜇(𝑥1)

𝑝(𝑥1) + ℎ𝐺(𝑥1)
− 𝜑(𝑥0)| ≤ |𝜑(𝑥1) − 𝜑(𝑥0)| + 

+|𝑅1| ≤ ℎ‖𝜑
′(𝑥)‖𝐶[0,𝑏] + |𝑅1|.                                                                       
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Так как 

|𝑅1| = |∫ 𝐺(𝑠)𝜑(𝑠)𝑑𝑠 − ℎ𝐺(𝑥1)𝜑(𝑥1)

𝑥1

𝑥0

| + |∫𝑔(𝑠)𝑑𝑠 − ℎ𝑔(𝑥1)

𝑥

0

| + 

+ |∫ [𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑(𝑠)𝑑𝑠

𝑥1

0

| + |𝐶0∫ (∫ 𝐾(𝜈, 𝑠)

𝑥1

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠

𝑥1

0

| ≤ 

≤ [‖𝜑(𝑥)‖𝐶[0,𝑏]‖𝐺
′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝜑

′(𝑥)‖𝐶[0,𝑏]]
ℎ2

2
+ 

+‖𝑔′(𝑥)‖𝐶[0,𝑏]
ℎ2

2
+ (𝐿𝐾 + 𝐶0𝐾1)‖𝜑(𝑥)‖𝐶[0,𝑏]

ℎ2

2
, то 

 |𝜑0,ℎ − 𝜑0| ≤ 𝑁2ℎ,  

 где 𝑁2 = ‖𝜑
′(𝑥)‖𝐶[0,𝑏] +

ℎ

2
[𝑁0 + ‖𝑔

′(𝑥)‖𝐶[0,𝑏] + (𝐿𝐾 + 𝐶0𝐾1) × 

× ‖𝜑(𝑥)‖𝐶[0,𝑏]], 

𝑁0 = ‖𝜑(𝑥)‖𝐶[0,𝑏]‖𝐺
′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝜑

′(𝑥)‖𝐶[0,𝑏]. 

Теорема 2.2.1. При выполнении условий а-б и 𝜀 = 𝑂(ℎ𝛼) для всех 

0 < 𝛼 ≤ 1/2, решение системы (2.2.5), при ℎ → 0, равномерно сходится 

к 𝜑𝑖 – точному решению уравнения (2.2.1), причем имеет место оценка 

‖𝜑𝜀,𝑖 − 𝜑𝑖‖𝐶ℎ
≤ 𝑀1ℎ

𝛼 +𝑀2ℎ
1−𝛼 +𝑀3ℎ

2−𝛼,   

0 < 𝑀𝑗 = 𝑐𝑜𝑛𝑠𝑡, 𝑗 = 1,2,3. 

Доказательство. Из (2.2.2), прибавляя в обе части 𝜀𝜑(𝑥) имеем 

(𝜀 + 𝑝(𝑥))𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑(𝑠)𝑑𝑠 −

𝑥

0

𝑥

0

 

−𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)

𝑥

0

𝜑(𝑠)𝑑𝑠 + 𝜇(𝑥) + 𝜀𝜑(𝑥).                              (2.2.6) 

Используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) уравнение (2.2.6) предста-

вим в следующем виде 
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𝜑(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥

𝑠

𝑑𝜉)

𝑥

0

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉) −

𝑠

0

 

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑠

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −

𝑠

0

∫[𝐾(𝜉, 𝜉) −

𝑥

0

 

−𝐾(𝑥, 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑥

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 + 𝜇(𝑠) − 𝜇(𝑥)

𝑥

0

+ 

+𝜀(𝜑(𝑠) − 𝜑(𝑥))] 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥

0

𝑑𝑠) [∫[𝐾(𝑠, 𝑠)

𝑥

0

− 

−𝐾(𝑥, 𝑠)]𝜑(𝑠)𝑑𝑠−𝐶0∫(∫𝐾(𝜈, 𝑠)

𝑥

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠 + 𝜇(𝑠) + 𝜀𝜑(𝑥)

𝑥

0

] . (2.2.7) 

Полагая 𝑥 = 𝑥𝑖 ,   𝑖 = 1. . 𝑛 в (2.2.7), применим формулу правых пря-

моугольников для интегралов в уравнении (2.2.7). Тогда получим си-

стему  

𝜑𝑖 =
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
[ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙 −

𝑘−1

𝑙=1

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

ℎ∑[𝐾𝑙,𝑙 −𝐾𝑖,𝑙]𝜑𝑙 + 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑖−1

𝑙=1

 

+𝜇𝑘 − 𝜇𝑖 + 𝜀(𝜑𝑘 − 𝜑𝑖)] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘 −

𝑖−1

𝑘=1

 

−𝐾𝑖,𝑘]𝜑𝑘 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑙,𝑘𝜑𝑘 + 𝜀𝜑𝑖 + 𝜇𝑖

𝑖

𝑙=𝑘+1

𝑖−1

𝑘=1

] + 𝑅𝑖,   𝑖 = 1. . 𝑛,          (2.2.8) 

где  𝑅𝑖 – сумма всех остаточных членов интегралов. 

Введем вектор погрешности 𝜂𝜀,𝑖
ℎ = 𝜑𝜀(𝑥𝑖) − 𝜑(𝑥𝑖) = 𝜑𝜀,𝑖 −𝜑𝑖 , 

 𝑖 = 1. . 𝑛. Действие оператора 𝐻𝜀
ℎ на сеточную функцию 𝜑0, 𝜑1, … , 𝜑𝑛 

определяется по формуле 
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𝐻𝜀
ℎ[𝜑𝑖] =

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
[𝜑𝑖 − 𝜑𝑘] −

𝑖

𝑘=1

 

−
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) [𝜑𝑖 − 𝜑0], 𝑖 = 1. . 𝑛.                   

Тогда из (2.2.5) и (2.2.8) получим 

𝜂𝜀,𝑖
ℎ = −

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖−1

𝑘=1

× 

× [ℎ∑[𝐾𝑙,𝑙 −𝐾𝑘,𝑙]𝜂𝜀,𝑖
ℎ −

𝑘−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑖
ℎ −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

−ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜂𝜀,𝑖
ℎ +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑖
ℎ

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

] + 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘 −𝐾𝑖,𝑘]𝜂𝜀,𝑘
ℎ −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑙,𝑘𝜂𝜀,𝑘
ℎ

𝑖

𝑙=𝑘+1

𝑖−1

𝑘=1

+ 𝜀𝐻𝜀
ℎ[𝜑𝑖]] +

𝜀

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑ℎ,0 − 𝜑0) + 𝑅𝑖 ,   𝑖 = 1. . 𝑛.                             (2.2.9) 

Отсюда проведя оценки получим  

|𝜂𝜀,𝑖
ℎ | = |−

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖−1

𝑘=1

× 

× [ℎ∑[𝐾𝑙,𝑙 −𝐾𝑘,𝑙]

𝑘−1

𝑙=1

𝜂𝜀,𝑖
ℎ − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑖

ℎ −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

−ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜂𝜀,𝑖
ℎ +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑖
ℎ

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

| + 
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+ |
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜂𝜀,𝑘
ℎ −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙
ℎ

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

+ 𝜀(𝜑ℎ,0 − 𝜑0)]| + |𝜀𝐻𝜀
ℎ(𝜑𝑖)| + 

+|𝑅𝑖| ≤ 𝑇12ℎ∑|𝜂𝜀,𝑙
ℎ |

𝑖−1

𝑙=1

+𝑁2ℎ + 𝜀|𝐻𝜀
ℎ(𝜑𝑖)| + |𝑅𝑖|,   𝑖 = 1. . 𝑛, 

где 𝑇12 = (𝐿𝐾 + 𝐶0𝐾1) 𝑑1
−1(𝑑4𝑑5 + 𝑒

−1),   𝑑4 = max
𝑥∈[0,𝑏]

|𝐺(𝑥)|, 

𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

|,  

𝑁2 = ‖𝜑
′(𝑥)‖𝐶[0,𝑏] +

ℎ

2
[𝑁0 + ‖𝑔

′(𝑥)‖𝐶[0,𝑏] + (𝐿𝐾 + 𝐶0𝐾1)‖𝜑(𝑥)‖𝐶[0,𝑏]]. 

Применяя разностный аналог леммы Гронуолла-Беллмана [5, c.21] и 

учитывая оценку лемма 2.1.2, имеем 

|𝜂𝜀,𝑖
ℎ | ≤ (𝑁2ℎ + 𝜀|𝐻𝜀

ℎ[𝜑𝑖]| + |𝑅𝑖|)𝑒𝑥𝑝(𝑇12𝑏) ≤ 

≤ (𝑁2ℎ + 𝜀𝑁9 + |𝑅𝑖|)𝑒𝑥𝑝(𝑇12𝑏),                                   (2.2.10) 

где 𝑁9 = 𝑑1
−1(𝑑4𝑑5 + 𝑒

−1)‖𝜑′(𝑥)‖𝐶[0,𝑏]. 

Остаточный член 𝑅𝑖, определяется в виде 

𝑅𝑖 = −
1

𝜀 + 𝑝𝑖
{∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉) −

𝑠

0

 

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑠

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −∫ [𝐾(𝜉, 𝜉) −

𝑥𝑘

0

𝑠

0

 

−𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠 + 
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+∑ ∫ [𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

− 𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)] × 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈) ×

𝑥𝑘

0

 

× 𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈) ×

𝑥𝑖

0

𝑥𝑖

0

 

× 𝜑(𝜉)𝑑𝜉] 𝑑𝑠 +∑ ∫ [𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)]
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠 +∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

× [
(𝐺(𝑠) − 𝐺𝑘)

𝜀 + 𝑝(𝑠)
+

𝐺𝑘
𝜀 + 𝑝(𝑠)

−
𝐺𝑘

𝜀 + 𝑝𝑘
] [∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠 +∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×
𝐺𝑘

𝜀 + 𝑝𝑘
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0
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−ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙 + 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑘

𝑚=𝑙+1

+∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

𝑘−1

𝑙=1

𝑘−1

𝑙=1

 

× 𝜑(𝜉)𝑑𝜉−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −

𝑥𝑖

0

ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙 +

𝑖−1

𝑙=1

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

] 𝑑𝑠} +
𝜀

𝜀 + 𝑝𝑖
∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑖

0

× 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
(𝜑𝑖 − 𝜑(𝑠))𝑑𝑠 −

𝜀

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× (𝜑𝑖 − 𝜑𝑘) −
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) (𝜑𝑖 − 𝜑0) +
𝜀

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑𝑖 −𝜑0) +
1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 

−𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] [∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 +

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝑠)

𝑥𝑖

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠

𝑥𝑖

0

] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× [∫[𝐾(𝑠, 𝑠) −

𝑥𝑖

0

𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 − 𝐶0∫ (∫ 𝐾(𝜈, 𝑠)

𝑥𝑖

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠 −

𝑥𝑖

0

 

−ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜑𝑘

𝑖

𝑘=1

+ 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘 +

𝑖

𝑚=𝑘+1

𝐶0∫ 𝑔(𝑠)

𝑥𝑖

0

𝑖

𝑘=1

𝑑𝑠 − 

−𝐶0ℎ∑𝑔𝑖

𝑖

𝑘=1

]. 

Разбивая остаточный член на суммы выражений, имеем оценки 

|𝑅𝑖| ≤ |𝑅1,𝑖| + |𝑅2,𝑖| + |𝑅3,𝑖| + |𝑅4,𝑖| + |𝑅5,𝑖| + |𝑅6,𝑖| + |𝑅7,𝑖| + 
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+|𝑅8,𝑖| + |𝑅9,𝑖| + |𝑅10,𝑖| + |𝑅11,𝑖|,                                                          

|𝑅1,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉) −

𝑠

0

 

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)

𝑠

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −∫ [𝐾(𝜉, 𝜉) −

𝑥𝑘

0

𝑠

0

 

−𝐾(𝑥𝑘 , 𝜉)] 𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤
1

𝜀 + 𝑝𝑖
× 

×∑| ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

[∫[𝐾(𝑥𝑘 , 𝜉) − 𝐾(𝑠, 𝜉)] ×

𝑠

0

 

× 𝜑(𝜉)𝑑𝜉 − ∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝑠

𝑑𝜈) ×

𝑥𝑘

0

𝑥𝑘

𝑠

 

× 𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫𝐾(𝜈, 𝜉)

𝑠

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤
1

𝜀 + 𝑝𝑖
× 

×∑ ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[𝐿𝐾(𝑥𝑘 − 𝑠)∫|𝜑(𝜉)|𝑑𝜉 +

𝑠

0

 

+𝐿𝐾∫ |𝜑(𝜉)|(𝑥𝑘 − 𝜉)𝑑𝜉 + 𝐶0𝐾1(𝑥𝑘 − 𝑠)∫|𝜑(𝜉)|𝑑𝜉 + 𝐶0𝐾1 ×

𝑠

0

𝑥𝑘

𝑠

 

×∫ |𝜑(𝜉)|(𝑥𝑘 − 𝜉)𝑑𝜉

𝑥𝑘

𝑠

] 𝑑𝑠 ≤
ℎ

𝜀 + 𝑝𝑖
2(𝐿𝐾 + 𝐶0𝐾1)𝑏𝑟0 × 

× [∑ ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠] ≤

ℎ

𝜀
2(𝐿𝐾 + 𝐶0𝐾1)𝑏𝑟0 × 

×∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

)𝑑𝑠 (−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

) ≤

𝑥𝑖

0

2(𝐿𝐾 + 𝐶0𝐾1)𝑏𝑟0
ℎ

𝜀
, 
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где 0 < 𝐿𝐾 - коэффициент Липшица функции 𝐾(𝑥, 𝑠) по переменной 𝑥  

𝐾1 = max
𝐷1
|𝐾(𝑥, 𝑠)|,    𝐷1 = {(𝑥, 𝑠)/0 ≤ 𝑠 ≤ 𝑥 ≤ 𝑏},   𝑟0 = max

𝑥∈[0,𝑏]
|𝜑(𝑥)|; 

|𝑅2,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ [𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]

𝑥𝑘

0

𝜑(𝜉)𝑑𝜉 − 

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 +

𝑥𝑖

0

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠| ≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)𝑑1
−1𝑑4 × 

×∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

𝑖

𝑘=1

ℎ

𝜀
|𝑒𝑥𝑝(∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉 −

𝑥𝑖

𝑥𝑘

 

−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

) − 1| ≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)𝑑1
−1𝑑4

ℎ

𝜀
× 

× |1 − 𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑘

𝑠

)|∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1

 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)𝑑1
−1𝑑4

ℎ

𝜀
,  𝑑4 = max

𝑥∈[0,𝑏]
|𝐺(𝑥)|, 

𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

| ; 

|𝑅3,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ [𝑒𝑥𝑝(− ∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)|
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ [𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑘 , 𝜉)]

𝑥𝑘

0

× 
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× 𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

𝑥𝑘

0

 

× 𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠| ≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)𝑑4
ℎ

𝜀
× 

×∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖 |
|
1 − 𝑒𝑥𝑝(− ∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − 

−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)| ≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)
𝑑4𝑑6
𝑑1

ℎ

𝜀
∑𝑒𝑥𝑝 (−

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1

 

×
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

≤ 2𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)𝑑1
−1𝑑4𝑑5𝑑6

ℎ

𝜀
, 

𝑑6 = 𝑠𝑢𝑝 |1 − 𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)| ; 

|𝑅4,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝐺(𝑠) − 𝐺𝑘)

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [∫ [𝐾(𝜉, 𝜉)

𝑥𝑘

0

− 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉 −

𝑥𝑘

0

 

−∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠| ≤ 

≤ 𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)‖𝐺
′(𝑥)‖𝐶[0,𝑏]

ℎ2

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
≤

𝑖

𝑘=1

 

≤ 𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)‖𝐺
′(𝑥)‖𝐶[0,𝑏]𝑑1

−1
ℎ2

𝜀
∑𝑒𝑥𝑝 (−

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1
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× (
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)‖𝐺
′(𝑥)‖𝐶[0,𝑏]𝑑1

−1𝑑5
ℎ2

𝜀
; 

|𝑅5,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)𝐺𝑘 (
1

𝜀 + 𝑝(𝑠)
−

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−
1

𝜀 + 𝑝𝑘
) [∫ [𝐾(𝜉, 𝜉)

𝑥𝑘

0

− 𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈) ×

𝑥𝑘

0

 

× 𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉)

𝑥𝑖

0

− 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈) ×

𝑥𝑖

0

 

× 𝜑(𝜉)𝑑𝜉]  𝑑𝑠| ≤ 2𝑏𝑟0𝑑4(𝐿𝐾 + 𝐶0𝐾1)∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

× 

×
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
∫
‖𝑝′(𝑥)‖𝐶[0,𝑏](𝑥𝑘 − 𝑠)

(𝜀 + 𝑝𝑘)(𝜀 + 𝑝(𝑠))

𝑥𝑘

𝑥𝑘−1

𝑑𝑠 ≤ 𝑏2𝑟0𝑑1
−1𝑑4‖𝑝

′(𝑥)‖𝐶[0,𝑏] × 

× (𝐿𝐾 + 𝐶0𝐾1)
ℎ2

𝜀2
∑𝑒𝑥𝑝(−

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

(
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
) ≤ 𝑏2𝑟0𝑑1

−1 × 

× (𝐿𝐾 + 𝐶0𝐾1)𝑑4𝑑5‖𝑝
′(𝑥)‖𝐶[0,𝑏]

ℎ2

𝜀2
; 

|𝑅6,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
[∫ [𝐾(𝜉, 𝜉)

𝑥𝑘

0

−

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 − ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝑙 −

𝑘

𝑙=1

∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)] ×

𝑥𝑖

0

 

× 𝜑(𝜉)𝑑𝜉 + ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝑙

𝑖

𝑙=1

] 𝑑𝑠| ≤ ∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×
𝐺𝑘

𝜀 + 𝑝𝑖

1

𝜀 + 𝑝𝑘
[∫ [𝐾(𝑥𝑖 , 𝜉)

𝑥𝑘

0

−𝐾(𝑥𝑘 , 𝜉)]𝜑(𝜉)𝑑𝜉 + ℎ∑[𝐾𝑘,𝑙 −𝐾𝑖,𝑙]𝜑𝑙 −

𝑖

𝑙=1
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− ∫[𝐾(𝜉, 𝜉) − 𝐾(𝑥𝑖 , 𝜉)]

𝑥𝑖

𝑥𝑘

𝜑(𝜉)𝑑𝜉 + ℎ ∑ [𝐾𝑙,𝑙 −𝐾𝑖,𝑙]𝜑𝑙

𝑖

𝑙=𝑘+1

] 𝑑𝑠| ≤ 

≤ 𝑑4∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖

1

𝜀 + 𝑝𝑘

𝑥𝑘

𝑥𝑘−1

𝑖−1

𝑘=1

[∑ ∫[𝐾(𝑥𝑖 , 𝜉) −

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

 

−𝐾(𝑥𝑘 , 𝜉) + 𝐾(𝑥𝑘 , 𝑥𝑖) − 𝐾(𝑥𝑖 , 𝑥𝑙)]𝜑(𝑥𝑙)𝑑𝜉 − ∑ ∫[𝐾(𝜉, 𝜉) −

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

 

−𝐾(𝑥𝑖 , 𝜉)][𝜑(𝜉) − 𝜑(𝑥𝑙)]𝑑𝜉 + ∑ ∫[𝐾(𝑥𝑙 , 𝑥𝑙) − 𝐾(𝑥𝑖 , 𝑥𝑙)

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

− 

−𝐾(𝜉, 𝜉) + 𝐾(𝑥𝑖 , 𝜉)]𝜑(𝑥𝑙)𝑑𝜉] 𝑑𝑠 ≤ 𝑑4
ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

× 

×
1

𝜀 + 𝑝𝑖
[‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏]∑ ∫(𝑥𝑖 − 𝑥𝑘)(𝑥𝑙 − 𝜉)

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

𝑑𝜉 + 

+2‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]∑ ∫(𝑥𝑙 − 𝜉)𝑑𝜉 + ‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷) ×

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏] ∑ ∫(𝑥𝑖 − 𝜉)(𝑥𝑙 − 𝜉)𝑑𝜉 + (2‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷) +

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

 

+‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷))‖𝜑(𝑥)‖𝐶[0,𝑏] ∑ ∫(𝑥𝑙 − 𝜉)𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=𝑘+1

] ≤ 𝑑4
ℎ

𝜀
× 

×∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
ℎ

𝜀 + 𝑝𝑖
[
𝑏2

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏]

𝑖

𝑘=1

+ 

+𝑏‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] +

𝑏2

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] + 

+𝑏‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] +

𝑏

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]] ≤ 
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≤
𝑑4ℎ

𝑑1𝜀
[𝑏2‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] + 2𝑏‖𝐾𝑠

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 

+
𝑏

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]]∑𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) (
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤

𝑖

𝑘=1

 

≤ 𝑑1
−1𝑑4𝑑5[𝑏

2‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 𝑏[2‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷) + 

+
1

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷))]‖𝜑(𝑥)‖𝐶[0,𝑏]]
ℎ

𝜀
; 

|𝑅7,𝑖| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

× [𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑖

𝜉

𝑑𝜈)

𝑥𝑖

0

𝜑(𝜉)𝑑𝜉 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑖

𝑚=𝑙+1

+

𝑖

𝑙=1

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙

𝑘

𝑚=𝑙+1

−𝐶0∫ (∫ 𝐾(𝜈, 𝜉)

𝑥𝑘

𝜉

𝑑𝜈)𝜑(𝜉)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤

𝑘

𝑙=1

 

≤ 𝑑4∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

1

𝜀 + 𝑝𝑖

ℎ

𝜀 + 𝑝𝑘
× 

× [𝐶0 |∑ ∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

) [𝜑(𝜉) − 𝜑𝑙]

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝑑𝜉| + 

+ |𝐶0∑ ∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑖

𝜉

− ℎ ∑ 𝐾𝑚,𝑙

𝑖

𝑚=𝑙+1

)

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝜑𝑙𝑑𝜉| + 

+ |𝐶0∑ ∫ (ℎ ∑ 𝐾𝑚,𝑙

𝑘

𝑚=𝑙+1

−∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

)𝜑𝑙𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

| − 

− |𝐶0∑ ∫ (∫ 𝐾(𝜈, 𝜉)𝑑𝜈

𝑥𝑘

𝜉

) [𝜑(𝜉) − 𝜑𝑙]

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

𝑑𝜉|] ≤ 
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≤ 𝑑4
ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖

𝑖

𝑘=1

[𝐶0∑ ∫ (∫|𝐾(𝜈, 𝜉)|𝑑𝜈

𝑥𝑖

𝜉

) ×

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

× |𝜑(𝜉) − 𝜑(𝑥𝑙)|𝑑𝜉 + 𝐶0∑ ∫ (∫|𝐾(𝜈, 𝜉)|𝑑𝜈

𝑥𝑙

𝜉

) |𝜑(𝑥𝑙)|𝑑𝜉 +

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

+𝐶0∑ ∫ ∑ ∫ |𝐾(𝜈, 𝜉) − 𝐾(𝑥𝑚, 𝑥𝑙)||𝜑(𝑥𝑙)|

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑙+1

𝑑𝜈𝑑𝜉 − 𝐶0 ×

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

×∑ ∫ (∫|𝐾(𝜈, 𝜉)|𝑑𝜈

𝑥𝑙

𝜉

) |𝜑(𝑥𝑙)|𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

+𝐶0∑ ∫ ∑ ∫ |𝐾(𝑥𝑚, 𝑥𝑙) −

𝑥𝑚

𝑥𝑚−1

𝑘

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

 

−𝐾(𝜈, 𝜉)||𝜑(𝑥𝑙)|𝑑𝜈𝑑𝜉 − 𝐶0∑ ∫ (∫ |𝐾(𝜈, 𝜉)|𝑑𝜈

𝑥𝑘

𝜉

) |𝜑(𝜉) −

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

 

−𝜑(𝑥𝑙)|𝑑𝜉] ≤ 𝑑4
ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖

𝑖

𝑘=1

[𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏]∑ ∫(𝑥𝑖 − 𝜉)(𝑥𝑙 − 𝜉)𝑑𝜉 + 𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷) ×

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

 

× ‖𝜑(𝑥)‖𝐶[0,𝑏]∑ ∫(𝑥𝑙 − 𝜉)𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

+𝐶0‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ ∑ ∫ (𝑥𝑚 − 𝜈)

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

𝑑𝜈𝑑𝜉 + 𝐶0‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑(𝑥)‖𝐶[0,𝑏]∑ ∫ ∑ ∫ (𝑥𝑙 − 𝜉)𝑑𝜈𝑑𝜉

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑖

𝑙=1

+𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑(𝑥)‖𝐶[0,𝑏]∑ ∫(𝑥𝑙 − 𝜉)𝑑𝜉+𝐶0‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

× 
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×∑ ∫ ∑ ∫ (𝑥𝑚 − 𝜈)

𝑥𝑚

𝑥𝑚−1

𝑘

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

𝑑𝜈𝑑𝜉 + 𝐶0‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ ∑ ∫ (𝑥𝑙 − 𝜉)

𝑥𝑚

𝑥𝑚−1

𝑘

𝑚=𝑙+1

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

𝑑𝜈𝑑𝜉+𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫(𝑥𝑘 − 𝜉)(𝑥𝑙 − 𝜉)𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑘

𝑙=1

] ≤ 𝑑4
ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
ℎ

𝜀 + 𝑝𝑖

𝑖

𝑘=1

× 

× [𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏]

𝑏2

2
+ 𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]

𝑏

2
+ 

+𝐶0‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]

𝑏2

2
+𝐶0‖𝐾𝑠

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]
𝑏2

2
+ 

+𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]
𝑏

2
+𝐶0‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]
𝑏2

2
+ 

+𝐶0‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]

𝑏2

2
+ 𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏]
𝑏2

2
] ≤ 

≤ 𝑑1
−1𝑑4

ℎ

𝜀
[𝐶0𝑏

2‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] + 𝐶0𝑏‖𝐾(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑(𝑥)‖𝐶[0,𝑏] + 𝐶0𝑏
2(‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷) + ‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷))‖𝜑(𝑥)‖𝐶[0,𝑏]] × 

×∑𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤

𝑖

𝑘=1

𝑑4𝑑5
𝑑1

[𝐶0𝑏
2‖𝐾(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏] + 𝐶0𝑏‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 𝐶0𝑏
2(‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷) + 

+‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷))‖𝜑(𝑥)‖𝐶[0,𝑏]]

ℎ

𝜀
; 

Согласно лемме 2.1.3

 

|𝑅8,𝑖| = |−
𝜀

𝜀 + 𝑝𝑖
∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

(𝜑(𝑥𝑖) − 𝜑(𝑠))𝑑𝑠 + 

+
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) (𝜑𝑖 − 𝜑0) −
𝜀

𝜀 + 𝑝𝑖
× 
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× ℎ∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

(𝜑𝑖 − 𝜑𝑘) +
𝜀

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑𝑖 −𝜑0)| ≤ |𝜀(𝐻𝜀𝜑)(𝑥𝑖) − 𝜀𝐻𝜀
ℎ[𝜑𝑖]| ≤ 

≤ 𝑁4ℎ + 𝑁5
ℎ

𝜀
,   0 < 𝑁4, 𝑁5 = 𝑐𝑜𝑛𝑠𝑡; 

|𝑅9,𝑖| = |
1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] × 

× [∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 + 𝐶0∫ (∫ 𝐾(𝜈, 𝑠)

𝑥𝑖

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠

𝑥𝑖

0

𝑥𝑖

0

] | ≤ 

≤
𝑏

2
𝑟0(𝐿𝐾 + 𝐶0𝐾1)

𝑥𝑖
𝜀 + 𝑝𝑖

𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× [1 − 𝑒𝑥𝑝(ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

−∫
𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠)] ≤
𝑏

2
𝑟0𝑑1

−1(𝐿𝐾 + 𝐶0𝐾1) × 

× (
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)
1

2
[𝑏‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏] × 

×∑
ℎ

𝜀 + 𝑝𝑘
]
ℎ

𝜀

𝑖

𝑘=1

≤ 𝑑1
−1
𝑏

4
(𝐿𝐾 + 𝐶0𝐾1)𝑟0𝑒

−1‖𝐺′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
+ 𝑑1

−1𝑟0
𝑏

4

ℎ

𝜀
× 

× (𝐿𝐾 + 𝐶0𝐾1)‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝
′(𝑥)‖𝐶[0,𝑏]ℎ∑

1

𝜀 + 𝑝𝑘

𝑖

𝑘=1

(
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) × 

× 𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑑1
−1
𝑏

4
(𝐿𝐾 + 𝐶0𝐾1)𝑟0𝑒

−1‖𝐺′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
+ 

+𝑑1
−2
𝑏

4
(𝐿𝐾 + 𝐶0𝐾1)𝑟0‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
(
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)
2

× 

× 𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑑1
−1
𝑏

4
𝑟0𝑒

−1[‖𝐺′(𝑥)‖𝐶[0,𝑏] + 
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+2𝑒−1𝑑1
−1‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏]](𝐿𝐾 + 𝐶0𝐾1)
ℎ

𝜀
; 

|𝑅10,𝑖| = |
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥𝑖 , 𝑠)]𝜑(𝑠)𝑑𝑠 −

𝑥𝑖

0

 

−𝐶0∫ (∫ 𝐾(𝜈, 𝑠)

𝑥𝑖

𝑠

𝑑𝜈)𝜑(𝑠)𝑑𝑠 − ℎ∑[𝐾𝑘,𝑘 − 𝐾𝑖,𝑘]𝜑𝑘 +

𝑖

𝑘=1

𝑥𝑖

0

 

+𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘

𝑖

𝑚=𝑘+1

𝑖

𝑘=1

] | ≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× [∑ ∫ [𝐾(𝑠, 𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

−𝐾(𝑥𝑖 , 𝑠)][𝜑(𝑠) − 𝜑𝑘]𝑑𝑠 +∑ ∫ [𝐾(𝑠, 𝑠) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝐾(𝑥𝑖 , 𝑠) − 𝐾𝑘,𝑘 + 𝐾𝑖,𝑘]𝜑𝑘𝑑𝑠 − 𝐶0ℎ∑ ∫ (∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [𝜑(𝑠) − 𝜑𝑘]𝑑𝑠 + 𝐶0∑ ∫ [ℎ ∑ 𝐾𝑚,𝑘 −∫ 𝐾(𝜈, 𝑠)𝑑𝜈

𝑥𝑖

𝑠

] 𝜑𝑘𝑑𝑠] ≤

𝑖

𝑚=𝑘+1

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) [‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ (𝑥𝑖 − 𝑠)(𝑥𝑙 − 𝑠)𝑑𝑠 + 2‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

‖𝜑(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 + 𝐶0𝑏‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

‖𝜑′(𝑥)‖𝐶[0,𝑏] × 

×∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 +

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐶0𝑏‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] × 
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×∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 +

𝑥𝑘

𝑥𝑘−1

𝐶0‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] ×

𝑖

𝑘=1

 

×∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

] ≤ 𝑑1
−1 (

𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) × 

× [
𝑏

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏]ℎ + ‖𝐾𝑠

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]ℎ + 

+𝐶0
𝑏

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏]ℎ + 𝐶0
𝑏

2
‖𝐾𝑠

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]ℎ + 

+𝐶0
1

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]ℎ] ≤ 𝑑1

−1𝑒−1 [
𝑏

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷) × 

× ‖𝜑′(𝑥)‖𝐶[0,𝑏] + (1 + 𝐶0
𝑏

2
) ‖𝐾𝑠

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 

+𝐶0
𝑏

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 𝐶0
1

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏]]ℎ; 

|𝑅11,𝑖| = |
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[𝐶0∫ 𝑔(𝑠)𝑑𝑠 − 𝐶0ℎ∑𝑔𝑘

𝑖

𝑘=1

𝑥𝑖

0

]|  ≤ 

≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)𝐶0‖𝑔
′(𝑥)‖𝐶[0,𝑏]∑ ∫ (𝑥𝑘 − 𝑠)𝑑𝑠 ≤

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

≤ 𝑑1
−1𝐶0‖𝑔

′(𝑥)‖𝐶[0,𝑏]
ℎ

2
|(
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)| ≤ 

≤ 𝑑1
−1𝑒−1𝐶0

1

2
‖𝑔′(𝑥)‖𝐶[0,𝑏]ℎ. 

На основе приведенных оценок, имеем 

|𝑅𝑖| ≤ 𝑀̃1ℎ + 𝑀̃2

ℎ

𝜀
+ 𝑀̃3

ℎ2

𝜀
, 

где 𝑀̃1 = 𝜀𝑁4 + 𝑑1
−1𝑒−1 [

𝑏

2
‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑
′(𝑥)‖𝐶[0,𝑏] + (1 + 𝐶0

𝑏

2
) × 

× ‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 𝐶0

𝑏

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 
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+𝐶0
1

2
‖𝐾(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏] + 𝐶0

1

2
‖𝑔′(𝑥)‖𝐶[0,𝑏]], 

𝑀̃2 = 𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1)[2 + 2𝑑1
−1𝑑4𝑑5 + 2𝑑1

−1𝑑4𝑑5𝑑6 +
𝑑5
𝑑1
‖𝐺′(𝑥)‖𝐶[0,𝑏] + 

+
1

4
𝑑1
−1𝑒−1(‖𝐺′(𝑥)‖𝐶[0,𝑏] +2𝑑1

−1𝑒−1‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝
′(𝑥)‖𝐶[0,𝑏])] +

𝑑4𝑑5
𝑑1

× 

× [𝑏2‖𝐾𝑥
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑

′(𝑥)‖𝐶[0,𝑏] + ‖𝜑(𝑥)‖𝐶[0,𝑏] + 𝐶0𝑏
2(‖𝐾𝑥

′(𝑥, 𝑠)‖𝐶(𝐷) + 

+‖𝐾𝑠
′(𝑥, 𝑠)‖𝐶(𝐷)‖𝜑(𝑥)‖𝐶[0,𝑏])] + 𝑑1

−1𝑑4𝑑5𝑏
2𝑟0(𝐿𝐾 + 𝐶0𝐾1)‖𝑝

′(𝑥)‖𝐶[0,𝑏], 

𝑀̃3 = 𝑑1
−1𝑑4𝑑5𝑏𝑟0(𝐿𝐾 + 𝐶0𝐾1). 

Тогда, из (2.2.10) по сеточной норме получим 

‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
≤ ((𝑀̃1 +𝑁2)ℎ + 𝑁9𝜀 + 𝑀̃2

ℎ

𝜀
+ 𝑀̃3

ℎ2

𝜀
) 𝑒𝑥𝑝(𝑇12𝑏).

 

Следовательно, учитывая связь 𝜀 = 𝑂(ℎ𝛼), 0 < 𝛼 ≤ 1/2 и подста-

новку приходим к утверждению теоремы 2.2.1. 

Замечание 2.2.1. Погрешность, допускаемая в процессе вычисле-

ния 𝜑𝜀,𝑖 по правилу (2.2.1) обозначим через 𝛿𝑖. Тогда 𝜑𝜀,𝑖 будет удовле-

творять систему уравнений  

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

× 

× [ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑘,𝑙]𝜑𝜀,𝑙 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙

𝑘

𝑚=𝑙+1

𝜑𝜀,𝑙

𝑘

𝑙=1

−

𝑘

𝑙=1

 

−ℎ∑[𝐾𝑙,𝑙 − 𝐾𝑖,𝑙]𝜑𝜀,𝑙 +

𝑖

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙

𝑖

𝑚=𝑙+1

𝜑𝜀,𝑙

𝑖

𝑙=1

+ 

+𝜇𝑘 − 𝜇𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑[𝐾𝑘,𝑘 −

𝑖

𝑘=1

 

−𝐾𝑖,𝑘 ]𝜑𝜀,𝑘 − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘

𝑖

𝑚=𝑘+1

𝜑𝜀,𝑘

𝑖

𝑘=1

+ 𝜇𝑖 + 𝜀𝜑ℎ,0] + 
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+𝑀4𝛿𝑖,   𝑖 = 1. . 𝑛,   0 < 𝑀4 = 𝑐𝑜𝑛𝑠𝑡. 

Если 𝛿𝑖 – погрешность вычислительного правила стремится к 

нулю равномерно относительно 𝑖 при ℎ → 0 и выполняются условия а-б, 

то при 𝜀 = 𝑂(ℎ𝛼), 0 < 𝛼 ≤ 1/2 и ℎ → 0 имеет место оценка 

‖𝜑𝜀,𝑖 − 𝜑𝑖‖𝐶ℎ
≤ 𝑀1ℎ

𝛼 +𝑀2ℎ
1−𝛼 +𝑀3ℎ

2−𝛼 +𝑀5𝛿𝑖,  

0 < 𝑀5 = 𝑐𝑜𝑛𝑠𝑡. 

Пример 2.1. Пусть 𝐾(𝑥, 𝑡) = 1 − 𝑡𝑥,   𝑔(𝑥) = 𝑥4(0,8𝑥2 + 0,25),  

𝑝(𝑥) = 𝑥3. 

На рис.3 приводится значение точного решения 𝜑(𝑥) = 𝑥3 и при-

ближенного решения, полученные численным методом (2.2.5). Расчеты 

показывают, что при шаге ℎ = 0,01 погрешность не превосходит  

𝑅 = 0,126, при ℎ = 0,001, 𝑅 = 0,056, при ℎ = 0,0005,𝑅 = 0,047.  

 

 
Рис.3.  – точное и приближенные решения: – при ℎ = 0,01, ▲– ℎ = 0,001. 

 

 

2.2.2. Рассмотрим нелинейное интегральное уравнение Вольтерра тре-

тьего рода 

𝑝(𝑥)𝜑(𝑥) + ∫𝐾(𝑥, 𝑠)𝜑(𝑠)𝑑𝑠 = ∫𝑁(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 + 𝑔(𝑥).    (2.2.11)

𝑥

0

𝑥

0

 

Пусть для известных непрерывных функций 𝑝(𝑥),  𝐾(𝑥, 𝑠),  𝑔(𝑥) 

выполняются  условия а, в пункта 2.2.1, а функция 𝑁(𝑥, 𝑠, 𝜑) такая что  

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10
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а)  𝑁(𝑥, 𝑠, 𝜑) ∈ 𝐶1,0,0(𝐷 × 𝑅1),   𝑁(𝑥, 𝑥, 𝜑) = 0, 𝑁𝑥(𝑥, 𝑠, 𝜑) = 0,       

|𝑁(𝑥, 𝑠, 𝜑) −𝑁(𝑥, 𝑠, 𝜑0) − 𝑁(𝜈, 𝑠, 𝜑) + 𝑁(𝜈, 𝑠, 𝜑0)| ≤ 𝐿𝑁(𝑥 − 𝜈) × 

× |𝜑 − 𝜑0|,  0 ≤ 𝑠 ≤ 𝜈 ≤ 𝑥 ≤ 𝑏,  0 < 𝐿𝑁 = 𝑐𝑜𝑛𝑠𝑡,   𝑥 ≥ 𝜈. 

Уравнение (2.2.1) преобразуем к эквивалентному уравнению 

𝑝(𝑥)𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]

𝑥

0

𝑥

0

𝜑(𝑠)𝑑𝑠 − 

−𝐶0∫(∫𝐾(𝜏, 𝑠)𝑑𝜏

𝑥

𝑠

)𝜑(𝑠)𝑑𝑠 + ∫𝑁(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 +                

𝑥

0

𝑥

0

 

+𝐶0∫(∫𝑁(𝜏, 𝑠, 𝜑(𝑠))𝑑𝜏

𝑥

𝑠

)

𝑥

0

𝑑𝑠 + 𝜇(𝑥),                                      (2.2.12) 

где 𝐺(𝑠) = 𝐶0𝑝(𝑠) + 𝐾(𝑠, 𝑠),   𝜇(𝑥) = 𝑔(𝑥) + 𝐶0∫𝑔(𝑠)𝑑𝑠.

𝑥

0

 

Рассмотрим уравнение с малым параметром 

(𝜀 + 𝑝(𝑥))𝜑𝜀(𝑥) + ∫𝐺(𝑠)𝜑𝜀(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑𝜀(𝑠)𝑑𝑠 −

𝑥

0

𝑥

0

 

−𝐶0∫(∫𝐾(𝜏, 𝑠)𝑑𝜏

𝑥

𝑠

)𝜑𝜀(𝑠)𝑑𝑠

𝑥

0

+∫𝑁(𝑥, 𝑠, 𝜑𝜀(𝑠))𝑑𝑠 +

𝑥

0

                            

+𝐶0∫(∫𝑁(𝜏, 𝑠, 𝜑𝜀(𝑠))𝑑𝜏

𝑥

𝑠

)

𝑥

0

𝑑𝑠 + 𝜀𝜑ℎ(0) + 𝜇(𝑥).                          (2.2.13) 

Перепишем уравнение (2.2.13) используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) в  

следующем виде: 

𝜑𝜀(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝 (−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
×

𝑥

0

 

× [∫[𝐾(𝜉, 𝜉)

𝑠

0

−𝐾(𝑠, 𝜉)]𝜑𝜀(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝜉

)𝜑𝜀(𝜉)𝑑𝜉 −

𝑠

0
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−∫[𝐾(𝜉, 𝜉) −

𝑥

0

𝐾(𝑥, 𝜉)]𝜑𝜀(𝜉)𝑑𝜉 + 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑥

𝜉

)𝜑𝜀(𝜉)𝑑𝜉 +

𝑥

0

 

+∫𝑁(𝑠, 𝜉, 𝜑𝜀(𝜉))𝑑𝜉 −

𝑠

0

∫𝑁(𝑥, 𝜉, 𝜑𝜀(𝜉))𝑑𝜉 +

𝑥

0

 

+𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉))𝑑𝜈

𝑠

𝜉

)

𝑠

0

𝑑𝜉 − 𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑𝜀(𝜉))𝑑𝜈

𝑥

𝜉

)

𝑥

0

𝑑𝜉 + 

+𝜇(𝑠)−𝜇(𝑥)] 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

) × 

× [∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]

𝑥

0

𝜑𝜀(𝑠)𝑑𝑠−𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑𝜀(𝑠)𝑑𝑠 +

𝑥

0

 

+∫𝑁(𝑥, 𝑠, 𝜑𝜀(𝑠))𝑑𝑠 +

𝑥

0

𝐶0∫(∫𝑁(𝜈, 𝑠, 𝜑𝜀(𝑠))𝑑𝜈

𝑥

𝑠

)

𝑥

0

𝑑𝑠 + 

+𝜇(𝑥) + 𝜀𝜑ℎ(0)].                                                                                       (2.2.14) 

Пологая 𝑥 = 𝑥𝑖 ,   𝑥𝑖 ∈ 𝜔ℎ ,   𝑖 = 1. . 𝑛  в  (2.2.14) и используя квадратурную 

формулу правых прямоугольников для интегралов в (2.2.14), получим 

систему линейных алгебраических уравнений 

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× [ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑘,𝑙)𝜑𝜀,𝑙 −

𝑘−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙 −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

−ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑖,𝑙)𝜑𝜀,𝑙 −

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙 +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

 

+ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝜀,𝑙)

𝑘−1

𝑙=1

− ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝜀,𝑙) +

𝑖−1

𝑙=1
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+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

+𝜇𝑘 − 𝜇𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) [ℎ∑(𝐾𝑘,𝑘 − 𝐾𝑖,𝑘)𝜑𝜀,𝑘 −

𝑖−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝜀,𝑘 +

𝑖

𝑚=𝑘+1

𝑖−1

𝑙=1

ℎ∑𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝜀,𝑘) +

𝑖−1

𝑘=1

 

+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝜀,𝑘) +

𝑖

𝑚=𝑘+1

𝜇𝑖 +𝜑ℎ,0

𝑖−1

𝑘=1

],            

𝑖 = 1. . 𝑛, 𝜑ℎ,0 =
𝜇1

(𝑝1 + ℎ𝐺1)
.                                                             (2.2.15) 

Теорема 2.2.2. Пусть выполняются условия а) и 𝜀 = 𝑂(ℎ𝛼) для 

всех 0 < 𝛼 ≤ 1/2, тогда решение системы (2.2.13) при ℎ → 0 равномерно 

сходится к 𝜑𝑖  точному решению уравнения (2.2.11), причем имеет место 

оценка  

‖𝜑𝜀,𝑖 − 𝜑𝑖‖𝐶ℎ
≤ 𝑁21ℎ

𝛼 + 𝑁22ℎ
1−𝛼 + 𝑁23ℎ

2−𝛼 ,   

0 < 𝑁2𝑗 = 𝑐𝑜𝑛𝑠𝑡,   𝑗 = 1,4̅̅ ̅̅ . 

Доказательство. Из уравнения (2.2.12) получим 

(𝜀 + 𝑝(𝑥))𝜑(𝑥) + ∫𝐺(𝑠)𝜑(𝑠)𝑑𝑠 = ∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)]𝜑(𝑠)𝑑𝑠 −

𝑥

0

𝑥

0

 

−𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑(𝑠)𝑑𝑠

𝑥

0

+∫𝑁(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 +

𝑥

0

                         

+𝐶0∫(∫𝑁(𝜏, 𝑠, 𝜑(𝑠))𝑑𝜏

𝑥

𝑠

)

𝑥

0

𝑑𝑠 + 𝜇(𝑥) +  𝜀𝜑(𝑥).                          (2.2.16) 

Используя резольвенту ядра (−
𝐺(𝑠)

𝜀+𝑝(𝑥)
) уравнение (2.2.16) перепишем в 

следующем виде: 
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𝜑(𝑥) = −
1

𝜀 + 𝑝(𝑥)
∫𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥

𝑠

)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝐾(𝜉, 𝜉) −

𝑠

0

𝑥

0

 

−𝐾(𝑠, 𝜉)]𝜑(𝜉)𝑑𝜉 − 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑠

𝜉

)𝜑(𝜉)𝑑𝜉 − ∫[𝐾(𝜉, 𝜉) −

𝑥

0

𝑠

0

 

−𝐾(𝑥, 𝜉)]𝜑(𝜉)𝑑𝜉 + 𝐶0∫(∫𝐾(𝜈, 𝜉)𝑑𝜈

𝑥

𝜉

)𝜑(𝜉)𝑑𝜉 + ∫𝑁(𝑠, 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑠

0

𝑥

0

 

−∫𝑁(𝑥, 𝜉, 𝜑(𝜉))𝑑𝜉 + 𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑠

𝜉

)

𝑠

0

𝑑𝜉 −

𝑥

0

 

−𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥

𝜉

)

𝑥

0

𝑑𝜉 + 𝜇(𝑠) − 𝜇(𝑥) + 𝜀(𝜑(𝑠) − 

−𝜑(𝑥))] 𝑑𝑠 +
1

𝜀 + 𝑝(𝑥)
𝑒𝑥𝑝 (−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

)[∫[𝐾(𝑠, 𝑠) − 𝐾(𝑥, 𝑠)] ×

𝑥

0

 

× 𝜑(𝑠)𝑑𝑠−𝐶0∫(∫𝐾(𝜈, 𝑠)𝑑𝜈

𝑥

𝑠

)𝜑(𝑠)𝑑𝑠 + ∫𝑁(𝑥, 𝑠, 𝜑(𝑠))𝑑𝑠 +

𝑥

0

𝑥

0

 

+𝐶0∫(∫𝑁(𝜈, 𝑠, 𝜑(𝑠))𝑑𝜈

𝑥

𝑠

)

𝑥

0

𝑑𝑠 + 𝜇(𝑥) + 𝜀𝜑(𝑥)].                             (2.2.17) 

В уравнении (2.2.17) при 𝑥 = 𝑥𝑖 , 𝑖 = 1. . 𝑛 применим формулу правых 

прямоугольников для интегралов в этом уравнении и получим систему  

𝜑𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑘,𝑙)𝜑𝑙 −

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 −

𝑘

𝑚=𝑙+1

ℎ∑(𝐾𝑙,𝑙 −𝐾𝑖,𝑙)𝜑𝑙 −

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝑙 +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

+ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙)

𝑘−1

𝑙=1

− ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙) −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1
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−𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙) + 𝜇𝑘

𝑖

𝑚=𝑙+1

− 𝜇𝑖 + 𝜀(𝜑𝑘 − 𝜑𝑖)

𝑖−1

𝑙=1

] +
1

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑(𝐾𝑘,𝑘 − 𝐾𝑖,𝑘)𝜑𝑘

𝑖−1

𝑘=1

− 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝑘 +

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

 

+ℎ∑𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝑘) +

𝑖−1

𝑘=1

𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝑘) +

𝑖

𝑚=𝑘+1

𝜇𝑖 + 𝜀𝜑𝑖

𝑖−1

𝑘=1

] + 

+𝜒𝑖,                                                                                                                      2.2.18) 

где 𝜒𝑖 – сумма всех остаточных членов интегралов. 

Введем вектор погрешности 𝜂𝜀,𝑖
ℎ = 𝜑𝜀(𝑥𝑖) − 𝜑(𝑥𝑖) = 𝜑𝜀,𝑖 −𝜑𝑖 , 

 𝑖 = 1. . 𝑛. Тогда из (2.2.15) и (2.2.18) получим  

𝜂𝜀,𝑙
ℎ = −

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑘,𝑙)𝜂𝜀,𝑙
ℎ −

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙
ℎ −

𝑘

𝑚=𝑙+1

ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑖,𝑙)𝜂𝜀,𝑙
ℎ +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙 ×

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

× 𝜂𝜀,𝑙
ℎ + ℎ∑[𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙)]

𝑘−1

𝑙=1

− ℎ∑[𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝜀,𝑙) −

𝑖−1

𝑙=1

 

−𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙)] + 𝐶0ℎ∑ℎ ∑ [𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)] −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ [𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)] + 𝜀(𝜑𝑘 − 𝜑𝑖)

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

] + 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑(𝐾𝑘,𝑘 −𝐾𝑖,𝑘)𝜂𝜀,𝑘
ℎ −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜂𝜀,𝑘
ℎ + ℎ∑[𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝜀,𝑘) − 𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝑘)] +

𝑖−1

𝑘=1

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1
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+𝐶0ℎ∑ℎ ∑ [𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝜀,𝑘) − 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝑘)]−𝜀(𝜑𝑖 − 𝜑ℎ,0)] +

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

 

+𝜒𝑖, 𝑖 = 1. . 𝑛.                                                                                          (2.2.19) 

Отсюда проведя оценки получим  

|𝜂𝜀,𝑙
ℎ | = |−

1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× [ℎ∑(𝐾𝑙,𝑙 −𝐾𝑘,𝑙)𝜂𝜀,𝑙
ℎ − 𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙

ℎ −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

𝑘−1

𝑙=1

 

−ℎ∑(𝐾𝑙,𝑙 − 𝐾𝑖,𝑙)𝜂𝜀,𝑙
ℎ +

𝑖−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜂𝜀,𝑙
ℎ +

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

 

+ℎ∑[𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙)]

𝑘−1

𝑙=1

− ℎ∑[𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝜀,𝑙) −

𝑖−1

𝑙=1

 

−𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙)] + 𝐶0ℎ∑ℎ ∑ [𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)] −

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ [𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙) − 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)]

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

| + |
1

𝜀 + 𝑝𝑖
× 

× 𝑒𝑥𝑝 (−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑(𝐾𝑘,𝑘 − 𝐾𝑖,𝑘)𝜂𝜀,𝑘
ℎ

𝑖−1

𝑘=1

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘

𝑖

𝑚=𝑘+1

×

𝑖−1

𝑘=1

 

× 𝜂𝜀,𝑘
ℎ + ℎ∑[𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝜀,𝑘) − 𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝑘)] +

𝑖−1

𝑘=1

 

+𝐶0ℎ∑[𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝜀,𝑘) − 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝑘)]

𝑖−1

𝑘=1

| + 𝜀|𝐻𝜀
ℎ(𝜑𝑖)| + 
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+ |
𝜀

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(𝜑ℎ,0 − 𝜑𝑖)| + |𝜒𝑖| ≤ 

≤ 𝑑4(𝑇2 + 2(1 + 𝐶0)𝐿𝑁)ℎ∑|𝜂𝜀,𝑙
ℎ |∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

) ×

𝑥𝑘

𝑥𝑘−1

𝑖−1

𝑘=1

𝑖−1

𝑙=1

 

×
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

1

𝜀 + 𝑝𝑘
𝑑𝑠 + (𝑇2 + (1 + 𝐶0)𝐿𝑁)

𝑥𝑖
𝜀 + 𝑝𝑖

𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× ℎ∑|𝜂𝜀,𝑘
ℎ | +

𝑖−1

𝑘=1

𝜀|𝐻𝜀
ℎ(𝜑𝑖)| + 𝑁2ℎ + |𝜒𝑖| ≤ 𝑑1

−1𝑑4(𝑇2 + 2(1 + 𝐶0)𝐿𝑁) × 

× ℎ∑|𝜂𝜀,𝑙
ℎ |
ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖−1

𝑘=1

𝑖−1

𝑙=1

+ 

+(𝑇2 + (1 + 𝐶0)𝐿𝑁)𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)(ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)ℎ∑|𝜂𝜀,𝑘
ℎ | +

𝑖−1

𝑘=1

 

+𝜀|𝐻𝜀
ℎ(𝜑𝑖)| + 𝑁2ℎ + |𝜒𝑖| ≤ 𝑑1

−1(𝑑4𝑑5 + 𝑒
−1)[(𝑇2 + (1 + 𝐶0)𝐿𝑁)] × 

× ℎ∑|𝜂𝜀,𝑘
ℎ |

𝑖−1

𝑘=1

+ 𝜀‖𝐻𝜀
ℎ(𝜑𝑖)‖ + 𝑁2ℎ + |𝜒𝑖|, 

где 𝜒𝑖 = 𝑅𝑖 −
1

𝜀 + 𝑝𝑖
{∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

∫𝑁(𝑠, 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑠

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜉

𝑠

𝜉

)𝑑𝜈

𝑠

0

] 𝑑𝑠 +

𝑥𝑖

0

 

+∑ ∫ [𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑠

) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝑒𝑥𝑝 (− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑥𝑘

)] × 
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×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 − ∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠 + 

+∑ ∫ [𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)
𝑑𝜉

𝑥𝑖

𝑥𝑘

)−𝑒𝑥𝑝 (−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)] ×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 − ∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠 +

𝑥𝑖

0

 

+∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝐺(𝑠) + 𝐺𝑘)

𝜀 + 𝑝(𝑠)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

[∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

 

−∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝑥𝑘

0

 

−𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠 +∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× [
𝐺𝑘

𝜀 + 𝑝(𝑠)
−

𝐺𝑘
𝜀 + 𝑝𝑘

] [ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙) − ∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

𝑘−1

𝑙=1

 

+∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 − ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) −

𝑖−1

𝑙=1

𝑥𝑖

0

 

−𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙) +

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

𝑥𝑘

0
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+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

] 𝑑𝑠 + 

+∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

[ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙) −

𝑘−1

𝑙=1

 

−∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 − ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) −

𝑖−1

𝑙=1

𝑥𝑖

0

 

−𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙) +

𝑘

𝑚=𝑙+1

𝑘−1

𝑙=1

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝑙)

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

] 𝑑𝑠} + 

+
1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠

𝑥

0

)−𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] × 

× [−∫ 𝑁(𝑥𝑖 , 𝑠, 𝜑(𝑠))𝑑𝑠 −

𝑥𝑖

0

𝐶0∫ (∫ 𝑁(𝜈, 𝑠, 𝜑(𝑠))𝑑𝜈

𝑥𝑖

𝑠

)𝑑𝑠

𝑥𝑖

0

] + 

+
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[−∫ 𝑁(𝑥𝑖 , 𝑠, 𝜑(𝑠))𝑑𝑠 +

𝑥𝑖

0

 

+ℎ∑𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝑘)

𝑖−1

𝑘=1

−𝐶0∫ (∫ 𝑁(𝜈, 𝑠, 𝜑(𝑠))𝑑𝜈

𝑥𝑖

𝑠

)𝑑𝑠 +

𝑥𝑖

0

 

+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝑘)

𝑘

𝑚=𝑘+1

𝑘−1

𝑙=1

]. 

Величина 𝑅𝑖 , определяется также как в 2.2.1 и для него имеет место 

оценка  

|𝑅𝑖| ≤ 𝑀̃11
0 ℎ + 𝑀̃12

0
ℎ

𝜀
+ 𝑀̃13

0
ℎ2

𝜀
,   0 < 𝑀̃1𝑗

0 = 𝑐𝑜𝑛𝑠𝑡,   𝑗 = 1,2,3. 
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Имеем следующие оценки: 

1)   |𝜒𝑖,1| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

×
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

∫𝑁(𝑠, 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑠

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0∫(∫𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑠

𝜉

)𝑑𝜉

𝑠

0

] 𝑑𝑠| ≤ 

≤
1

𝜀 + 𝑝𝑖
∑| ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[∫[𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉)) −

𝑠

0

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑁(𝑠, 𝜉, 𝜑(𝜉))]𝑑𝜉 + ∫ [𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉)) − 𝑁(𝜉, 𝜉, 𝜑(𝜉))]𝑑𝜉 +

𝑥𝑘

𝑠

 

+𝐶0∫(∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝑠

)𝑑𝜉 +𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

𝑠

] 𝑑𝑠| ≤

𝑆

0

 

≤
1

𝜀 + 𝑝𝑖
∑| ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)
𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[‖𝑁𝑥

′(𝑥, 𝑠, 𝜑(𝑠))‖
𝐶(𝐷)

×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×∫(𝑥𝑘 − 𝑠)𝑑𝜉

𝑠

0

+ ‖𝑁𝑥
′(𝑥, 𝑠, 𝜑(𝑠))‖

𝐶(𝐷)
∫ (𝑥𝑘 − 𝜉)𝑑𝜉

𝑥𝑘

𝑠

+ 

+𝐶0‖𝑁(𝑥, 𝑠, 𝜑(𝑠))‖𝐶(𝐷)∫
(𝑥𝑘 − 𝑠)𝑑𝜉

𝑠

0

+ 𝐶0‖𝑁(𝑥, 𝑠, 𝜑(𝑠))‖𝐶(𝐷) × 

×∫ (𝑥𝑘 − 𝜉)𝑑𝜉

𝑥𝑘

𝑠

] 𝑑𝑠| ≤
ℎ

𝜀
|∑ ∫ 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
𝑑𝑠| × 

× 2𝑏(𝑄1 + 𝐶0𝑄0) ≤ ∑ ∫ 𝑒𝑥𝑝(−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 
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× 𝑑𝑠 (−∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉)2𝑏(𝑄1 + 𝐶0𝑄0) ≤ 2𝑏(𝑄1 + 𝐶0𝑄0)
ℎ

𝜀
, 

где 𝑄0 = max
𝐷×𝑅1

|𝑁(𝑥, 𝑠, 𝜑(𝑠))|,   𝑄1 = max
𝐷×𝑅1

|𝑁𝑥
′(𝑥, 𝑠, 𝜑)|; 

2)     |𝜒𝑖,2| = |−
1

𝜀 + 𝑝𝑖
∑ ∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝜉

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)] [∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

𝑥𝑖

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤ 

≤ 2𝑏(𝑄1 + 𝐶0𝑄0)𝑑4∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

𝑖

𝑘=1

ℎ

𝜀 + 𝑝𝑘
× 

× [𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑠

𝑑𝜉) − 1] ≤ 2𝑏(𝑄1 + 𝐶0𝑄0) × 

× 𝑑1
−1𝑑4

ℎ

𝜀
|1 − 𝑒𝑥𝑝(−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑘

𝑠

𝑑𝜉)|∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

× 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 2𝑏(𝑄1 + 𝐶0𝑄0)𝑑1
−1𝑑4𝑑5

ℎ

𝜀
, 

𝑑4 = max
𝑥∈[0,𝑏]

|𝐺(𝑥)|,     𝑑5 = 𝑠𝑢𝑝 |∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

| ; 

3)|𝜒𝑖,3| = |−
1

𝜀 + 𝑝𝑖
∑ ∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)
[𝑒𝑥𝑝(− ∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉) −

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

−𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)] [∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0
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+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 −

𝑥𝑖

0

𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤ 

≤ 2𝑏(𝑄1 + 𝐶0𝑄0)𝑑4∑𝑒𝑥𝑝(− ∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉)

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

ℎ

𝜀 + 𝑝𝑘
× 

× [1 − 𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)] ≤ 2𝑏(𝑄1 + 𝐶0𝑄0) × 

× 𝑑1
−1𝑑4

ℎ

𝜀
∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ×

𝑖

𝑘=1

 

× [1 − 𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)] ≤ 

≤ 2𝑏𝑑1
−1𝑑4𝑑5𝑑6(𝑄1 + 𝐶0𝑄0)

ℎ

𝜀
, 

𝑑6 = 𝑠𝑢𝑝 |1 − 𝑒𝑥𝑝(∫
𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

𝑥𝑘

𝑑𝜉 − ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)| ; 

4)   |𝜒𝑖,4| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

1

𝜀 + 𝑝(𝑠)
× 

× (𝐺(𝑠) − 𝐺𝑘) [∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 − 𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤

𝑥𝑖

0

 

≤ 𝑏(𝑄1 + 𝐶0𝑄0)‖𝐺
′(𝑥)‖𝐶[0,𝑏]∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖

𝑖

𝑘=1

× 

×
ℎ2

𝜀 + 𝑝𝑘
≤ 𝑏𝑑1

−1(𝑄1 + 𝐶0𝑄0)‖𝐺
′(𝑥)‖𝐶[0,𝑏]

ℎ2

𝜀
∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

× 
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× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑏𝑑1
−1𝑑5(𝑄1 + 𝐶0𝑄0)‖𝐺

′(𝑥)‖𝐶[0,𝑏]
ℎ2

𝜀
; 

5)   |𝜒𝑖,5| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝐺𝑘

𝑖

𝑘=1

[
1

𝜀 + 𝑝(𝑠)
− 

−
1

𝜀 + 𝑝𝑘
] [∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

 

+𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉 − 𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

] 𝑑𝑠| ≤

𝑥𝑖

0

 

≤ 2𝑏𝑑4(𝑄1 + 𝐶0𝑄0)∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
× 

× ∫
‖𝑝′(𝑥)‖𝐶[0,𝑏](𝑥𝑘 − 𝑠)

(𝜀 + 𝑝𝑘)(𝜀 + 𝑝(𝑠))

𝑥𝑘

𝑥𝑘−1

𝑑𝑠 ≤ 𝑏2𝑑1
−1𝑑4‖𝑝

′(𝑥)‖𝐶[0,𝑏](𝑄1 + 𝐶0𝑄0) × 

×
ℎ2

𝜀2
∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑏2𝑑1
−1𝑑4𝑑5 × 

× ‖𝑝′(𝑥)‖𝐶[0,𝑏](𝑄1 + 𝐶0𝑄0)
ℎ2

𝜀2
; 

6)   |𝜒𝑖,6| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× [ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙)

𝑘−1

𝑙=1

−∫ 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))𝑑𝜉 +

𝑥𝑘

0

∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉 −

𝑥𝑖

0

 

−ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙)

𝑖−1

𝑙=1

] 𝑑𝑠| ≤ 𝑑4∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖
×

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

 

×
1

𝜀 + 𝑝𝑘
[ℎ∑[𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙)

𝑘−1

𝑙=1

−𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙)] − ℎ ∑ 𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) −

𝑖−1

𝑙=𝑘+1
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−∫ [𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉))

𝑥𝑘

0

− 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))]𝑑𝜉 + ∫ 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))𝑑𝜉

𝑥𝑖

𝑥𝑘

] | 𝑑𝑠 ≤ 

≤ 𝑑4∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

1

𝜀 + 𝑝𝑖

1

𝜀 + 𝑝𝑘
× 

× [∑ ∫|𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝑙) − 𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) − 𝑁(𝑥𝑘 , 𝜉, 𝜑(𝜉)) +

𝑥𝑙

𝑥𝑙−1

𝑘−1

𝑙=1

 

+𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))|𝑑𝜉 −∑ ∫|𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝑙) − 𝑁(𝑥𝑖 , 𝜉, 𝜑(𝜉))|𝑑𝜉

𝑥𝑙

𝑥𝑙−1

𝑘−1

𝑙=1

] 𝑑𝑠 ≤ 

≤∑𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
𝑏𝑑4

ℎ

𝜀
[𝐿𝑁‖𝜑

′(𝑥)‖𝐶[0,𝑏] + 

+
1

2
𝐿𝑁‖𝜑

′(𝑥)‖𝐶[0,𝑏]] ≤
3

2
𝐿𝑁‖𝜑

′(𝑥)‖𝐶[0,𝑏]𝑑1
−1𝑑4𝑏

ℎ

𝜀
× 

×∑(
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤

𝑖

𝑘=1

3

2
𝑏𝐿𝑁‖𝜑

′(𝑥)‖𝐶[0,𝑏] × 

× 𝑑1
−1𝑑4𝑑5

ℎ

𝜀
; 

7)   |𝜒𝑖,7| = |−
1

𝜀 + 𝑝𝑖
∑ ∫ 𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

𝐺𝑘
𝜀 + 𝑝𝑘

× 

× [−С0ℎ∑ℎ ∑ 𝑁(𝑥𝑠, 𝑥𝑙 , 𝜑(𝑥𝑙))

𝑘

𝑠=𝑙+1

𝑘−1

𝑙=1

+ 𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑘

𝜉

)𝑑𝜉

𝑥𝑘

0

+ 

+С0ℎ∑ℎ ∑ 𝑁(𝑥𝑠, 𝑥𝑙 , 𝜑(𝑥𝑙))

𝑖

𝑠=𝑙+1

𝑖−1

𝑙=1

− 𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉

𝑥𝑖

0

] 𝑑𝑠| ≤ 
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≤ 𝑑4∑ ∫ 𝑒𝑥𝑝(−ℎ ∑
𝐺𝑙

𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
1

𝜀 + 𝑝𝑖

1

𝜀 + 𝑝𝑘

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

× 

× |−𝐶0∫ ∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈𝑑𝜉 − 𝐶0 ∫ ∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈𝑑𝜉 +

𝑥𝑖

𝜉

𝑥𝑖

𝑥𝑘

𝑥𝑖

𝑥𝑘

𝑥𝑘

0

 

+С0ℎ∑ℎ ∑ 𝑁(𝑥𝑠, 𝑥𝑙 , 𝜑(𝑥𝑙))

𝑖

𝑙=𝑘+1

𝑘−1

𝑙=1

+ С0ℎ ∑ ℎ ∑ 𝑁(𝑥𝑠, 𝑥𝑙 , 𝜑(𝑥𝑙))

𝑖

𝑠=𝑙+1

𝑖−1

𝑙=𝑘+1

| 𝑑𝑠 ≤ 

≤ 𝑑4 [2𝑏𝐶0𝑄0 +
𝑏

2
𝐶0𝑄0]

ℎ

𝜀
∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)

𝑖

𝑘=1

× 

×
(𝑥𝑖 − 𝑥𝑘)

𝜀 + 𝑝𝑖
≤ 𝑑1

−1𝑑4 [2𝑏𝐶0𝑄0 +
𝑏

2
𝐶0𝑄2]

ℎ

𝜀
∑(

(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

)

𝑖

𝑘=1

× 

× 𝑒𝑥𝑝 (−
(𝑥𝑖 − 𝑥𝑘)𝑑1
𝜀 + 𝑝𝑖

) ≤ 𝑑1
−1𝑑4𝑑5[2𝑏𝐶0𝑄0 +

𝑏

2
𝐶0𝑄2]

ℎ

𝜀
; 

8)     |𝜒𝑖,8| = |
1

𝜀 + 𝑝𝑖
[𝑒𝑥𝑝(−∫

𝐺(𝑠)

𝜀 + 𝑝(𝑠)

𝑥𝑖

0

𝑑𝑠) − 𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

)] × 

× [−∫ 𝑁(𝑥𝑖 , 𝑠, 𝜑(𝑠))𝑑𝑠 − 𝐶0∫ (∫ 𝑁(𝜈, 𝜉, 𝜑(𝜉))𝑑𝜈

𝑥𝑖

𝜉

)𝑑𝜉

𝑥𝑖

0

𝑥𝑖

0

] | ≤ 

≤
𝑏

2
𝑑1
−1(𝑄1 + 𝐶0𝑄0) (

𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) × 

× |1 − 𝑒𝑥𝑝(ℎ∑
𝐺𝑙

𝜀 + 𝑝𝑙
−∫

𝐺(𝜉)

𝜀 + 𝑝(𝜉)

𝑥𝑖

0

𝑖

𝑙=1

)| ≤
𝑏

4
𝑑1
−1(𝑄1 + 𝐶0𝑄0) × 

× (
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) [𝑏‖𝐺′(𝑥)‖𝐶[0,𝑏] + ‖𝐺(𝑥)‖𝐶[0,𝑏] ‖𝑝
′(𝑥)‖𝐶[0,𝑏] × 

×∑
ℎ

𝜀 + 𝑝𝑘

𝑖

𝑘=1

]
ℎ

𝜀
≤
𝑏2

4
𝑑1
−1𝑒−1(𝑄1 + 𝐶0𝑄0)‖𝐺

′(𝑥)‖𝐶[0,𝑏]
ℎ

𝜀
+ 
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+
𝑏

4𝑑1
(𝑄1 + 𝐶0𝑄0)‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝

′(𝑥)‖𝐶[0,𝑏] (
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)
2

𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

)
ℎ

𝜀
≤ 

≤
𝑏2

4
𝑑1
−1𝑒−1‖𝐺′(𝑥)‖𝐶[0,𝑏](𝑄1 + 𝐶0𝑄0)

ℎ

𝜀
+
𝑏

2
𝑑1
−1𝑒−2(𝑄1 + 𝐶0𝑄0) × 

× ‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝
′(𝑥)‖𝐶[0,𝑏]

ℎ

𝜀
≤
𝑏

2
𝑑1
−1𝑒−1(𝑄1 + 𝐶0𝑄0)[

𝑏

2
‖𝐺′(𝑥)‖𝐶[0,𝑏] + 

+𝑒−1‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝
′(𝑥)‖𝐶[0,𝑏]]

ℎ

𝜀
; 

9)     |𝜒𝑖,9| = |
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝 (−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[−∫ 𝑁(𝑥𝑖 , 𝑠, 𝜑(𝑠))𝑑𝑠 −

𝑥𝑖

0

 

−𝐶0∫ (∫ 𝑁(𝜈, 𝑠, 𝜑(𝑠))𝑑𝜈

𝑥𝑖

𝑠

)𝑑𝑠 + ℎ∑𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑(𝑥𝑘)) +

𝑖−1

𝑘=1

𝑥𝑖

0

 

+С0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑(𝑥𝑘))

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

] | ≤
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

) × 

× |∑ ∫ [𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑(𝑥𝑘)) − 𝑁(𝑥𝑖 , 𝑠, 𝜑(𝑠))]𝑑𝑠 +

𝑥𝑘

𝑥𝑘−1

𝑖−1

𝑘=1

 

+С0∑ ∫ ∑ ∫ [𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑(𝑥𝑘)) − 𝑁(𝜈, 𝑠, 𝜑(𝑠))]𝑑𝜈𝑑𝑠

𝑥𝑚

𝑥𝑚−1

𝑖

𝑚=𝑘+1

𝑥𝑘

𝑥𝑘−1

𝑖

𝑘=1

| ≤ 

≤
1

2
𝑑1
−1ℎ(𝑄2 + 𝑏𝐶0𝑄1)

𝑥𝑖
𝜀 + 𝑝𝑖

𝑒𝑥𝑝(−ℎ∑
𝐺𝑘

𝜀 + 𝑝𝑘

𝑖

𝑘=1

) ≤
1

2
𝑑1
−1ℎ × 

× (𝑄2 + 𝑏𝐶0𝑄1) (
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) 𝑒𝑥𝑝 (−
𝑥𝑖𝑑1
𝜀 + 𝑝𝑖

) ≤
1

2
𝑑1
−1𝑒−1(𝑄2 + 𝑏𝐶0𝑄1)ℎ,

 

где 𝑄2 = max
𝐷×𝑅1

|𝑁𝜉
′(𝑥, 𝜉, 𝜑(𝜉))|.

 

На основе приведенных оценок, имеем 

|𝜒𝑖| ≤ |𝑅𝑖| + 𝑁10ℎ + 𝑁11
ℎ

𝜀
+ 𝑁12

ℎ2

𝜀2
,
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где 𝑁10 =
1

2
𝑑1
−1𝑒−1(𝑄2 + 𝑏𝐶0𝑄0);

 

𝑁11 = 𝑏[2(𝑄1 + 𝐶0𝑄0) + 2𝑑1
−1𝑑4𝑑5(𝑄1 + 𝐶0𝑄0) + 2𝑑1

−1𝑑4𝑑5𝑑6 × 

× (𝑄1 + 𝐶0𝑄0) + 𝑏𝑑1
−1𝑑5‖𝐺

′(𝑥)‖𝐶[0,𝑏](𝑄1 + 𝐶0𝑄0) +
3

2
𝑑1
−1𝑑4𝑑5 × 

× 𝐿𝑁‖𝜑
′(𝑥)‖𝐶[0,𝑏] + 𝑑1

−1𝑑4𝑑5𝐶0 [2𝑄0 +
1

2
𝑄2] +

1

2
𝑑1
−1𝑒−1(𝑄1 + 𝐶0𝑄0) × 

× [
𝑏

2
‖𝐺′(𝑥)‖𝐶[0,𝑏] + 𝑒

−1‖𝐺(𝑥)‖𝐶[0,𝑏]‖𝑝
′(𝑥)‖𝐶[0,𝑏]] + 𝑏

2𝑑1
−1𝑑4𝑑5 × 

× ‖𝑝′(𝑥)‖𝐶[0,𝑏](𝑄1 + 𝐶0𝑄0),   𝑁12 = 𝑏𝑑1
−1𝑑5(𝑄1 + 𝐶0𝑄0)‖𝐺

′(𝑥)‖𝐶[0,𝑏]. 

Тогда, в силу оценки леммы 2.1.3, по сеточной норме получим 

‖𝜂𝜀,𝑖
ℎ ‖

𝐶ℎ
≤ [𝑁9𝜀 + 𝑁2 +𝑀11

0 + 𝑁10ℎ + (𝑀12
0 + 𝑁11)

ℎ

𝜀
+ 

+(𝑀13
0 + 𝑁12)

ℎ2

𝜀
] 𝑒𝑥𝑝(𝑇13𝑏).                                               

Следовательно, учитывая связь 𝜀 = 𝑂(ℎ𝛼), 0 < 𝛼 ≤ 1/2, прихо-

дим к утверждению теоремы 2.2.2. 

Замечание 2.2.2. Погрешность, допускаемая в процессе вычисле-

ния 𝜑𝜀,𝑖 по правилу (2.2.15) обозначим через 𝛿𝑖. Тогда 𝜑𝜀,𝑖 будет удовле-

творять систему уравнений  

𝜑𝜀,𝑖 = −
1

𝜀 + 𝑝𝑖
ℎ∑𝑒𝑥𝑝(−ℎ ∑

𝐺𝑙
𝜀 + 𝑝𝑙

𝑖

𝑙=𝑘+1

)
𝐺𝑘

𝜀 + 𝑝𝑘
×

𝑖−1

𝑘=1

 

× [ℎ∑(𝐾𝑙,𝑙 −𝐾𝑘,𝑙)𝜑𝜀,𝑙 −

𝑘−1

𝑙=1

𝐶0ℎ∑ℎ ∑ 𝐾𝑠,𝑙𝜑𝜀,𝑙 −

𝑘

𝑠=𝑙+1

ℎ∑(𝐾𝑙,𝑙 −𝐾𝑖,𝑙)𝜑𝜀,𝑙 −

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑙𝜑𝜀,𝑙

𝑖

𝑚=𝑙+1

𝑖−1

𝑙=1

+ ℎ∑𝑁(𝑥𝑘 , 𝑥𝑙 , 𝜑𝜀,𝑙) −

𝑘−1

𝑙=1

ℎ∑𝑁(𝑥𝑖 , 𝑥𝑙 , 𝜑𝜀,𝑙) +

𝑖−1

𝑙=1
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+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙)

𝑘

𝑚=𝑘+1

+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑙 , 𝜑𝜀,𝑙)

𝑖

𝑚=𝑙+1

+ 𝜇𝑘 −

𝑖−1

𝑙=1

𝑘−1

𝑙=1

 

−𝜇𝑖] +
1

𝜀 + 𝑝𝑖
𝑒𝑥𝑝(−ℎ∑

𝐺𝑘
𝜀 + 𝑝𝑘

𝑖

𝑘=1

)[ℎ∑(𝐾𝑘,𝑘 − 𝐾𝑖,𝑘)𝜑𝜀,𝑘 −

𝑖−1

𝑘=1

 

−𝐶0ℎ∑ℎ ∑ 𝐾𝑚,𝑘𝜑𝜀,𝑘 +

𝑖

𝑚=𝑘+1

ℎ∑𝑁(𝑥𝑖 , 𝑥𝑘 , 𝜑𝜀,𝑘) +

𝑖

𝑘=1

𝑖−1

𝑘=1

 

+𝐶0ℎ∑ℎ ∑ 𝑁(𝑥𝑚, 𝑥𝑘 , 𝜑𝜀,𝑘)

𝑖

𝑚=𝑘+1

𝑖−1

𝑘=1

+ 𝜇𝑖 + 𝜑ℎ,0] + 𝑁16𝛿𝑖,  

 𝑖 = 1. . 𝑛,  0 < 𝑁16 = 𝑐𝑜𝑛𝑠𝑡. 

Если 𝛿𝑖 - погрешность вычислительного правила стремится к нулю 

равномерно относительно 𝑖 при ℎ → 0 и выполняются условия а), то при  

 𝜀 = 𝑂(ℎ𝛼),   0 < 𝛼 < 1/2 и ℎ → 0 имеет место оценка 

‖𝜑𝜀,𝑖 − 𝜑𝑖‖𝐶ℎ
≤ 𝑁21ℎ

𝛼 +𝑁22ℎ
𝛼−1 +𝑁23ℎ

2−𝛼 + 𝛿𝑖𝑁17, 

  0 < 𝑁17 = 𝑐𝑜𝑛𝑠𝑡.  



143 

 

ЗАКЛЮЧЕНИЕ 

Результаты исследований - это обоснование применимости метода 

регуляризации лаврентьевского типа к нелокальным краевым задачам 

для дифференциальных уравнений в частных производных второго по-

рядка. Доказано регуляризируемость интегральных уравнений Воль-

терра третьего рода с коэффициентной неубывающей непрерывной 

функцией. Рассмотрены вопросы численного решения нелокальной кра-

евой задачи для дифференциальных уравнений в частных производных 

второго порядка, а также линейных и нелинейных интегральных уравне-

ний Вольтерра третьего рода. Разработан метод численного решения не-

локальной краевой задачи для дифференциальных уравнений гипербо-

лического типа. Доказано сходимость численного решения к точному 

решению задачи, получены оценки погрешности по сеточной норме. По-

лученные результаты распространены и для интегральных уравнений 

Вольтерра третьего рода с неубывающей непрерывной коэффициентной 

функцией на основе регуляризированного уравнения и квадратурных 

формул правых прямоугольников.  

Проведённые исследования имеют практическую ценность и могут 

быть использованы для дальнейших исследований некоторых классов 

нелокальных краевых задач. Работа представляет интерес для научных 

работников, аспирантов и студентов, специализирующихся в области 

дифференциальных уравнений и численных методов. 
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ВЫВОДЫ 

В монографии методом регуляризации лаврентьевского типа ис-

следованы нелокальные краевые задачи для дифференциальных уравне-

ний в частных производных второго и третьего порядка, в случае необ-

ратимости неубывающей функции 𝒑(𝒙) в нелокальных условиях. Дока-

заны теоремы о сходимости регуляризованного решения к точному ре-

шению нелокальных краевых задач. Рассмотрены примеры для нело-

кальных краевых задач, подтверждающие верность поставленных усло-

вий на известные функции. Разработанный метод регуляризации приме-

нен для интегральных уравнений Вольтерра третьего рода с неубываю-

щей непрерывной коэффициентной функцией. Построено регуляризиру-

ющее уравнение, доказаны теоремы о сходимости по равномерной мет-

рике регуляризированного решения к точному решению, установлены 

условия единственности решения интегральных уравнений Вольтерра 

третьего рода в пространстве непрерывных функций.  

Разработан метод численного решения нелокальных краевых задач 

для дифференциальных уравнений в частных производных гиперболи-

ческого типа и интегральных уравнений Вольтерра третьего рода, осно-

ванного на методе регуляризации и квадратурных формулах правых пря-

моугольников. Доказаны теоремы сходимости, получены оценки по-

грешности по сеточной норме. Рассмотрены примеры для численного 

метода. Полученные результаты могут быть применены для приближен-

ного решения дифференциальных уравнений третьего порядка и других 

задач, приводимые к интегральным уравнениям Вольтерра третьего 

рода. 
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