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КУБДУН АЙЛАНАСЫНДАГЫ ЛАМИНАРДУУ АБА АГЫМЫН ЭСЕПТӨӨ 

 

РАСЧЕТ ОБТЕКАНИЯ КУБА ЛАМИНАРНЫМ ПОТОКОМ ВОЗДУХА 

 

CALCULATION OF LAMINAR AIR FLOW AROUND A CUBE 

 

Кыскача мүнөздөмө: Макалада абанын кубдун айланасындагы ламинардуу изотермиялык 

агымынын сандык маселеси каралат. Стационардык эмес үч өлчөмдүү теңдемелердин системасынын 

алкагында эсептөө жүргүзүлөт. Сандык эсептин натыйжаларын талдоо кубдун айланасындагы аба 

агымдарынын татаал, негизинен үч өлчөмдүү куюндук структурасы бар экендигин көрсөттү. 

Эксперименттин жыйынтыктары менен эсептелген маалыматтарды салыштыруу аткарылды. 

Колдонулган математикалык модель сапаттуу ишенимдүү натыйжаларды алууга мүмкүндүк берерин 

көрсөттү. Иштелип чыккан модель турбуленттүүлүк жана башка факторлорду эске алуу менен негиз 

катары колдонууга мүмкүндук берет. 

Аннотация: Рассматривается численная задача обтекания куба ламинарным изотермическим 

потоком воздуха. Расчет проводится в рамках нестационарной трехмерной системы уравнений. 

Анализ результатов численного расчета показал, что потоки воздуха при обтекании куба имеют 

сложную существенно трехмерную вихревую структуру. Выполнено сравнение расчетных данных с 

результатами эксперимента. Показано, что используемая математическая модель позволяет получить 

качественно достоверные результаты. Представленная модель может быть использована как основа 

для дальнейшего развития с учетом турбулентности и других факторов. 

Abstract: The numerical problem of a cube being surrounded by a laminar isothermal airflow is 

considered. The calculation is performed within the framework of an unsteady three-dimensional system of 

equations. Analysis of the numerical simulation results revealed that the airflow around the cube exhibits a 

complex, essentially three-dimensional vortex structure. A comparison of the computational data with 

experimental results has been carried out. It is shown that the applied mathematical model provides 

qualitatively reliable results. The presented model can serve as a basis for further development, taking into 

account turbulence and other factors. 

 

Негизги сөздөр: кубдун айланасында агып чыгуу; ламинардык агым; үч өлчөмдүү 

математикалык модель; сандык моделдөө. 

Ключевые слова: обтекание куба; ламинарный поток; трехмерная математическая модель; 

численное моделирование. 

Keywords: flow around a cube; laminar flow; three-dimensional mathematical model; numerical 

simulation. 

 

Введение. Изучение потоков воздуха при 

обтекании препятствий имеет большое 

прикладное значение при строительстве 

сооружений различного назначения [1-3]. 

Сюда относятся жилые и промышленные 

здания, высотные трубы и вышки, опоры 

крупных мостов и другие объекты. 

Дальнейшее развитие методов исследования 

указанных воздушных потоков является 

важной и актуальной задачей.  

В настоящей статье рассматривается задача 

обтекания куба потоком воздуха. Общая 

формулировка математической модели с 

учетом всех факторов является весьма 

сложной, по этой причине принимается ряд 

упрощающих предположений и допущений.  

Полагается, что поток воздуха не содержит 

частиц пыли и других примесей, является 

ламинарным, изотермическим и движется 

параллельно земной поверхности. Эффектами 
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непосредственно вблизи земной поверхности и 

вязкой диссипацией энергии пренебрегается.  

Математическая модель. В декартовой 

системе координат x, y, z нестационарная 

трехмерная система уравнений может быть 

записана в следующем виде [4; 5]:  

уравнение непрерывности газа  
   

  
 

+ div (V) = 0, (1) 

уравнения движения газа вдоль осей 

координат x, y, z:  
    

  
 + div(Vu) = div(gradu)  

   

  
 + sx,   (2) 

    

  
 + div(Vv) = div(gradv)  

   

  
 + sy,  (3) 

    

  
 + div(Vw) = div(gradw)  

   

  
 + sz,   (4) 

При записи системы уравнений (1-4) 

приняты следующие обозначения: t – время,  

 плотность воздуха,   коэффициент 

динамической вязкости воздуха, V  вектор 

скорости, Р  давление, u, v, w  компоненты 

вектора скорости V в направлении осей 

координат x, y, z, sz, sy, sx  дополнительные 

вязкие слагаемые, которые в случае вязкой 

несжимаемой среды имеют следующий вид:  
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Плотность  и коэффициент вязкости  

воздуха взяты для температуры Т=20
о
 С и 

приняты равными  = 1,2 кг/м
3
,  = 1,82⋅10

−5
 

Па·с [6]. 

Метод решения уравнений, постановка 

граничных и начальных условий. Исходная 

система уравнений (1-4) после несложных 

преобразований может быть записана согласно 

методике [7] в виде обобщенного 

дифференциального уравнения: 
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) +  ,  (5) 

 

где Ф  одна из рассчитываемых 

переменных: u, v, w. Коэффициент  для 

каждой из компонент скорости равен: u=  
   

  
 

+ sx, v =  
   

  
 + sy, w= 

   

  
 + sz. 

Численное решение уравнения (5) 

проводится методом контрольного объема на 

основе конечных разностей [5; 7]. Полученная 

система алгебраических уравнений решается 

итерационным методом ЗейделяГаусса с 

использованием нижней релаксации. В 

вычислительном алгоритме сеточный шаг в 

направлениях по координатам x, y, z принят 

одинаковым и равен =10
-2

 м, временнóй шаг 

полагался равным 10
3

 с. 

Обобщенное дифференциальное уравнение 

(5) является уравнением эллиптического типа 

по пространственным координатам и 

параболического типа по временнóй 

координате.  

В этом случае граничные условия для 

рассчитываемых переменных задаются по 

всему периметру расчетной области, а также 

задаются начальные условия в момент времени 

t = 0.  

Для расчета характеристик в нерегулярной 

расчетной области, которая включает в себя 

поток газа и твердое тело куба, используется 

известный в вычислительной гидродинамике 

метод фиктивных областей (см., например, 

[8]). Метод фиктивных областей значительно 

облегчает проведение численных расчетов 

широкого круга задач [9]. 

В качестве примера рассмотрим постановку 

граничных условий для расчета характеристик 

потока воздуха, который обтекает препятствие 

в виде куба. Схема расчетной области в 

декартовой системе координат x, y, z показана 

на рис. 1. Расчетная область является 

прямоугольным параллелепипедом с 

вершинами ABCDEFGH.  

Принято, что внешний поток воздуха 

движется слева направо вдоль оси z с 

начальной скоростью w0. В этом случае во 

входном вертикальном сечении расчетной 

области ABCD задаются следующие 

граничные условия для компонент скорости: 

u=0; v=0; w= w0.  

Давление Р в уравнениях движения 

присутствует как производная, то есть не 

абсолютная, а относительная величина. Следуя 

методике [7], для давления необязательно 

задавать конкретное физическое значение, 

например, одну атмосферу. Достаточно задать 

некоторое условное значение, то есть в 

сечении ABCD для давления принято Р=Р0, где 

Р0=1 Па.  
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Рис. 1. Схема расчетной области ABCDEFGH в декартовой системе координат x, y, z. 

   

На выходе расчетной области в 

вертикальном сечении EFGH для всех 

компонент скорости и давления задаются 

условия гладкого сопряжения с окружающей 

средой: u/z=0; v/z=0; w/z=0; 
2
P/z

2
=0.  

На боковых вертикальных сечениях 

расчетной области ABFE и DCGH для всех 

компонент скорости и давления задаются 

условия гладкого сопряжения с окружающей 

средой: u/y=0; v/y=0; w/y=0; P/z=0.  

Горизонтальное сечение ADHE 

соответствует твердой непроницаемой 

поверхности. Для всех компонент скорости 

задаются условия прилипания, то есть 

скорость равна нулю u=0; v=0; w= 0. Для 

давления Р задается условие гладкого 

сопряжения P/x=0 c поверхностью.  

На верхнем сечении BCGF для компонент 

скорости и давления задаются условия 

гладкого сопряжения с окружающей средой: 

u/x=0; v/x=0; w/x=0; P/x=0.  

 Отметим, что боковые границы 

расчетной области располагались в 

соответствие с рекомендациями [5; 7] на 

достаточном удалении от куба, чтобы с 

необходимой точностью выполнялись условия 

гладкого сопряжения рассчитываемых 

характеристик с окружающей средой. 

Расположение границ определялось в ходе 

предварительных тестовых расчетов.  

При постановке начальных условий в 

момент времени t = 0 принято, что 

окружающий газ покоится, за исключением 

входного вертикального сечения ABCD, где 

для w–компоненты скорости задается значение 

w= w0.  

Обсуждение результатов расчета. 

Рассчитывается нестационарное обтекание 

куба потоком воздуха при скорости обдува 

w0=0.2 м/с, размер ребра равен l=10 см. Число 

Рейнольдса, определяемое по длине ребра 

куба, равно Re =1.310
3
. Общее количество 

сеточных узлов в направлениях осей z, y, x 

равно N=12010060=7.210
5
. 

Рассмотрим рассчитанную картину течения 

к моменту времени t=50 с, когда 

характеристики процесса вышли на 

стационарный режим.  

На рис. 2 показаны векторное поле 

скорости V (рис. 2а) и линии равного расхода 

G (рис. 2б) в горизонтальном сечении (y-z) на 

высоте x=3 см от поверхности ADHE (см. рис. 

1). Аналогичный характер течения в 

горизонтальном сечении (y-z) наблюдается для 

других значений x, то есть практически по 

всей высоте куба, за исключением областей 

вблизи нижней и верхней граней. Как видно на 

рис. 2, на подветренной стороне куба в 

горизонтальном сечении (y-z) формируются 

два практически симметричных вихря. 

Поясним, что линии равного расхода G в 

горизонтальном сечении (y-z) вычисляются по 

формуле G = ∫ ∫      
 

 

 

 
.  
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Рис. 2. Векторное поле скорости V (а) и линии равного расхода G (б)  

в горизонтальном сечении (y-z) на высоте x=3 см от поверхности 

 

На рис. 3 показано векторное поле скорости 

V в вертикальном сечение (z-x) для среднего 

значения оси y. Видно, что на подветренной 

стороне куба в вертикальном сечении 

формируется вихревая структура течения. 

Размер вихря S в вертикальном сечении (z-x) 

соизмерим с размером куба S  L. Вблизи 

основания куба на наветренной и 

подветренной сторонах наблюдаются 

вторичные вихри меньшего размера S  L/5. 

Вблизи горизонтальной поверхности куба 

наблюдаются обратные потоки воздуха. 

 



Вестник КНУ, №2, 2025 

 

362 
 

 
Рис. 3. Векторное поле скорости V в вертикальном сечении (z-x) для среднего значения оси y. 

 

Рассчитанные векторные поля скорости V в 

вертикальных сечениях (y-x) со стороны 

наветренной и подветренной грани куба 

показаны на рис. 4.  

 

 
Рис. 4. Расчетные векторные поля скорости V: 

а – вертикальное сечение (y-x) на расстоянии 2 см от наветренной грани куба; 

б – вертикальное сечение (y-x) на расстоянии 2 см от подветренной грани куба. 

 

Видно, что на наветренной грани куба 

происходит растекание потока по 

поверхности, картина течения достаточно 

простая (рис. 4а). Однако на подветренной 

стороне наблюдается сложное вихревое 

течение (рис. 4б). 

В отсутствие трехмерной графики трудно 

представить общую картину течения. Тем не 

менее, сопоставляя характер течения в 
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различных сечениях, можно сделать вывод о 

формировании подковообразного вихря на 

подветренной стороне куба.  

В работе [10] экспериментально изучались 

характеристики течения при обтекании куба 

размером ребра Н турбулентным потоком в 

канале прямоугольного сечения. Исследования 

проводились с использованием методов 

лазерной доплеровской анемометрии. Число 

Рейнольдса, основанное на высоте канала h, 

составляет Re = 810
4
. Геометрия и система 

координат схематически показаны на рис. 5а.  

По результатам экспериментальных 

исследований составлена схема структуры 

потока, показанная на рис. 5б. Видно, что 

вблизи подветренной грани куба формируется 

подковообразный вихрь. Авторы [10] 

отмечают, что поток имеет сложную 

трехмерную вихревую структуру. 

 

 
Рис. 5: а – геометрия экспериментальной установки в декартовой системе координат x, y, z;  

б – эскиз структуры потока при обтекании куба по результатам эксперимента [10] 

 

Несмотря на различные режимы течения, 

сравнение результатов расчета (см. рис. 2-4) и 

экспериментальных данных (см. рис. 5б) 

показывает в целом удовлетворительное 

качественное согласие для структуры течения.  

Заключение. Рассмотрена численная 

задача обтекания куба ламинарным 

изотермическим потоком воздуха. Расчет 

проводится в рамках нестационарной 

трехмерной системы уравнений. Анализ 

результатов расчета показал, что потоки 

воздуха при обтекании куба имеют сложную 

существенно трехмерную вихревую структуру.  

Выполнено сравнение расчетных данных с 

результатами эксперимента. Показано, что 

используемая математическая модель 

позволяет получить качественно достоверные 

результаты. Представленная модель может 

быть использована как основа для 

дальнейшего развития с учетом 

турбулентности потока и других факторов. 
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