УДК 624.048 DOI 10.53473/16946324 2024 4

Жээналиева Назгуль Мидиновна,

"КРЭАУ" мекемеси программалык инженерия кафедрасынын окутуучусу Осмонова Жыпар Рапилбековна,

"КРЭАУ" мекемеси программалык инженерия кафедрасынын окутуучусу Манапбаев Исраил Калыбаевич,

"КРЭАУ" мекемеси т.и.к., программалык инженерия кафедрасынын доценти

Жээналиева Назгуль Мидиновна,

Учреждение «МУКР» преподаватель кафедры программной инженерии Осмонова Жыпар Рапилбековна,

Учреждение «МУКР» преподаватель кафедры программной инженерии **Манапбаев Исраил Калыбаевич**,

Учреждение «МУКР» к.т.н., доцент кафедры программной инженерии

Zheenalieva Nazgul Midinovna,

Institution "IUKR" Lecturer, Department of Software Engineering

Tel.: 0552259757

Email: zheenalieva.nazgul@mail.ru

Osmonova Gypar Rapilbekovna,

Institution "IUKR" Lecturer, Department of Software Engineering

Tel.:. 0707906993

Email: josmonova18@mail.ru

Manapbaev Israil Kalybaevich,

Institution "IUKR" Candidate of Technical Sciences, Associate Professor of the Department of Software Engineering

Tel.: 0770277729

Email: imanapbaev@mail.ru

КЫРГЫЗСТАНДЫН ШАРТЫНДА ОБЪЕКТКЕ БАГЫТТАЛГАН С# ПРОГРАММАЛОО ТИЛИНДЕ ИМАРАТТАРДЫН ТОСМО КОНСТРУКЦИЯЛАРЫ АРКЫЛУУ ЖЫЛУУЛУК КЕЛҮҮСҮН ЭСЕПТӨӨНҮН МОДЕЛИ

МОДЕЛЬ РАСЧЁТА ТЕПЛОПОСТУПЛЕНИЙ ЧЕРЕЗ ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ ЗДАНИЙ В УСЛОВИЯХ КЫРГЫЗСТАНА НА ОБЪЕКТНО-

ОРИЕНТИРОВАННОМ ЯЗЫКЕ ПРОГРАММИРОВАНИЯ С#

MODEL FOR CALCULATION OF HEAT RECEIPT THROUGH THE BUILDING STRUCTURES IN THE CONDITIONS OF KYRGYZSTAN IN THE OBJECT-ORIENTED PROGRAMMING LANGUAGE C#

Аннотациясы: Бул иште Кыргызстандын шартында энергияны үнөмдөөчү имараттарды куруу көйгөйү каралат. Учурда актуалдуу эсептелген объектиге багытталган С# программалоо тилин колдонуу менен имараттардагы жылуулукту коргоону оптималдуу долбоорлоо үчүн имараттын тосмо конструкциялары аркылуу жылуулук келүүсүн эсептөө модели иштелип чыккан.

Негизги сөздөр: энергияны үнөмдөө, имараттарды долбоорлоо, жылуулук коргоо, программалоо, моделдөө.

Аннотация: В данной работе рассматривается проблема построения энергосберегающих зданий в условиях Кыргызстана. В ней разработана модель для расчета теплопоступлений через ограждающие конструкции для оптимального проектирования тепловой защиты зданий с применением актуального объектноориентированного языка программирования С#.

Ключевые слова: энергосбережение, проектирование зданий, тепловая защита, программирование, модель.

Abstract: In this paper, the problem of building energy-saving buildings in the conditions of Kyrgyzstan is considered. It developed a model for calculating heat transfer through building envelopes for the optimal design of thermal protection of buildings using the current objectoriented programming language C#.

Keywords: energy saving, building design, thermal protection, programming, model.

Сложность рельефа территории нашей страны, сочетание гор и долин, расчлененность долин по территории, продолжительность солнечного сияния и многое другое обусловливают разнообразие климата с чертами резкой континентальности и засушливости в различные

времена года. Это существенно влияет на специализацию строительства объектов в зависимости от местности [4,5].

И соответственно, имея резкоконтинентальный климат и разнообразные сезонные условия архитекторам необходимо проводить специализированных расчетов для теплопоступлений через ограждающие конструкции. Для оперативного решения этой проблемы им нужно будет иметь средства в виде компьютерного приложения [3].

Для решения этой задачи будем создавать базовый инструмент на объектноориентированном языке программирования С#. Этот процесс осуществляется по следующему алгоритму:

Шаг 1: Определение переменных

Сначала определим параметры, которые участвуют в расчете:

- •площадь ограждающей конструкции A (м²)
- •температура наружного воздуха Text (°C)
- •температура внутри помещения Tint (°C)

```
•коэффициент теплопередачи строительного материала U (Bt/(м<sup>2</sup>·K)) [2]. Строка
      объявления этих переменных может выглядеть следующим образом: double A, Text,
      Tint, U;
     Шаг 2: Функция для расчета
     Базовая формула для расчета теплопоступления (Q) через ограждающую конструкцию:
Q = U \times A \times (T_{ext} - T_{int})
     Теперь преобразуем это в функцию на С#:
public double Q (double A, double Text, double Tint, double U)
  Q = U * A * (Text - Tint);
      Шаг 3: Ввод данных пользователем
Для ввода данных создадим простое консольное приложение:
public static void Main(string[]args) {
  Console.WriteLine("Введите площадь ограждающей конструкции (м^2):");
                                                                            double
A = Convert.ToDouble(Console.ReadLine());
  Console. WriteLine("Введите температуру наружного воздуха (°С):");
                                                                       double
Text = Convert.ToDouble(Console.ReadLine());
  Console. WriteLine("Введите температуру внутри помещения (°С):");
                                                                      double
Tint = Convert.ToDouble(Console.ReadLine());
  Console. WriteLine ("Введите коэффициент теплопередачи строительного материала
(B_T/(M^2 \cdot K)):");
                 double U =
Convert.ToDouble(Console.ReadLine()); }
Шаг 4: Модель расчета теплопоступлений через ограждающие конструкции
      Далее
                                                  объявляются
                 ДЛЯ
                         создания
                                      модели
                                                                   пространство
                                                                                    имен
Расчет Термопоступлений,
                            класс
                                     ОграждающаяКонструкция
                                                                        соответствующие
                                                                    И
переменные и т.д. В результате получим следующий программный код.
            System:
using
                           mespace
РасчетТеплопоступлений
    public class ОграждающаяКонструкция
  {
    public double Площадь { get; set; } // в м^2
                                                 public
double ТемператураСнаружи { get; set; } // в °С
                                                  public
double ТемператураВнутри { get; set; } // в °С
    public double КоэффициентТеплопередачи { get; set; } // в Bт/(м^2·K)
    public ОграждающаяКонструкция(double площадь, double температураСнаружи, double
температураВнутри, double коэффициентТеплопередачи)
    {
      Площадь = площадь;
      ТемператураСнаружи = температураСнаружи;
      ТемператураВнутри = температураВнутри;
      КоэффициентТеплопередачи = коэффициентТеплопередачи;
    public double Рассчитать Теплопоступление()
```

```
КоэффициентТеплопередачи
                                                Площадь
                                                               (ТемператураСнаружи
      return
ТемператураВнутри);
  class Program
    static void Main(string[] args)
      Console.WriteLine("Введите площадь ограждающей конструкции (M^2):");
double площадь = Convert.ToDouble(Console.ReadLine());
Console. WriteLine("Введите температуру снаружи (°С):");
      double температураСнаружи = Convert.ToDouble(Console.ReadLine());
Console.WriteLine("Введите температуру внутри (°С):");
                                                            double
температураВнутри = Convert.ToDouble(Console.ReadLine());
      Console. WriteLine ("Введите коэффициент теплопередачи строительного материала
(B_T/(M^2 \cdot K)):");
      double коэффициентТеплопередачи = Convert.ToDouble(Console.ReadLine());
                                                                                     var
                            ОграждающаяКонструкция(площадь,
конструкция
                     new
                                                                    температураСнаружи,
температураВнутри, коэффициентТеплопередачи);
                                                                     double результат =
конструкция. Рассчитать Теплопоступление();
      Console. WriteLine($"Ожидаемое теплопоступление составляет: {результат} Вт");
  }
}
```

Результат выводится на экран в следующем виде:

```
Консоль отладки Microsoft Visual Studio —  

Введите площадь ограждающей конструкции (м^2):
15
Введите температуру снаружи (°C):
35
Введите температуру внутри (°C):
20
Введите коэффициент теплопередачи строительного материала (Вт/(м^2·°C)):
1
Ожидаемое теплопоступление составляет: 225 Вт

С:\Users\GSBEP\source\repos\ConsoleApp12\ConsoleApp12\bin\Debug\net6.0\ConsoleApp12.exe (процесс 5244) завершил работу с кодом 0.
Чтобы автоматически закрывать консоль при остановке отладки, включите параметр "Сервис" ->"Параметры" ->"Отладка" -> "Ав томатически закрыть консоль при остановке отладки".
Нажмите любую клавишу, чтобы закрыть это окно:
■
```

Данная компьютерная модель позволяет архитекторам вводить необходимые параметры и затем вычисляет на их основе ожидаемое теплопоступление во внутрь помещения. Дополнительные корректировки для конкретных региональных или строительных особенностей Кыргызстана могут быть добавлены за счет ссылок на соответствующие базы данных [1].

Эта программа на С# служит отправной точкой для архитекторов, строителей и владельцев жилья в Кыргызстане для оценки теплопоступлений через ограждающие

конструкции. Она поможет сэкономить энергоресурсы и создать более комфортные условия для проживания [6].

Список использованной литературы:

- 1. Кутуев М.Д., Манапбаев И.К. Алгоритм расчета термического сопротивления и проверки расчетных параметров на соответствие нормам, принятым на территории Кыргызской Республики. Политехнический вестник. Серия: Инженерные исследования. 2017. № 3 (39). С. 62-70.
- 2. Кутуев М.Д., Матозимов Б.С., Манапбаев И.К., Куканова Р.А. Расчет тепла от солнечной радиации при проектировании зданий в регионах КР. Современные проблемы механики сплошных сред. 2012. № 16. С. 310-318.
- 3. Манапбаев И.К. Расчет сопротивления теплопередаче ограждающей конструкции с применением информационной технологии для регионов Кыргызской Республики.
- Вестник Кыргызского государственного университета строительства, транспорта и архитектуры им. Н.Исанова. 2013. № 4. С. 237-242.
- 4. Манапбаев И.К. Проектирование тепловой защиты зданий в регионах Кыргызской Республики в контексте экологической и энергетической безопасности.

Материаловедение. 2013. № 4 (8). С. 55-57.

- 5. Манапбаев И.К., Куканова Р.А., Мамбетов Э.М. Учет климатических особенностей при проектировании зданий в условиях Кыргызстана. Вестник Кыргызско-Российского Славянского университета. 2012. Т. 12. № 7. С. 102-106.
- 6. Манапбаев И.К., Кутуев М.Д. Применение IT для проектирования тепловой защиты зданий в регионах страны. Вестник Кыргызского государственного университета строительства, транспорта и архитектуры им. Н.Исанова. 2022. № 2-1 (76). С. 283-288.