Bectnuk KHY, Nel (121), 2025

VK 004.4
DOI 10.58649/1694-8033-2025-1(121)-318-322
MYPATAJIMEBA B.T.!, JIOIIEBEKOB A.T.
K. bamacarein ateingarsl KYVY
MYPATAJIMEBA B.T., JIOHLIEGEKOB A.T.
KHY umenu K. bamacarsiga
MURATALIEVA V.T., DUSHEBEKOV A.T.
KNU named after J. Balasagyn

ORCID: 0000-0002-7246-7529"
PYTHON TUJIMHAE BEB-CAUT YUYH BOKOH/IAU UIITEIT YbIT'YY XXAHA MIIKE AIIBIPYY

MNPOEKTUPOBAHUE U PEAJIU3ALIUA BIKIHJIA JJISI BEB-CAMTA
HA PYTHON

DESIGN AND IMPLEMENTATION OF A BACKEND FOR A WEBSITE
INPYTHON

Kbickaua myne3neme: Makama Python mporpammanoo TwiwHIe BeO-CalT yIyH OOKEHH HIITEN
YpIlyyra >KaHa MHINKE aliblpyyra apHaJrad. OHYKTYPYYHYH HETM3TM OTaNTapbl, AaHbIH HYHHJIE
TEXHOJIOTHSIIApAbl TaHI00, apxuTekTypanblk nu3aitn, RESTful API Ty3yy xana maansimar 6a3acbkl MEHEH
UHTErpalysyioo Kapaiar. KonnoHyydynapasl ayTeHTH(HUKALMSIOO >KaHa ypyKcaT Oepyy MacelelepuHe,
OLIOHJOM 9JI¢ BeO-THpKEMENIepAMH KOOICY3/IyK MacelelepuHe e3rede KeHynl Oypynar. Makanana
KosngoHron Python komgyHyH Mucangapel, OIIOHION 3Ji€ ONTUMAIAAIITHIPYY *aHa MaajabIMaTTapAbl KOProo
00I0HYA CYHYIUTAp KEJITUPUITEH.

AnHoTauusi: CraThsl TOCBSLICHA IMPOSKTHPOBAHMIO M peaiu3auuu OdkeHna ajist BeO-calfita ¢
ucnonb3oBaHueM Python. PaccmarpuBaioTcst oCHOBHBIC 3Tambl pa3pabOTKH, BKIIOYAs BBEIOOpP TEXHOJOTHIA,
MpoeKTHpoBaHue apxXuTeKTypsl, cozganne RESTful API u unTerpamuro ¢ 6a3oii qanHbIX. Oco00e BHUMaHUE
YZEJIEHO BOIpPOCaM ayTEeHTU(HUKALMM M aBTOPH3AaLUHU MOJb30BaTeneil ¢ ucnonb3oBanueM JWT, a Taxke
BompocaM 0e30macHOCTH BeO-puiiokeHni. B craThe mpencTaBineHbl mnpuMepbl koma Ha Python c
ucrionb3oBanueM Flask, a Takke pekOMeHIANH IO ONTUMHU3AIMH U 3aIUTE TaHHBIX.

Abstract: The article is devoted to the design and implementation of a backend for a website using
Python. The main stages of development are considered, including the choice of technologies, architecture
design, creation of a RESTful API and integration with a database. Special attention is paid to the issues of
authentication and authorization of users using JWT, as well as security issues of web applications. The
article provides examples of Python code using Flask, as well as recommendations for optimization and data
protection.

Heru3ru ce3nep: BeO-caiiT; 03KeH/I; IPOSKTHPII00; MaalbIMaT 0a3anapbl; MaalbMaT KOOTICY3IyTY.

KJIlO'-IeBLIe cJoBa: Be6-ca171T; 63KCH,I[; HpOCKTHpOBaHI/Ie; 68.3]:1 JTaHHBIX, 6630HaCHOCTL JAaHHbIX.
Keywords: website; backend; design; databases; data security.

318

https://doi.org/10.58649/1694-8033-2024-1(117)-4-11

Pazpabotka OpkeHma myis BeO-calita —
KIIIOYeBasi 4acTh CO3JaHHs COBPEMEHHOTO BeO-
MPUIIOKEHUS. Bbakenn oOecrieunBaeT
(YHKIMOHANBHOCTb, OTBEYaeT 3a XpaHEHHWE U
00pabOTKy MaHHBIX, a TAaKXKe 3a B3aMMOJCHCTBHE
¢ ximenToM depe3 APIL. Python, Gmaromaps cBoeit
MPOCTOTE M MOIIHBIM OMONIMOTEKaM, SBISETCS
OTIIMIHBIM BBEIOOPOM TS peasn3amnuu 0OdkeHna. B
NaHHOW cTaTke OygeT paccMOTPEHO, Kak
CIPOCKTUPOBATh U pealn30BaTh OdKEHA ISl BeO-
caiita Ha Python, HaumHas c mpoeKkTHpOBaHUSA
ApXUTEKTYphl W 3aKaH4YMBas peanu3aluei
OCHOBHBIX (DYHKIIHH.

bakenn BeO-caifta oTBewaeT 3a Takue
BRXHBIC 3a/layd, Kak XpaHeHHe H o0paboTka
JNaHHBIX, B3aUMOJEWCTBHE C 0Oa3aMM [JaHHBIX,
yIpaBlicHHE IOJB30BATENISIMH M HX CECCHUSIMH, a
Takke 00pabOTKy 3ampocoB OT KimeHTa. Python
MPENOCTABIsAET MHOXKECTBO HHCTPYMEHTOB ISt
(hyHKIHHA,
¢peiimBopky, Takue kak Flask, Django u FastAPL

peanuzanuu 3TUX BKJTIOYast
B »a10#i crathe OymeM wucmonb3oBath Flask —
JNETKU W THOKWA (GPEerMBOPK JUIS CO3JaHUSL
RESTful APIL

0O0JIBIIMHCTBA COBPEMEHHBIX BEO-TIPHITONKESHHIA.[1]

KOTOPBIA TOAXOMUT IS
ApxuTekTypa 03KeHaa

[MpoekTupoBaHue OIKEHIa HAYMHACTCS C BbIOOpA

APXHUTEKTYPBl CHCTEMBI. B OONBIIMHCTBE CiydaeB

Ui BeO-CAiTOB WCIONB3YETCS apXUTEKTypa

KJIMEHT-CEPBEP, T/Ie KIMEHT — 3TO BeO-Opaysep,

a cepep oOpabarbIBaeT 3ampockl M OTBEYAET HA

HUX.
Jis 1mpoCTOTBI paccMOTpUM 0a30BYIO

ApXHUTEKTYPY:

e APl — wunHTEpdeiic MexIy KIHEHTOM U

cepBepoM, peanu3oBaHHb uepe3 RESTful
cepBucsl. APl ynpaBnser oOMEHOM JaHHBIX,
repeaaBaeMbIX MEX Ty KITMEHTOM U CEPBEPOM.

¢ ba3a 1aHHBIX — XpaHUJIUIIE JaHHBIX. bakeHn
B3aMMOJICHCTBYeT ¢ 0a30d JaHHBIX IS
MOJIyYECHUSI W XpaHEHHUS HUHPOpMAIMK O
MIOJTH30BATEISIX, TI0CTaX, KOMMEHTApUAX W
JIPYTHUX CYIIHOCTSIX.

e Cucrema ayreHTH(GHKAIUM U ABTOPU3ALNHA
CHUCTEMa, KOTOpas YHpaBJseT AOCTYIIOM
[I0JIB30BATENEH K pa3INYHbIM YacTsAM CaiTa.

e Mexanusm 00paGoTku OMIUOOK JIs
MIpaBUIILHOW 00pabOTKM 3alpOCOB W BO3BpATa

OIMMOOK B CITy4ae HEOOXOTUMOCTH.

319

Bectnuk KHY, Nel (121), 2025

OcCHOBHBIC KOMIIOHEHTbI

1. CepBep: CepBep oTBe4yaeT 3a NPHUHATUC
3armpocoB OT KIMEHTOB U uX 00pabotky. Flask
wm Django HO3BOJIAIOT OpraHu30BaTh
00paboTKy HTTP-3anpocos, CO3/1aHue
MapLIpyTOB U MAPIIPYTH3ALHUIO TaHHbIX.

2. baza pganmbix: baza jmaHHBIX 3TO
XpaHWIHNILE, B KOTOPOM COXPAaHIIOTCS BCe
JaHHBIE, BKJTIOYast nHPOPMALIUIO 0
II0JIb30BATEIIAX, IOCTAX U KOMMEHTapusax. s
HEOOJIBIINX MPOEKTOB MOXKHO HCIIOJIb30BATh
SQLite, nns Gonee kpynHbeix — PostgreSQL
nmu MySQL.

3. APl: API orBewaer 3a mepemady IJaHHBIX
MEXK]ly CEPBEpPOM U KIMEHTOM. B OCHOBHOM
ucnionbdyercst popmar JSON ams oOmeHa
JaHHBIMU.

4. Ayrentudukanua u apropusauus: s
oOecrieyeHus1 0E30MaCHOCTH W pa3/ieieHUs
IpaB JOCTyHa MEXIY IOJb30BaTeIsIMU
HEO0OXOJMMO peann30BaTh ayTEHTU(UKAIINIO
(MpoBepKy TMOAJNMHHOCTH TMOJB30BATENs) U
aBTOPU3AIUIO (TIPOBEPKY MPaB AOCTYIIA).

5. Mexanuzm o0pa6oTkn omudok: BaxHo
NpaBWIbHO 00padaThiBaTh OMIMOKH, YTOOBI
peaoCTaBUTh I10JIb30BaTCIIIM IIOHATHBIC
COOOIIEHUS] W JIOTMPOBAaTh BaXKHbIE COOBITHS
JUTsE pa3pabOTYUKOB.

Bb100op TexHon0TMIT

Jns co3manms OdkeHga Ha Python MoxHO

UCIIOJIb30BaTh pasiuyHble (QPEeHMBOPKH U

OnOIMOTEKY. Paccmotpum HECKOJIBKO
MIOMYJISIPHBIX BApUAHTOB:
Flask
Flask — 310 MUHMMATUCTHYHBIH BeO-PPEHMBOPK,
KOTOPBIN MO3BOJISIET OBICTPO HayaTh Pa3padOTKy.
OH TpenocTaBIsIeT HEOOXOMUMBIA (DyHKITFOHAT
s co3ganuss REST API, paGotel ¢ 6azamu
manHeix yepe3 SQLAlchemy wu ympaBienus
ceccusiMU. [2]
IIpenmymecrsa Flask:
e JlerkocTh ¥ THOKOCTE.
e XOpOIIIO MOAXOIUT JJISl HEOOMBIIUX U CPETHUX
IIPOEKTOB.
o [IIlupokas
co001IeCTBO.
Django
Oonee

MOKyMEHTAaIusi W OoJbIIoe

CTSIKEITBIN

Django — (bpeliMBOpK,
KOTOPBIA TOAXOMUT JJIsi KPYMHBIX MPOEKTOB,
TpeOyromux CcTpykTypel. OH

BCTPOCHHBIX

KOMIUIEKCHOH

npeaoCTaBIIsICT MHOXCCTBO

pemeHI/Iﬁ, TaKHMX KaK CHUCTCMbI aYTGHTI/I(bI/IKaLII/II/I,

agIMUHUCTpaThBHas TmaHedh, ORM wm MHOTOE

npyroe. [3]
HpenmymecTBa Django:
e bricTpas
YCUITUSIMHU.
e bonbmas moanepkka M MHOYKECTBO TOTOBBIX
pelleHUi.
e BcrpoenHas
aBTOPH3ALUH.
FastAPI
FastAPI — (hpeliMBODK,
opueHTHpOoBaHHBIA Ha co3gaHue API ¢ BbICOKOI
MNPOU3BOAUTENBHOCTEIO. OH

pazpaboTka ¢ MHHHMaJIbHBIMHU

cucreMa aYTeHTI/ICl)I/IKaI_II/II/I "

HOBBIN

MIPEIOCTABIISAET
BO3MOYKHOCTH JUIsl aBTOMAaTHYECKOW TIeHepauuu
JOKYMEHTalluk ¥ OBICTPOTO HaNHCaHHSA
BBICOKOCKOPOCTHBIX API.

IIpenmymecrBa FastAPI:

¢ Bricokast Mpon3BOANTETHHOCTS.
o Tloaaepkka aCHHXPOHHBIX ONEPALIUA.
e ABTOMaTHYECKAS JOKYMEHTaLMsA
OpenAPI.
B nannoii crathe Oymem ucnonb3oBath Flask,

4epes

TaK KaKk OH SIBJISETCS XOpPOIIUM BBIOOPOM ISt
HEOOJBIIMX W CPEJHHUX IPOCKTOB, TAE Ba)KHA
CKOpPOCTh pa3paboTku " IIPOCTOTA
WCTIOJIb30BaHUSI.
IIpouecc npoexTupoBaHust
IIpoexTupoBaHue 6a3bl JAHHBIX
s Opkenma BeO-caiiTa HaM HYKHO TpPOJyMaTh
CTpYKTYpy 0a3bl JaHHBIX. ba3za maHHBIX Oyzaer
XpaHHUTh HHPOPMALIMIO O MOJIH30BATENAX, MTOCTAX,
Jlost

mpuMepa BO3bMeM 0a3y MOaHHBIX [Js caiita ¢
010TOM, e

KOMMCHTapusiIX W Jpyrux CYHIHOCTSX.

IIOJIB30BaTCIIN MOTYT

perucTpupoBaTrbCia, BXOAUTb B CUCTEMY H

OCTaBJISITh KOMMEHTApUH TIOJ TOCTaMH. [4]

[Ipumep cTpyKTypHI 0a3bl TaHHBIX:

e Users: rtabmuma ¢ wuHOpManuedr o
nosp3oBatersix (ID, mmst, email, xamr mapods,
JaTa PerucTpaIm).

e Posts: tabmuma ¢ moctamu (ID, 3arojoBok,
coJlepKaHue, Jlara My OHMKaIyH, ID
TIOJIE30BAaTENS).

e Comments: tabmumna ¢ kommeHTapusmu (ID,
TEeKCT KoMMeHTapusi, jnara, ID mnocra, ID
TTOJTH30BATEISI).

[Tpumep cTpykTypsl Tabmuis Users:

Bectnuk KHY, Nel (121), 2025

Tun
ITose Onucanne

JaHHBIX

| | |

HIeHTU(HUKATOP

|username“ VARCHAR H Hmst monp3oBaTess

‘ email H VARCHARH DJeKTpoHHas moYTa

| password | VARCHAR | Xou naposs

created_at| DATETIME | Jlata peructpamm

Tun
IToae Onucanmne
JAHHBIX
id INT YHUKAIBLHBIN

API
APl Oyner uHTEepdelicom s
B3aMMOJICHCTBHA C KIHEHTOM. BeO-cailt Oyner

OCHOBHBIM

B3aUMOJICHCTBOBATh C KJIIMEHTCKOM YacThIO depe3
RESTful API. [IpumepHBI# CIMCOK SHIIOWHTOB:

e POST /apilregister — perucrpaitiiss HOBOTO
M0JIb30BATENS.

e POST /api/llogin —
MIOJIb30BATEIS.

o GET /api/posts — nmony4eHue Crucka MocToB.

e POST /api/posts — cozaanne HOBOTO TIOCTA.

e GET /apilposts/<id> — momydenue
nHGOPMALIUU O KOHKPETHOM I10CTE.

e POST /api/lcomments — ngobGasieHue
KOMMEHTapHus K IOCTY.

AyTeHTuUKALUS U ABTOPU3ALUS

ayTeHTU(HUKAIAN u

ayTEeHTU(PUKAIUSI

s
TI0JIB30BaTENIe MOYKHO HCIIOIB30BaTh CHUCTEMY C
JWT (JSON Web Tokens). JWT mo3BomsieT
0e30MacHo TepeaBaTh JaHHBIC MEXKIY KIMEHTOM

aBTOPHU3AIUU

u cepsepoM. Kaxnwlii pa3, Koraa moyib30BaTenb

BBITTOJTHSIET 3alpoc, OH TEpellaeT CBOW TOKEH, U

CepBeEp MPOBEPSIET €r0 MOAIUHHOCTS. [5]
Peasmzanusi APl ¢ wucnosab3oBaHueM

Flask

Hnsa peanuzamu APl mb1 ucnons3yem Flask,

KOTOPBIA MO3BOJISET OBICTPO CO3/aTh MApIIPYTHI

u o0pabotarh 3ampockl. CHayama yCTaHOBUM

Flask u npyrue HeoOxoaumMelie OMOTUOTEKH:

bash

pip install Flask Flask-JWT-Extended Flask-

SQLAIchemy

IIpumep koma mist cozmanust mpoctoro API c

Flask: Python

from flask import Flask, request, jsonify

from flask_sqglalchemy import SQLAIchemy

from flask_jwt_extended import JWTManager,

create_access_token, jwt_required

app = Flask(__name_)

app.config['SQLALCHEMY_DATABASE_URI]

= 'sglite:///site.db'

app.config['JWT_SECRET_KEY"]
'supersecretkey'
db = SQLAIchemy(app)
jwt = JWTManager(app)
Mopenb moIh30BaTEN
class User(db.Model):

id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(120),
unique=True, nullable=False)

email = db.Column(db.String(120), unique=True,
nullable=False)
password =
nullable=False)
Peructpalivst HOBOTO MOJB30BATEIIS
@app.route('/api/register’, methods=['POST")
def register():

data = request.get_json()

username = data['username’]

email = data['email’]

password = data['password']

new_user = User(username=username,
email=email, password=password)
db.session.add(new_user)

db.session.commit()

return jsonify(message="User created"), 201
Bxox B cucremy
@app.route('/api/login’, methods=['POST1)
def login():

data = request.get_json()

username = dataJ'username’]

password = data['password']

user =
User.query.filter_by(username=username).first()
if user and user.password == password:

token = create_access_token(identity=username)

return jsonify(access_token=token), 200

return jsonify(message="Invalid credentials"),
401
Ilpumep 3amUIIICHHOTO MapIIpyTa
@app.route('/api/protected’, methods=['GET"])
@jwt_required()

db.Column(db.String(60),

def protected():

return jsonify(message="This is a protected
route™), 200

if _name__ ==' main__": app.run(debug=True)

Be3onacHOCTh M 3a1IMTA JAHHBIX
be3zonacHoCcTh JaHHBIX
pa3paboTku OdkeHma. [6] Jlius 3amIuThl JTaHHBIX

BaXxHasa 4YacCTb

IIOJIB30BaTeICH u OpeaoTBpaIlICHUA

321

Bectnuk KHY, Nel (121), 2025

HECaHKI[MOHUPOBAHHOTO JIOCTyTIa ciexyer
HCIIONTb30BaTh:
o IlludpoBanme maposeii: Bce maponu

JIOJDKHBI XPAaHUTHCS B 3aIIU(POBAHHOM BHJIC C
HCIIONB30BAaHUEM QJITOPUTMOB, TaKHX Kak
bcrypt.

e JWT u Oe3omacHoCTh TOKeHOB: TOKEHBI
JIOJDKHBI OBITH 3alllMIIEHBI, a CPOK UuX
JICUCTBUA OIpaHUYEH.

e SSL/TLS: JIng 3amurthl JaHHBIX B MPOIECCe
nepeayn MOKIY KIUGHTOM H CEPBEpPOM
PEKOMEHIYeTCSl WCIONB30BaTh IPOTOKOI
HTTPS.

e 3ammra or arak: lcnonb30BaHME TEXHHUK
3amutel 0T SQL-unbekumii, CSRF u apyrux
aTak.

3aKiIoueHue

[IpoexTrpoBaHne W peanu3anus O03KEeHIA
st BeO-caiita Ha Python ¢ wmcmome3oBaHmeM
Flask 3TO TpoIiecc,
BHUMATEIBHOTO TOIXOHa K

— KOTOpBII TpeOyeT
apXUTEKTYpeE,
0e30MacHOCTH M OpraHU3allid B3aMMOJCHCTBUS
Mexay kommoHeHTamu. Flask mnpenocrasiser
YIOOHBII WHCTPYMEHT Ui OBICTPOTO CO3IaHUS
API, a

Pa3INYHBIX

rMoKocTh It 100aBJIEHUS
(yHKITHIA.

ayTeHTU(HUKAIIUN, aBTOPHU3AIUNA U OE30TMaCHOCTH

TaKxXe
CucreMsbl

SBISIFOTCS. HEOTHEMIIEMOW YacThiO Pa3paboTKH,

o0ecIieynBaroIen 3aIUTy JTAHHBIX

MOJIb30BaTeIIeH M KOPPEKTHYIO paboTy BeO-caliTa.

Bectnuk KHY, Nel (121), 2025

CHuCOK MCO0JIb30BAHHOI JINTEPATYPHI

1. TI'pundepr M. Flask Web Development. — 2-e uza. — O’Peitnu Menua, 2018, 500 ¢. ISBN 978-
1-4919-5241-1.

2. ®opcwe JI. Python Web Development with Django / JI. ®opcwe, 1. Buccekc, Y. UyH. —
IMurep, 2008, 624 c. ISBN 978-0-321-53224-5.

3. yaiiep I'. Flask By Example. — Packt Publishing, 2018, 350 c. ISBN 978-1-78712-239-6.

4. Buncent Y. Django for Beginners. — Self-published, 2020, 180 c. ISBN 978-1-68407-806-6.

5. Topenuk M., O3zcBann U. High Performance Python. — O’Reilly Media, 2014, 450 c. ISBN
978-1-4493-7152-6.

6. Joxymenrarus Flask. — Pexxum goctyma: https://flask.palletsprojects.com/, cBoboansiii (Iata
obpamenus: 10.12.2024).

7. Hoxymenramusi Django. — Pexxum nocryma: https://docs.djangoproject.com/, cBoGOAHBII.
(Hata obparenus: 10.12.2024).

8. Real Python. Building RESTful Web APIs with Flask. — Pexum gocryma:
https://realpython.com/flask-connexion-rest-api/, ceoboausiit. (Jlara oopamenwus: 10.12.2024).

9. Django REST Framework Documentation. — Pexum moctyma: https://www.django-rest-
framework.org/, ceoboausrii. (JlaTa obpamienust: 10.12.2024).

10. DigitalOcean. Python HTTP Servers for Web Applications. — Pexum pgoctyna:
https://www.digitalocean.com/community/tutorials, ceo6oaubIi. ([TaTa oopamenus: 10.12.2024).
11. Murenb I'punbepr. The Flask Mega-Tutorial. - Pexxum JOCTYTIa:

https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world, ~ cBoGoanwiii. ([lara
obparenus: 10.12.2024).

12. OpenAPIl Specification. — Pexwum moctyma: https://swagger.io/specification/, cBOOOIHBIMA.
(dara obpamenus: 10.12.2024).

13. OAuth 2.0 Authorization Framework. — Pexxum moctyna: https:/tools.ietf.org/html/rfc6749,
cBoboubIi. ([lara obpammenws: 10.12.2024).

14. JSON Web Tokens (JWT). — Pesxxum moctyma: https://jwt.io/introduction/, cBo6oaubrIit. (/laTta
obpammenus: 10.12.2024).

PenenseHr: K.ILH., 1oneHT Hyp:xkanoBa C.A.

322

https://docs.djangoproject.com/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/

