УДК 519.2+550.34+681.3 (04) (575.2) (04)

ПРИМЕНЕНИЕ ТЕОРИИ СЛУЧАЙНЫХ ПРОЦЕССОВ ДЛЯ АНАЛИЗА СЛАБОЙ СЕЙСМИЧНОСТИ ТЯНЬ-ШАНЯ

Н.А. Сычева – канд. физ.-мат. наук, A.A. Acadyлина — магистр, **Л.М. Богомолов** – канд. физ.-мат. наук

Seismicity of Northern Tien-Shan is studied with involvement of newest data: the catalogue of a network KNET for 1994-2006 and the catalogue of Institute of seismology MES RK for 1996-2002. Temporal distributions for various sample seismic events have been constructed to compare known random distributions (Puasson, Poya and gamma-distribution).

В работе временные распределения слабой сейсмичности территории Северного Тянь-Шаня (так называемый поток событий) рассматриваются как случайный процесс. Целью является выяснение условий, при которых этот поток описывается известными моделями (распределениями Пуассона, Пойя и гамма-распределением, ГР). Эта информация представляет интерес, поскольку при подготовке сильного землетрясения (с большой очаговой зоной) процесс деструкции геосреды с необходимостью перестает быть случайным.

Ранее уже предпринимались попытки рассмотреть распределение сейсмичности как случайный, в частности, как Пуассоновский процесс [1] с плотностью распределения вероятности [2, 3]

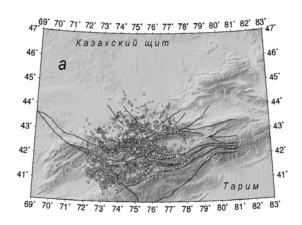
$$P_m = \frac{a^m}{m!} e^{-a} \,, \tag{1}$$

где P_m – вероятность того, что в единицу времени произойдет m событий; a — параметр распределения (1). Из-за ограниченной применимости модели Пуассона (только для случая стационарного потока событий, без последействия) в современных работах также используются распределения с большим числом параметров (биномиальное, бета- и гамма-распределения и др.). В настоящей работе поток сейсмических событий сопоставляется с распределениями Пуассона, Пойа и ГР. Отметим, что последние два показали свою эффективность для анализа на примере выделения эффектов наведенной сейсмичности [4] Распределение Пойа описывает случайный процесс с эффектом последействия, благодаря чему отпадает проблема исключения афтершоков из сейсмических каталогов. Функция плотности распределения закона Пойа имеет вид [2, 5]:

$$P_m = \left(\frac{t}{1+at}\right)^m \frac{1(1+a)...[1+(m-1)a]}{m!} P_0, \quad (2)$$

где P₀, а и t – параметры закона распределения Пойа. Для исследования случайных процессов на длинных временных интервалах приспособлено ГР, плотность которого имеет вид [3], $(\Gamma(\alpha) - \Gamma$ амма-функция, $\alpha - \Pi$ араметр). $f(x,\alpha) = x^{\alpha-1} e^{-x} / \Gamma(\alpha)$ при $x \ge 0$; f = 0 при x < 0, (3)

$$f(x,\alpha) = x^{\alpha-1} e^{-x} / \Gamma(\alpha)$$
 при $x \ge 0$; $f = 0$ при $x < 0$, (3)


Для исследования временных распределений использовались два каталога, содержащие информацию о сейсмичности территории Тянь-Шаня за последнее десятилетие (табл. 1). Распределение событий на площади представлено на рис. 1.

При поиске фактического закона распределения использованы такие моменты, как математическое ожидание (M) и дисперсия (D).

Таблица 1

TT			
Некоторые х	арактеристики	і исспелуемых	катапогов
TICKOTOPDIC A	apanicphenini	i iicosica y civibiz	i itu i uji o i o b

Каталог, институт	Нач. дата	Кон. дата	Т (лет)	Колич. событ.	Кмакс
KNET, НС РАН, Бишкек	01.01.1994	29.12.2006	12	5431	14,26
КАΖ, ИС МОН РК, Алматы	01.01.1996	31.12.2002	7	7627	14,60

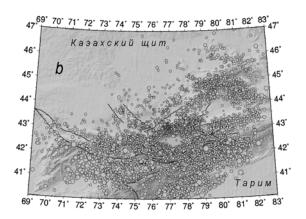


Рис. 1. Распределения сейсмичности: а) – по каталогу сети KNET; b) – по каталогу KAZ.

Согласно табл. 2, значение М меняется от 0.7 до 2.7, D от 0.8 до 4.4, и отношение М/D от 0.4 до 1.02. В период 2000–2002 гг. М/D близко к единице по обоим каталогам. В эти годы не было землетрясений значительной силы, которые повлекли бы за собой серию афтершоков, и максимальное количество событий/день не превышало 8. Такие периоды могут быть описаны распределением Пуассона. В 2003–2006 гг. на исследуемой территории произошел ряд более сильных землетрясений, что нашло отражение в увеличении расхождения значений между М и D.

На рис. 2 показан ход изменения М и D для исследуемых каталогов. Графики получены для скользящего окна шириной 300 дней и сдвигом 1 день. Для данных KNET (рис. 2а) в 1996–2002 гг. наблюдается синхронное снижение значения М и D, причем некоторое время М ≈ D. Далее в 2003 г. происходит резкое увеличение дисперсии, что связано с афтершоковой активностью после Луговского землетрясения 22.05.2003 г. В дальнейшем происходит медленный спад дисперсии, однако значение D превышает М до конца исследуемого периода.

Результаты этих построений свидетельствуют о возможном изменении закона распре-

деления сейсмичности, если во времени меняется характер соотношения между М и D. Для проверки этого положения были построены фактическое и теоретические распределения (Пуассона, Пойя и гамма-распределение) для различных выборок.

При построении фактического распределения для каждой из выборок определялся диапазон изменения числа событий за заданный интервал. В качестве такого единичного интервала рассматривались 1, 2, 5 и 10 суток. Далее подсчитывалось количество интервалов с m событиями (m=0, 1, 2, 3, ...). Результат нормировался на полное число интервалов и получалось фактическое распределение. Теоретические вероятности для распределений Пуассона и Пойя и ГР вычислялись по формулам (1-3). Исследования каталога KNET проведены в двухвременных диапазонах: за весь период 1994–2006 гг. (рис. 3) и за период 1999-2006 гг. - время работы сети в реальном режиме. Распределения построены как для всех событий, так и для отдельных выборок с событий 7 класса и с событий 7,5 класса.

Для количественной оценки соответствия распределений, для каждой выборки были получены значения критериев согласия: λ по

Таблица 2 Некоторые статистические характеристики исследуемых каталогов

Год	Всего	Дней Нет соб	Есть соб.	M	D	M/D	Макс.колич. событий/день	Макс. К	Приме- чание	
Каталог по данным сети КNET										
1994	318	200	166	0,903	1,502	0,601	7	9.82	класс	
1995	350	217	148	0,985	2.372	0,415	8	11,56	Проп.	
1996	540	125	240	1,491	2,577	0,578	8	13,04		
1997	255	217	148	0,706	1,193	0,591	6	9,55	Проп.	
1998	390	158	207	1,069	1,490	0,717	7	12,50		
1999	558	109	256	1,533	2,809	0,545	12	12,25		
2000	438	136	230	1,209	1,541	0,784	6	12,72		
2001	391	125	240	1,074	1,135	0,946	5	12,68		
2002	328	144	221	0,901	0,879	1,025	5	11,68		
2003	449	127	238	1,236	2,563	0,482	17	14,26		
2004	491	113	253	1,352	2,211	0,611	14	13,68		
2005	467	112	253	1,282	1,699	0,754	10	12,70		
2006	461	128	237	1,272	2,778	0,457	20	14,83		
			Ката	лог Инсп	итута с	ейсмолог	ии МОН РК			
All	4921	439	2118	1,925	2,575	0,740	15	14,60		
1996	718	55	310	1,96	2,119	0,924	7	14,60		
1997	735	69	296	2,019	3,335	0,605	13	14,60		
1998	968	47	318	2,66	4,39	0,605	15	13,90		
1999	710	54	311	1,95	2,45	0,795	9	12,80		
2000	618	70	295	1,69	1,75	0,965	8	12,60		
2001	549	78	287	1,51	1,477	1,020	5	14,20		
2002	622	70	295	1,70	1,72	0,988	8	12,5		

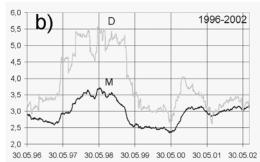


Рис. 2. Изменение значения M и D в окне 300 дней со сдвигом 1 день: a) – по каталогу KNET; b) – по каталогу KAZ.

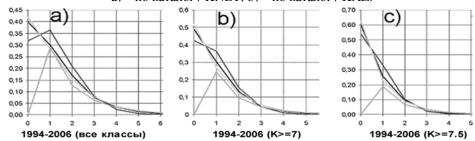


Рис. 3. Распределение: фактическое, Пуассона, Пойя и гамма-распределение за 1994—2006 гг.: a- для всех событий; b- для событий с K>=7, c- для событий с K>=7.5.

Таблица 3 Статистические характеристики распределения различных выборок для каталога сети KNET

	Колич	ество		D	λ с распределением			χ^2 с распределением		
Год	собы- тий	дней	M		Пуас.	Пойя	Гам.	Пуас.	Пойя	Гам.
94-06(all)	4741	5431	1.14	1.95	0.362	0.093	1.78	2.24e+10	7.51e-1	5.43e-2
94-06(7.0)	4741	4057	0.85	1.41	0.287	0.152	2.18	6.34e+12	3.88e-0	1.22e-1
94-06(7.5)	4741	2918	0.61	1.03	0.340	0.130	2.69	3.29+15	7.44e-0	1.76e-1
99-06(all)	2918	3581	1.22	1.97	0.195	0.222	1.50	1.62e+10	4.20e-0	1.54e-1
99-06(7.0)	2918	2897	0.99	1.53	0.157	0.210	1.81	8.91e+11	2.20e+1	3.40e-1
99-06(7.5)	2917	2070	0.70	1.12	0.173	0.253	1.27	5.54+14	4.90+1	5.39e-1
1999	360	303	0.84	1.20	0.138	0.065	1.36	4.28e-1	2.78e-2	3.65e-2
2000	361	354	0.98	1.22	0.195	0.096	1.06	4.98e-2	1.39e-2	4.25e-2
2001	364	332	0.91	0.90	0.053	0.051	0.87	9.67e-3	9.82e-3	1.84e-2
2002	360	284	0.78	0.80	0.080	0.070	1.00	1.89e-2	1.83e-2	3.2e-2
2003	363	400	1.10	2.38	0.174	0.476	1.05	1.56e+9	1.05e-0	3.98e-1
2004	363	410	1.12	1.58	0.108	0.141	1.10	1.14e+1	1.86e-1	9.87e-2
2005	364	403	1.10	1.52	0.180	0.213	1.12	3.00e+1	1.65e-1	4.71e-2
2006	363	411	1.13	2.56	0.320	0.449	1.76	4.77e+12	2.40e-0	6.58e-1
99-06 (7)	2918	1661	0.56	0.69	0.075	0.052	1.76	1.20e+1	4.10e-2	4.69e-2
99-06(8)	2911	811	0.27	0.36	0.047	0.073	2.18	1.97e+2	5.21e-2	8.89e-2
94-06 (2)	2369	4052	1.71	3.53	0.589	0.176	1.58	1.51e+18	1.41e+1	8.63e-1
94-06 (5)	947	4052	4.27	10.69	0.584	0.225	0.66	8.14e+12	1.33e-0	4.16e-0
94-06 (10)	473	4052	8.56	28.58	0.407	0.310	0.37	2.30e+19	7.63e-0	2.96e-0
99-06 (10)	290	2882	9.937	22.12	0.262	0.365	0.38	7.95e+16	1.38e+3	1.60e2

Таблица 4 Статистические характеристики распределения различных выборок KAZ

	Колич	нество			λсра	аспределе	нием	χ^2 с распределением		
Год	собы- тий	дней	M	D	Пуас.	Пойя	Гам.	Пуас.	Пойя	Гам.
96-02	4921	2118	1,925	2.575	0,098	0,073	0,66	7,59e+1	9,43e-2	3,01e-2
1996	718	310	1,96	2,119	0,052	0,079	0,398	2,55e-2	1,68e-2	4,23e-2
1997	735	296	2,019	3,335	0,242	0,109	0,673	3,94e+1	7,68e-2	4,266e-2
1998	968	318	2,66	4,39	0,219	0,112	0,489	5,99e+1	9,84e-2	7,88e-2
1999	710	311	1,95	2,45	0,140	0,138	0,429	2,20e-1	5,51e-2	2,96e-2
2000	618	295	1,69	1,75	0,028	0,023	0,542	2,43e-2	1,79e-2	4,91e-2
2001	549	287	1,51	1,477	0,076	0,084	0,468	1,10e-2	1,19e-2	2,39e-2
2002	622	295	1,70	1,72	0,102	0,099	0,536	3,51e-2	3,34e-2	6,12e-2

критерию Колмогорова-Смирнова и χ^2 (хи-квадрат). Результаты расчетов для каталогов KNET и KAZ приведены в табл. 3 и 4 соответственно.

Как видно из рис. 3 и табл. 3, 4, для всех выборок фактическое распределение согласуется с распределением Пойя, в меньшей степени – с Пуассоновским, а с ГР, начиная со значения $n \ge 1$. Значение коэффициента согласия λ не превышает 0,13 для распределения Пойя,

для распределения Пуассона изменяется в пределах 0,28-0,36. По критерию согласия хи-квадрат, значение χ^2 имеет низкие значения с распределением Пойя, а с распределение Пуассона χ^2 значение увеличивается на порядок (см. табл. 2). Распределения, построенные за более короткий период — 1999-2006 гг., отличаются от предыдущих тем, что уменьшилось количество дней отсутствия землетрясений. Это может соответствовать общему росту

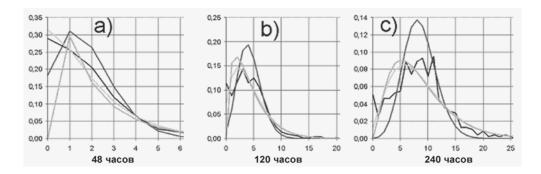


Рис. 4. Распределение сейсмичности для различных значений "условных" суток: a) - 48 часов; b) - 120 часов; c) - 240 часов.

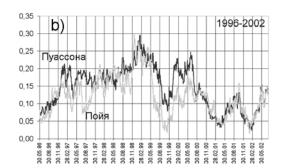


Рис. 5. Изменение λ по критерию согласования Колмогорова-Смирнова во времени (скользящее окно -300 дней, сдвиг -1 день) для выборок: a) - по KNET, b) - по KAZ.

сейсмичности Евразии после 1999 г. Для всех выборок фактическое распределение удовлетворительно согласуется и с распределением Пуассона, и с распределением Пойя; в обоих случаях значения λ не превышают значения 0,273 (табл. 3).

Особенности распределений количества землетрясений по интервалам, превышающим по длительности 1 сутки, показаны на рис. 4, где фактическое и теоретические распределения построены для интервалов в 2,5 и 10 суток. Расчет показал, что и в этих случаях (для выборок по любому из интервалов) коэффициент согласия λ и χ^2 заметно ниже с распределением Пойя, чем с Пуасона. По изменению коэффициентов согласия отмечено, что с увеличением длительности единичного интервала соответствие ΓP с наблюдениями становится более корректным.

При исследовании выборок, составленных из событий, входящих в определенный энергетический диапазон: 7 < K < 8 и 8 < K < 9 было обнаружено, что коэффициенты согласия λ и χ^2 с распределением Пойя и Пуасона имеют низкие значения, т.е. фактическое и теоретические распределения максимально совпадают (табл. 3).

Для КАZ были проанализированы распределения выборок, сформированных по годам. Согласно численным результатам, представленным в табл. 4, в определенные периоды времени распределения Пуассона и Пойя хорошо согласуются (1996, 2000–2002 гг.). Следует заметить, что это согласование проявляется в те же годы, что были отмечены и по данным сети КNET. В 1997–1999 гг. характер этих распределений незначительно отличается, при этом λ в обоих случаях не превышает значения 0,242.

На рис. 5 показано детальное изменение параметров согласования λ (по критерию Колмогорова-Смирнова), для чего использовался метод "скользящего окна" с параметрами, указанными выше.

Отмечено, что значение λ до 2003 г. не превышает значения 0.28. Начиная с 2003 г. значение λ с распределением Пойя резко возрастает, а затем снова снижается и не превышает значения 0.3 для каталога KNET, а по каталогу KAZ эта величина не превышает значение 0.3 на протяжении всего периода исследования. Как было указано выше, критерий χ^2 менее устойчив для оценки согласия. Однако и для него оказалось, что коэффициенты согласия с распределениями Пойя и Пуассона стабильны в асейсмический период и возрастают многократно в периоды активации сейсмичности, но при этом их значения всегда ниже для распределения Пойя. Таким образом,

оба критерия свидетельствуют о наилучшем соответствии реального потока событий распределению Пойя.

Литература

- 1. *Шайдеггер А.* Физические аспекты природных катастроф. М.: Недра, 1981. 232 с.
- 2. Венцтель E.C. Теория вероятностей. М.: Наука, 1969. 576 с.
- 3. *Корн Г., Корн Т.* Справочник по математике для научных работников и инженеров. М.: Наука, 1973. 831 с.
- 4. Sychev V.N., Avagimov A.A., Bogomolov L.M. et al. Correlation properties of weak seismicity at Bishkek geodynamic test site in relevance to active monitoring problem // Вестн. КРСУ. 2006. Т. 6. №3. С. 79–86.
- 5. *Лоу А.М., Кельтон В.Д.* Имитационное программирование. М.: Питер, 2004. 846 с.