УДК 515.12

ФУНКТОР Р_п И ПАРАКОМПАКТНЫЕ Р-ПРОСТРАНСТВА

Ю.В. Садовничий

Основной результат: свойства пространств $P_n(X) \in C$ и $X^n \in C$ эквивалентны, где $P_n - функтор$ вероятностных мер с конечными носителями, а X – паракомпактное p-пространство. Все пространства предполагаются нормальными, все отображения – непрерывными.

Ключевые слова: функтор; паракомпактное *p*-пространство; категория; вероятностная мера; носитель.

FUNCTOR P, AND PARACOMPACT P-SPACES

Y.V. Sadovnichy

The main result is: the properties of spaces $P_n(X) \in C$ and $X^n \in C$ are equivalent where P_n – is the functor of probability measures with finite supports, and X – is a paracompact *p*-space. All spaces are assumed to be normal, and all mappings are continuous.

Keywords: functor; paracompact p-space; category; probability measure; support.

Definition. 1 A space X is called $C - (notation: X \in C)$ if for every sequence $u_i \in cov(X)$, $i \in \mathbb{N}$ of open coverings of a space X there exists a sequence v_i of disjoint families of open subsets of X, such that v_i refines u_i and $\bigcup \{v_i : i \in \mathbb{N}\} \in cov(X)$.

Definition. 2 A covariant functor \mathcal{F} : Comp \rightarrow Comp, acting in the category of compact spaces and their continuous mappings is called a normal functor if it

1) preserves a point and the empty set;

2) preserves the weight of infinite compacta;

3) is monomorphic;

4) is epimorphic;

5) is continuous;

6) preserves intersections;

7) preserves inverse images.

For a functor \mathcal{F} preserving intersections and for any element $a \in \mathcal{F}(X)$ we define its *support* supp a as supp $a = \bigcap \{Y \subset X : Y \text{ is closed and } a \in \mathcal{F}_X(Y)\}$. For a normal functor \mathcal{F} , we define its subfunctor \mathcal{F}_n , $n \in \mathbb{N}$ in the following way: $\mathcal{F}_n(X) = \{a \in \mathcal{F}(X) : | \text{ supp } a | \le n\}$. It is easy to check that $\mathcal{F}_n(X)$ is closed in $\mathcal{F}(X)$ and thus \mathcal{F}_n is a normal functor in the category Comp. In this case, the functor \mathcal{F}_1 is isomorphic to the identity functor Id. The functor P of probability measures and its subfunctors P_n are normal functors ([1], Chapter VII).

For a normal functor \mathcal{F} and a compactum X, Basmanov [2] defined a sequence of mappings

$$\pi = \pi_n = \pi_{n,X} : C(n,X) \times \mathcal{F}(n) \to \mathcal{F}_n(X) \tag{1}$$

by the equality

$$\pi(\xi, a) = \mathcal{F}(\xi)(a). \tag{2}$$

Mappings (1) can be defined for an arbitrary Tychonoff space. To do this, we need only define the space $\mathcal{F}_n(X)$. Let

$$\mathcal{F}_{n}(X) = \left\{ a \in \mathcal{F}_{n}(\beta X) : \text{supp } a \subset X \right\}$$
(3)

The identity embedding $\mathcal{F}_n(X) \subset \mathcal{F}_n(\beta X)$ induces a topology on the set $\mathcal{F}_n(X)$. Equation (3) defines a functor \mathcal{F}_n :Tych \rightarrow Tych, which have all properties of normal functor. Nevertheless, mappings (1), generally speaking, are not closed. But we prove the following statement.

Proposition. 3 The mapping

 $\pi = \pi_{n,X} : \pi_{n,X}^{-1}(\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)) \to \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X) \text{ is closed for any Tychonoff space } X.$

To prove this statement, it is enough to consider the embedding $X \subset \beta X$ and show that

$$\pi_{n,X}^{-1}(\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)) = \pi_{n,\beta X}^{-1}(\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)).$$

$$\tag{4}$$

The proof of equality (4) splits into several lemmas, in which the set $\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)$ is denoted by Y and equation (2) is multiply applied.

Lemma. 4 If $\mathcal{F}(\xi)(a) = b \in Y$, then $\operatorname{Im} \xi = \operatorname{supp} b$.

Proof. Let supp $b = \{x_0, ..., x_{n-1}\}$. Since \mathcal{F} preserves supports, we have $\xi(\text{supp } a) = \text{supp } \mathcal{F}(\xi)(a) =$ = supp $b = \{x_0, ..., x_{n-1}\}$. Therefore, $| \text{ supp } a | \ge n$, i. e. supp $a = \{0, 1, ..., n-1\}$. Therefore, Im $\xi = \xi(\text{supp } a) =$ = supp b.

Lemma. $\pi_{n,\beta X} \mid C(n,X) \times \mathcal{F}(n) = \pi_{n,X}$ 5.

Proof. Have $\pi_{n,\beta X}(\xi,a) = \mathcal{F}(\xi)(a) = (\underset{since}{\xi} \in C(n,X)) = \pi_{n,X}(\xi,a).$

The next results follows from Lemma 1:

Lemma. $\pi_{n,\beta X}^{-1}(Y) \subset C(n,X) \times \mathcal{F}(n)$ 6.

Proof of equality (4). It suffices to check the inclusion \supset . Let $(\xi, a) \in \pi_{n,\beta X}^{-1}(Y)$. So, $\xi \in C(n, X)$ by Lemma 3. But then $(\xi, a) \in \pi_{n,X}^{-1}(Y)$ by Lemma 2.

Recall that a mapping $f: X_1 \to X_2$ is called *local homeomorphism*, if for every point $x \in X_1$ there exists a neighborhood Ox such that the mapping $f: Ox \to f(Ox)$ is a homeomorphism onto an open subset of X_2 .

Proposition. 7 For any normal functor \mathcal{F} : Comp \rightarrow Comp and any Tychonoff space X, the mapping

 $\pi_{n,X}:\pi_{n,X}^{-1}(\mathcal{F}_n(X)\setminus\mathcal{F}_{n-1}(X))\to\mathcal{F}_n(X)\setminus\mathcal{F}_{n-1}(X) \text{ is a local homeomorphism. Thus } |\pi_{n,X}^{-1}(b)|=n! \text{ for any } b\in\mathcal{F}_n(X)\setminus\mathcal{F}_{n-1}(X).$

Proof. Let $(\xi, a) \in \pi_{n,X}^{-1}(Y)$, where $Y = \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)$ and let $\pi_{n,X}(\xi, a) = b$. The support of the element b consists of n points x_0, \dots, x_{n-1} . We can assume that $\xi(i) = x_i$. Next, since $b \in Y$, we have $a \in \mathcal{F}_n(n) \setminus \mathcal{F}_{n-1}(n)n$. Then

$$\pi_{n,X}^{-1}(b) = \{ (\xi \circ \sigma, \ \mathcal{F}(\sigma^{-1})(a)) : \sigma \in S_n \},$$
(5)

Where S_n is the symmetric group of permutations of the set $n = \{0, 1, ..., n-1\}$. Indeed, let $(\xi', a') \in \pi_{n,x}^{-1}(b)$. Then from Lemma 1 it follows that ξ' is a bijection of the set n onto $\{x_0, ..., x_{n-1}\}$ and therefore $\xi' = \xi \times \sigma$ for some $\sigma \in S_n$. Next,

$$\mathcal{F}(\xi)(a) = b = \mathcal{F}(\xi)(a) = \mathcal{F}(\xi \circ \sigma)(a) = \mathcal{F}(\xi)(\mathcal{F}(\sigma)(a)), \quad \text{i.e.} \quad \mathcal{F}(\xi)(a) = -\mathcal{F}(\xi)(\mathcal{F}(\sigma)(a)). \tag{6}$$

But $\xi: n \to \{x_0, ..., x_{n-1}\}$ is a monomorphism and \mathcal{F} preserves monomorphisms. Therefore, $a = \mathcal{F}(\sigma)(a')$, i.e. $a' = \mathcal{F}(\sigma^{-1})(a)$. Thus, equation (5) together with the last assertion of Proposition 2 are established.

Consider any neighborhoods $Ox_0, ..., Ox_{n-1}$ of the points $x_0, ..., x_{n-1}$ such that any two neighborhoods have nonempty intersection. Let $U_{\sigma} = Ox_{\sigma(0)} \times ... \times Ox_{\sigma(n-1)} \times (\mathcal{F}(n) \setminus \mathcal{F}_{n-1}(n))$. Identifying the monomorphism ξ with

Вестник КРСУ. 2016. Том 16. № 5

Im ξ , we find that the set U_{σ} is a neighborhood, in the space $C(n,X) \times \mathcal{F}(n)$, of any pair (ξ,a) , where $a \in \mathcal{F}(n) \setminus \mathcal{F}_{n-1}(n)$ and $\operatorname{Im} \xi \cap Ox_{\sigma(i)} \neq \emptyset$ for every i = 0, ..., n-1. Therefore, equality (5) implies that

$$\pi_{nX}^{-1}(\pi_{nX}(U)) = U, \tag{7}$$

where $U = \bigcup \{U_{\sigma} : \sigma \in S_n\}$. From Proposition 1 and equality (6), the openness of the set $\pi_{n,X}(U)$ follows. Further, the components U_{σ} in equation (7) are pairwise disjoint and, therefore, are clopen in U. It remains to show that the mappings

$$\pi_{n,X}: U_{\sigma} \to \pi_{n,X}(U) \tag{8}$$

are bijections, since these mappings are closed by Proposition 1. But, according to (5), the inverse image $\pi_{n,X}^{-1}(b)$ consists of n! points for every $b \in Y$. Therefore, the mappings from (8) are bijections, since we will prove that all of them are surjective. But the latter also follows from (5).

Measures on paracompact *p*-spaces

Theorem. 8 Let X be a paracompact p – space. Then $P_n(X) \in C \subset X^n \in C$.

Proof. Let's start with the implication \Rightarrow . We use the induction on *n*. When n = 1 the statement is evident. To make the inductive transition $n-1 \rightarrow n$, it suffices to show that $X^n \times P(n) \in C$. For this, in turn, it is enough to check that $\pi_n^{-1}(P_{n-1}(X)) \in C$,

$$\pi_n^{-1} Z \in C \tag{9}$$

for any closed set $Z \subset P_n(X) \setminus P_{n-1}(X)$. Property (9) follows from a theorem of Hattori-Yamada about a closed inverse image of C – spaces [3], paracompactness of Z, and the statement that the mapping $\pi_n : \pi_n^{-1}Z \to Z$ is a local homeomorphism according to Proposition 2.

Now, for $1 \le i < j \le n$ we define the set $X_{ij} \subset X^n$ as follows. Assume that $X^n = X_1 \times \ldots \times, X_n$, where X_k are copies of the space X. Denote by Δ_{ij} the diagonal of the square $X_i \times X_j$ and put $X_{ij} = \Delta_{ij} \times \prod \{X_k : k \ne i, k \ne j\}$. Then the space X_{ij} is homeomorphic to X^{n-1} and so is a C-space by the induction hypothesis, since $P_{n-1}(X)$ is closed in $P_n(X)$.

Put $Y = (\bigcup \{X_{ij} : 1 \le i < j \le n\}) \times P(n)$. The space Y is the union of a finite number of closed subspaces $X_{ij} \times P(n)$, each of them being a C-space by Hattori-Yamada theorem on the product of C-spaces [3]. Therefore, $Y \in C$. To complete the proof, it is enough to check that $\pi_n^{-1}(P_{n-1}(X)) \subset Y$. But if $\pi_n(\xi,\mu) = P(\xi)(\mu) \in P_{n-1}(X)$, then there exist two coordinates x_i and x_j of a point $\xi = (x_1,...,x_n)$ such that $x_i = x_j$ and, consequently, $\xi \in X_{ij}$.

Now let us check the implication \leftarrow . If $X^n \in C$, then $X^n \times P(n) \in C$ by the above mentioned theorem of Hattori-Yamada. The condition $P_n(X) \in C$ can be checked by induction on n. For the implementation of inductive transition $n-1 \rightarrow n$, it is enough to show that $Z \in C$ for any subset $Z \subset P_n(X) \setminus P_{n-1}(X)$ closed in $P_n(X)$. But $Z = \pi_{n,X}(\pi_{n,X}^{-1}(Z))$ and the mapping $\pi_{n,X} : \pi_{n,X}^{-1}(Z) \rightarrow Z$ is closed due to Proposition 1, and it is finite-fold according to equality (5). Therefore $Z \in C$ by Theorem 3.5 of [4].

References

- 1. *Fedorchuk V.V.* General topology. Basic constructs / V.V. Fedorchuk, V.V. Filippov. Moscow: Fizmatlit, 2006 (in Russian).
- Basmanov V.N. Covariant functors, retracts and dimension / V.N. Basmanov // Doklady AN SSSR. 1983, 271(5). P. 1033–1036 (in Russian).
- 3. Hattori Y. Closed pre-images of C-spaces / Y. Hattori, K. Yamada // Math. Japonica. 1989, 34. P. 555-561.
- Fedorchuk V.V. Weakly infinite-dimensional spaces / V.V. Fedorchuk // Russian Math. Surveys, 2007, 62(2). P. 323–374.