Исходя из данных таблицы, можно сделать вывод о том, что жесткость воды в целом обусловлена солями кальция $(1,1\ \text{мг-экв/л})$, что составляет 91.6% от общей жесткости. На долю солей магния приходится 8.4% соответственно.

рН воды составил 7.52, что характеризует слабошелочную реакцию среды.

Результаты анализа по определению содержания тяжелых металов приведены в таблице 2.

Таблица 2.

Содержание тяжелых металлов в воде реки "Теплые ключи"

	COMPANIE THE PROPERTY OF PARTY											
Место отбора	oa											
пробы										нк		
	Факт	ПДК	Факт	ПДК	Факт	ПДК	Факт	ПДК	Факт	ПДК	Факт	ПДК
Река «Тёплые	0,04± 0,0081	0,03	0,001	0,001	-		-		<0,003	1	1,30	5
ключи»												

Проанализировав данные таблицы 2, получили следующее: содержание свинца составляет 0.04 мг/дм^3 , что превышает ПДК в 1.3 раза (0.04/ПДК 0.03), содержание кадмия – в пределах ПДК (0.001/ПДК 0.001), меди и цинка ниже допустимых концентраций $(0.003/ПДК 1.0 \text{ и } 1.30/ПДК 5.0, \text{мг/дм}^3 \text{ соответственно})$.

Результаты микробиологического анализа приведены в таблице 3.

Таблица 3.

Содержание микробиологических загрязнителей.

Место отбора пробы	Общее микробное число, КОЕ/мл		Общие колифе ые бактер КОЕ/м	ормн оии,	Термотолератные колиформные бактерии, КОЕ/мл		Глюкозоположитель ные бактерии, КОЕ/мл		Споры сульфидредуцирую щих клостридий, КОЕ/мл		P. Aeruginos а в 1000 см ³	
	Фак т	нд	Факт	НД	Факт	нд	Факт	нд	Факт	нд	Фак т	НД
Река «Тёпл ые ключи »	300	Не боле е 100	обн.	300	обн.	300	Не обн.	300	Не обн.	200	Не обн.	Не до п

Из таблицы 3 следует: общее микробное число, КОЕ/мл составило 300 при норме 100, обнаружены термотолерантные колиформные бактерии, что свидетельствует о достаточно сильном микробиологическом загрязнении данной воды. Общие колиформные бактерии, глюкозоположительные колиформные бактерии, споры сульфитредуцирующих клостридий, P.aeruginosa в 1000 см³ не обнаружены.

Все выше сказанное свидетельствует о том, что вода реки "Теплые ключи" не пригодна к употреблению без предварительной очистки.

Список литературы

- 1. Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа природных вод, М., "Недра", 1970
 - 2. Алекин О.А. Основы Гидрохимии, Гидрометеоиздат, 1970
 - 3. Шапиро С.А., Шапиро М.А. "Аналитическая химия" М., Высшая школа, 1971
- 4. Крешков А.П., Ярославцев А.А. Курс Аналитической Химии. Количественный анализ М. "Химии", 1982
 - 5. Методические указания к лабораторным работам по аналитической химии Бишкек, "Текник", 2007

УДК: 543.067.5:332.368(578.2)

ИССЛЕДОВАНИЕ УРОВНЯ ЧИСТОТЫ ВОДЫ РОДНИКА «ТЕПЛЫЕ КЛЮЧИ»

Насибуллин Э.И., Джунушалиева Т.Ш., Дуйшенбиева Э.А.

Кыргызский государственный технический университет им. И. Раззакова, Бишкек, Кыргызская Республика, E-mail: edil_darius@mail.ru

INVESTIGATION OF FREQUENCY OF WATER SPRING "TEPLYE CLUCHII"

Nasibullin E.I., Djunushalieva T.Sh.

Kyrgyz State Technical University named after I. Razzakov, Bishkek, Kyrgyz Republic

E-mail: edil darius@mail.ru

В работе рассматриваются исследований основных показателей природной воды: pH, жесткость, общая и карбонатная, а также микробиологические показатели, КОЕ/мл: общее микробное число, общие колиформные бактерии, термотолерантные колиформные бактерии, глюкозоположительные колиформные бактерии, споры сульфитредуцирующих клостридий, P.aeruginosa в 1000 см³.

Количество токсических веществ и микробиологических загрязнителей воды постоянно увеличивается как в развитых, так и в развивающихся странах: от привычных загрязнителей (тяжелых металлов, продуктов нефтеперегонки) до канцерогенных соединений, а также паразитов, патогенных бактерий и вирусов (например, холерного вибриона). Увеличивающееся население Земли, особенно та его часть, что проживает в городах, а также продолжающийся рост потребления воды — особенно в производстве, сельском хозяйстве и энергетике — вызывает и большие затраты водных ресурсов из традиционных источников.

Для контроля качества природных вод, необходимо производить постоянный мониторинг их, на присутствие микробных загрязнителей. С этой целью, нами были проведены исследования воды источника "Теплые ключи" по определению солей, общей и карбонатной жесткости, рН и микробных загрязниетелей.

Общая жесткость воды и содержание ионов кальция определялось трилонометрическим титрованием в присутствии индикаторов эриохрома черного и мурексида соответственно, а жесткость карбонатная определялась методом ацидиметрического титрования.

Результаты определения жесткости воды родники «Теплые ключи» приведены в таблицах 1.

Таблица 1

Место отбора пробы	Показатели								
	pН	Жест. общ эк		Жест. карб., мг- экв/л	Жест. пост., мг- экв/л	Са ²⁺ , мг- экв/л			
		Факт.	ПДК						
Родник «Тёплые ключи»	6,5	1,2	7,0	0,6	0,6	1,0			

По данным химиеского анализа, общая жесткость воды в данном роднике составляет 1,2 мг-экв/л, 0.6 мг-экв/л которой составляет карбонатная жесткость. Содержания калция составляет 1,0 мг-экв/л, что свидетельствует о том, что жесткость в основном обуславливается солями кальция. рН воды равна 6,5, то есть реакция среды близка к нейтральной. Водородный показатель рН определялся потенциометрически.

Результаты микробиологического исследования природной воды родника "Теплые ключи" приведены в таблице 2

Таблица 2

Результаты испытаний по микробиологическим показателям.

	гезультаты испытании по микрооиологическим показателям.												
Место	Общее Общие		Термотолератн		Глюкозоположитель		Споры		P.				
отбора	микробно колиформн		ые		ные бактерии,		сульфидредуцирую		Aeruginos				
пробы	е числ	ю,	ые		колиформные		КОЕ/мл		щих клостридий,		ав 1000		
	КОЕ/мл бактерии,		бактерии,				КОЕ/мл		cm ³				
	КОЕ/мл		КОЕ/м	КОЕ/мл		КОЕ/мл							
	Фак	Н	Факт	НД	Факт	НД	Факт	НД	Факт	НД	Фак	Н	
	T	Д									T	Д	
Родник	He	<1	He	300	Не	300	Не обн.	300	Не обн.	200	He	Не	
«Тёпл	боле	0	обн.		обн.						обн.	до	
ые	e											П	
ключи	100												
»													

Результаты исследования показали, что вода родника "Теплые ключи" является пригодной к употреблению, так как в ней не были обнаружены колиформные бактерии, термотолерантные колиформные бактерии, глюкозоположительные бактерии и споры султфмдоредуцирующих клостридий. Это означает, что в воде отсутствует нежелательная микрофлора, представляющая угрозу для здоровья человека.

Список литературы

- 1. Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа природных вод, М., "Недра", 1970
 - 2. Алекин О.А. Основы Гидрохимии, Гидрометеоиздат, 1970
- 3. Крешков А.П., Ярославцев А.А. Курс Аналитической Химии. Количественный анализ М. "Химии", 1982
 - 4. Цитович И.К. "Курс Аналитической химии" М., Высшая школа, 1985
 - 5. Методические указания к лабораторным работам по аналитической химии Бишкек, "Текник", 2007

УДК 546.185

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ ЦИКЛОТЕТРАФОСФАТА АММОНИЯ И АЗОТНОКИСЛОГО КАДМИЯ В ВОДНОЙ СРЕДЕ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ.

Хусаинова Р.Ю., Оморбекова А. Н.

Кыргызский государственный технический университет им. И. Раззакова. Институт горного дела и горных технологий им. У.А. Асаналиева, Бишкек, Кыргызская Республика.

E-mail: omorbekova.aidai@mail.ru

STUDY OF THE INTERACTION IN THE SYSTEM TSIKLOTETROFOSFATA CADMIUM NITRATE AND AMMONIUM IN AN AQUEOUS MEDIUM AT ROOM TEMPERATURE.

Khusainova R.Y., Omorbekova A.N.

Kyrgyz State Technical University named after I.Razzakov. Institute of Mining and Mining Technologies named W.A. Asanalieva, Bishkek, Kyrgyz Republic.

E-mail: omorbekova.aidai@mail.ru

В работе рассматривается методом остаточных концентраций изучение систем $(NH_4)_4P_4O_{12}$ - $Cd(NO_3)_2$ – H_2O в широком интервале мольного отношения $n=(NH_4)_4P_4O_{12}$: $Cd(NO_3)_2=1,0$ -4,0. Установлено, что взаимодействие в системах протекает сложно, сопровождаясь первичными и вторичными реакциями.

Цель работы: Изучить химизм взаимодействия циклотетрафосфата аммония и азотнокислого кадмия в водной среде.

При этом решались следующие задачи:

-выделить соединения, установить состав, условия образования и изучить их физико-химические свойства:

-выяснить характер и механизм протекания в системах вторичных реакций, а также возможность использования.

Научная новизна: Установлено протекание в них вторичных превращений (ВП) соединений, образующихся при непосредственном, первичном взаимодействии исходных компонентов.

Взаимодействие циклотетрафосфата аммония и азотнокислого кадмия в водной среде мало изучено.

Представляет практический интерес – применить вторичные реакции как основу для разработки рациональных способов синтеза новых соединений.

Условия образования ЦТФ (циклотетрафосфатных) соединений в водных растворах исследовались методами растворимости и измерения концентрации водородных ионов (pH).

Система была изучена при постоянной исходной концентрации азотнокислого кадмия, равной 0,05 моль/л. Количество циклотетрафосфата аммония изменялось в молярном отношении исходных компонентов, обозначенном через «п»= $(NH_4)_4P_4O_4$: Cd $(NO_3)_3$ =0-4,0. При смешивании двух компонентов в отношении «п»=;0,5; 1,0;2,0;3,0;4,0; сразу твердая фаза не образуется. Осадки появляются, спустя некоторое время, длительность которого(индукционный период) находится в зависимости от значения «п» и концентрации азотнокислого кадмия. При «п» равный 0,5 индукционный период длится 10-12дней, при «п» равный 1,0 -30-35 минут.Количество кристаллического осадка постепенно увеличивается, но равновесие устанавливается медленно приблизительно через 4 дня. Визуально максимальноеколичество осадка наблюдается в смеси, где «п»=0.5.В «псоотношения компонентов «π»≥2,0 при выстаивании разрезе C системы концентрациейCd(NO₃)₃равный0,05М. осадки невыпадают 2-2,5 месяца.

В табл.1 приведены результаты определения остаточных концентраций и рН в равновесных растворах.

На рис. 1 и 2 они изображены графически.

Из таблицы и рисунка 1 видно, что отношение $P_4O_{12}^4$: Cd^2 в твердых фазах в интервале n=0.5-1,0