УДК 621.01/03 (575.2) (04)

РАЗРАБОТКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ СТАБИЛИЗАЦИИ ПОДАЧИ ГИДРАВЛИЧЕСКОГО ПРИВОДА

М.П. Зенкова, А.П. Муслимов

Представлены материалы по разработке автоматической системы стабилизации скорости подачи инструмента с гидравлическим приводом, а также результаты исследования, доказывающие ее работоспособность.

Ключевые слова: автоматическая система; стабилизация; обратная гидравлическая связь; чистовая механическая обработка; статика и динамика.

Общеизвестно, что для получения качественной поверхности при финишной обработке поверхностей необходимо, чтобы скорость подачи инструмента была постоянной независимо от воздействия внешних возмущающих сил¹.

В экспериментальной установке приводом подачи является силовой цилиндр с дроссельным регулированием, схема которой показана на рисунок 1.

Рисунок 1 – Схема привода подачи инструмента: 1 – насос с постоянной производительностью; 2 – предохранительный клапан с переливным золотником типа Г52; 3 – дроссель; 4 – силовой

цилиндр

Скорость движения поршня определяется следующей формулой:

$$v = \frac{\mu F_{\rm Ap} \sqrt{\frac{2g}{\gamma} (P_{\rm H} - P)}}{F} - K_{\rm yr} \frac{R_{\rm H} + \Sigma R_{\rm Tp}}{F^2}, \qquad (1)$$

где т
 — коэффициент расхода, равный 0,65; $F_{_{\rm дp}}-$ площадь щели дросселя;
 g– ускорение свободного

¹ Муслимов А.П., Нифадьев В.И., Пахомов П.И. Расчет и проектирование гидравлических систем машин. Бишкек: Изд-во КРСУ, 2006. падения; *g* – удельный вес жидкости; *P*_{*n*} – давление насоса; *P* – рабочее давление, $P = \frac{R_{\rm H} + \Sigma R_{\rm TP}}{F^2}$; *R*_{*n*} – полезная нагрузка; *SR*_{TP} – суммарные силы трения; *K*_{YT} – коэффициент утечек.

Из формулы (1) видно, что скорость силового цилиндра изменяется с изменением нагрузки по двум причинам: меняются расход дросселя и внутренние утечки в силовом цилиндре. Например, при увеличении нагрузки расход жидкости, протекающий через дроссель, уменьшается, а утечки возрастают. Формула (1) графически представлена на рисунке 2.

Таким образом, для стабилизации скорости движения силового цилиндра необходимо автоматически управлять величиной регулируемого параметра *v*.

Рисунок 2 – График изменения скорости силового цилиндра от нагрузки

Вестник КРСУ. 2012. Том 12. № 10

На рисунке 3 приведена разработанная авторами принципиальная схема стабилизации скоростного силового цилиндра с обратной гидравлической связью.

Рисунок 3 – Принципиальная схема стабилизации скорости подачи инструмента

Схема стабилизации скорости подачи инструмента состоит из насоса 1 с постоянной производительностью, дросселя 2 золотникового типа, основного клапана 3, пружины 4, редукционного клапана 6, параллельно подключенного к дросселю для обеспечения постоянства перепада давления $DP=(P_{\rm H}-P)=const$ на дросселе не зависимо от нагрузки на силовом цилиндре 7, демпферов 5 для гашения колебания давления в системе в переходных режимах.

Стабилизация скорости подачи инструмента v обеспечивается следующим образом: при возрастании нагрузки на силовом цилиндре $R_{\rm H}$ повышается давление в его рабочей полости $P = \frac{R_{\rm H}}{F}$, где F – площадь поршня.

При этом возрастают внутренние утечки в силовом цилиндре $Q_{yT} = K_{yT}P$, что ведет к уменьшению скорости поршня.

Одновременно возросшее давление P перемещает основной клапан дросселя вправо, при этом величина проходной щели дросселя h возрастает настолько, чтобы компенсировать внутренние утечки в силовом цилиндре.

Скорость движения силового цилиндра с обратной гидравлической связью определяется следующим выражением для случая увеличения нагрузки на DR_u:

$$v = \frac{Q}{F} - \frac{K_{\rm yr}P}{F} + \frac{\mu\pi d}{\gamma} \sqrt{\frac{2g}{\gamma} \Delta P \cdot \Delta h}{F},$$
 (2)

где Dh – величина дополнительного открытия щели дросселя под действием усилия DR_{μ} ; d – диаметр клапана.

С другой стороны,
$$Q = \mu \pi d \sqrt{\frac{2g}{\gamma}} \Delta P \cdot h;$$

 $K_3 = \mu \pi d \sqrt{\frac{2g}{\gamma}} \Delta P$ – коэффициент усиления дросселя.

Условие равновесия клапана:

$$\frac{\Delta R_{\rm H}}{F} f_{\rm KI} = C\Delta h,\tag{3}$$

где $f_{\kappa n}$ – площадь торца клапана; C – коэффициент жесткости пружины дросселя.

С учетом приведенного выше соотношения формула (2) примет вид:

$$v = \frac{K_3(h + \Delta h)}{F} - \frac{K_{yT}(R_{H} + \Delta R_{H})}{F^2}.$$

Очевидно, что для полной стабилизации необходимо выполнение следующего условия:

$$\frac{K_3\Delta h}{F} = K_{\rm yT} \frac{\Delta R_{\rm H}}{F^2}.$$
(4)

Коэффициент жесткости пружины и площадь торца клапана определяются из формулы (3).

На рисунке 4 приведена расчетная схема регулятора расхода дроссельного типа.

Рисунок 4 – Расчетная схема регулятора

Уравнение динамического равновесия золотника регулятора расхода имеет вид:

$$M\frac{d^{2}h}{dt^{2}} + F_{\nu} + F_{y\pi} + F_{\Gamma H \pi} = \frac{R_{H}}{F}f_{\kappa \pi},$$
 (5)

где M – масса якоря и клапана; F_{v} – сила вязкого трения между клапаном и корпусом регулятора.

$$F_{v} = 6\pi\eta RV$$

где R – радиус клапана; V – скорость движения клапана, в данном случае V = 0,1 м/с; $\eta = 0,01$ Па×с – динамическая вязкость масла; F_{yn} – сила упругости пружины регулятора и равна $F_{yn} = ch$; F_{rug} – гидродинамическая сила потока масла, проходящего через регулятор, которая равна $F_{rug} = 2\mu xhDPcos69^{0}$, где $\mu = 0,61$ – коэффициент расхода для таких регуляторов; x – периметр пропускной щели, в данном случае $x = \pi d$, d – диаметр пропускной щели.

Вестник КРСУ. 2012. Том 12. № 10

Подставляя указанные выше формулы в уравнение равновесия, получим:

$$M\frac{d^{2}h}{dt^{2}} + 6\pi\eta RV + ch + 2\mu xh\Delta P\cos 69^{0} = f_{\rm KH}\frac{R_{\rm H}}{F}$$

или поделив на $c + 2\mu x DP \cos 69^{\circ}$, получим:

$$\left(T_{0}^{2}P^{2} + 2\xi T_{0}P + 1\right)h = f_{\kappa\pi}\frac{R_{\rm H}}{F},\tag{6}$$

где T_0 – постоянная времени клапана, равная T_0 – M

$$I_{0} = \sqrt{\frac{1}{c + 2\mu x \Delta P \cos 69^{0}}};$$

$$\xi - \kappa_{0} = \frac{3\mu \eta R}{3\mu \eta R}$$

$$T_0 (c + 2\mu x \Delta P \cos 69^0)^2$$

$$k_{\kappa\pi} = \frac{f_{\kappa\pi}}{(c + 2\mu x \Delta P \cos 69^0)F}$$
(с + 2 $\mu x \Delta P \cos 69^0)F$

Решая уравнение, получим:

$$h(t) = 1 - e^{-\frac{t}{T_0}} \left(1 + \frac{t}{T_0}\right).$$
(7)

Передаточная функция данного звена

$$W_{\pi}(P) = \frac{\Delta h(P)}{\Delta R_{\mu}(P)} = \frac{k_{\kappa\pi}}{T_0^2 P^2 + 2\xi T_0 P + 1}.$$

Структурная схема имеет следующий вид:
$$\underbrace{\frac{k_{\kappa\pi}}{T_0^2 P^2 + 2\xi T_0 P + 1}}$$

Расчетные данные и динамическая характеристика приведены в таблице 1 и на рисунке 5.

Таблица 1 – Расчетные данные	регулятора	расхода
------------------------------	------------	---------

<i>t</i> , c	<i>T</i> , c	h(t)
0	0,0093	0
0,001	0,0093	0,10182403
0,01	0,0093	0,29190178
0,011	0,0093	0,47922713
0,02	0,0093	0,63320913
0,021	0,0093	0,74918136
0,03	0,0093	0,83213119
0,031	0,0093	0,88947021
0,04	0,0093	0,92814931
0,041	0,0093	0,9137734
0,05	0,0093	0,97011133
0,051	0,0093	0,98132241
0,06	0,0093	0,98824114
0,061	0,0093	0,99263199
0,07	0,0093	0,991409
0,071	0,0093	0,99714918
0,08	0,0093	0,99823199
0,081	0,0093	0,9989119

Пропускная щель регулятора расхода масла. Для данного элемента уравнение расхода масла имеет вид

$$Q = \mu \pi dh \sqrt{\frac{2\Delta P}{\rho}},$$

где r – плотность жидкости.

В связи с наличием редукционного клапана Г57 – DP = const, тогда

$$\mu \pi d \sqrt{\frac{2\Delta P}{\rho}} = const = K_3. \tag{8}$$

Следовательно, уравнение пропускной щели будет

$$Q = K_{3}h. \tag{9}$$

Передаточная функция имеет вид:

$$W_{\rm III} = \frac{Q(P)}{h(P)} = K_3.$$

где K_3 – коэффициент усиления данного звена ($K_2 = 0,31$).

Расчетные данные приведены в таблице 2. График зависимости Q = f(h) представлен на рисунке 6.

Вестник КРСУ. 2012. Том 12. № 10

кие, как сила инерции, внутренние утечки рабочей жидкости, направления всех сил.

<i>h</i> _{<i>n</i>} , м	K ₃	<i>Q</i> , м ³ /с
0	0,31	0
0,001018	0,31	0,000316
0,002919	0,31	0,001022
0,004792	0,31	0,001677
0,006332	0,31	0,002216
0,007492	0,31	0,002622
0,008321	0,31	0,002912
0,008891	0,31	0,003113
0,009281	0,31	0,003249
0,009138	0,31	0,003338
0,009701	0,31	0,003397
0,009813	0,31	0,003431
0,009882	0,31	0,003419
0,009926	0,31	0,003474
0,009914	0,31	0,003484
0,009971	0,31	0,00349
0,009982	0,31	0,003494
0.009989	0.31	0.003496

Таблица 2 – Расчетные данные

Расчетная схема представлена на рисунке 7.

Рисунок 7 – Расчетная схема силового цилиндра

Сжимаемостью рабочей жидкости пренебрегаем в связи с тем, что технологическая операция является отделочной и нагрузка изменяется в небольших пределах.

Составим уравнение равновесия силового гидроцилиндра на основании принципа Д'Аламбера:

$$PF = M \frac{d^2 x}{dt^2} + R_{\rm H},\tag{10}$$

где *P* – рабочее давление; *x* – перемещение поршня; *F* – рабочая площадь силового цилиндра; *M* – масса движущихся частей цилиндра; *R*_н – нагрузка.

Уравнение неразрывности потока рабочей жидкости без учета сжимаемости рабочей жидкости (станков, предназначенных для чистовой обработки):

$$Q = F \frac{dx}{dt} + k_{\rm yT} P, \tag{11}$$

где k_{yr} – коэффициент утечек в силовом цилиндре. Решая совместно уравнения (10) и (11) и после соответствующего преобразования, получим:

$$\frac{k_{\rm yT}M}{F^2} \frac{d^2x}{dt^2} + \frac{dx}{dt} + \frac{k_{\rm yT}R_{\rm H}}{F^2} = \frac{Q}{F}.$$
(12)
Ввелем обозначения:

$$T_{\rm M} = \frac{k_{\rm yr}M}{F^2}$$
 – постоянная времени; $\frac{k_{\rm yr}R_{\rm H}}{F^2} = \alpha_0$ –

потери скорости за счет нагрузки; $\frac{dx}{dt} = v - ско-$ рость силового цилиндра; $\frac{Q}{F} = v_0 - скорость сило-$ вого цилиндра без учета нагрузки.

С учетом этих обозначений уравнение (12) имеет вид:

$$T_{\rm M}\frac{dv}{dt} + v = v_0 - \alpha_0. \tag{13}$$

Решая уравнение (13) при нулевых начальных условиях, т.е. при t = 0; v = 0, получим график переходного процесса, представленный на рис. 8.

исунок 8 – 1 рафик переходного процесса силового цилиндра без учета сжимаемости жидкости

Разработанная автоматическая система стабилизации подачи инструмента имеет следующие достоинства: предложенная система проста и не требует усилительных элементов. Она обеспечивает хорошие статические и динамические качества, расчетные значения по полученным формулам: степень стабилизации скорости подачи, т.е. статическая ошибка регулирования составляет около 2 %, длительность переходного процесса – 0,01 с, что вполне приемлемо для отдельных технологических процессов.