ФОРМЫ И ВИДЫ ЭНЕРГИИ, РАССМАТРИВАЕМЫЕ В ФИЗИКЕ И СМЕЖНЫХ НАУКАХ

Л.В.ТУЗОВ

E.mail. ksucta@elcat.kg

Макалада энергия, анын негизги формалары, булактары жана таратуучулары жөнүндөгү окуудагы терминдештирүүнү системалаштыруунун мүмкүн болгон варианттары сүрөттөлгөн.

В статье описан возможный вариант систематизации терминологии в учении об энергии, ее основных формах, источниках и носителях.

In article the possible option of ordering of terminology in the doctrine about energy, its main forms, sources and carriers is described.

Физика как наука изучает простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи, законы ее движения. Обшей количественной мерой движения и взаимодействия всех видов материи является энергия. Поэтому основное содержание физики связано, прежде всего, с энергией. На эту связь обратил особое внимание Нобелевский лауреат профессор П.Л.Капица в 1975 г. в докладе «Энергия и физика», посвященном 250-летию АН СССР. Он дал определение физики как науки, изучающей процессы получения, преобразования и консервирования энергии /2/. Следовательно, при изучении физики, в преподавании этой дисциплины в школах и вузах должно уделяться особое внимание усвоению глубокого смысла общего понятия «энергия», классификации ее форм и видов, закона сохранения и особенностей возможных преобразований.

В физике и смежных науках встречается много понятий, относящихся к энергии. Основные из них определяют форму энергии, соответствующую форме движения материи: механическая энергия, внутренняя (тепловая) энергия и т.д. Другие указывают носителя или источник энергии, например, звуковая энергия, энергия морских волн, водородная энергия и др. Некоторые термины приобрели специальные значения в отдельных, конкретных областях физики: энергия Ферми, нулевая энергия и др. В конце прошлого века астрофизики открыли новые виды космической энергии. При накопившемся обилии терминов возникает необходимость упорядочения терминологии в «энергетической области». Эта задача сложная. Для своего решения она потребует определенного времени и участия научного сообщества.

Для начала полезно разобраться с имеющимися терминами. С этой целью в настоящей статье предлагается возможный вариант систематизации имеющейся терминологии. В табл. 1 приведен список терминов, наиболее часто встречающихся в учебной, научной, справочной литературе. Здесь указаны основные формы энергии, включающие космическую и традиционные формы — от механической до ядерной. Для каждой формы указаны относящиеся к ней названия видов и подвидов энергии. Цифровая кодировка терминов очевидна: первая цифра указывает форму энергии, вторая и третья — вид или подвид соответственно. Деление энергии по формам и видам, а также предлагаемая их систематизация носят до определенной степени условный и даже неоднозначный характер. Например, энергия связи и когезионная энергия отнесены к механической энергии, но с таким же основанием их можно отнести к электрической энергии. Энергия активации отнесена к химической энергии, но она широко используется также и для характеристики физических процессов атомного масштаба и определяется, в частности, в физике конденсированного состояния несколько иначе, чем в химии.

Предлагаемая систематизация вносится в порядке обсуждения и, конечно, возможного ее усовершенствования.

В прилагаемой ниже таблице формы и виды энергии представлены в алфавитном порядке. Здесь же указаны их кодовые цифровые обозначения, принятые и использованные в заключительной части статьи. В этой части приведены также определения и (или) объяснения форм космической энергии, отсутствующие в вузовских учебниках по физике. Из-за ограниченности объема, отведенного для настоящей статьи, определения других форм и видов энергии не приводятся. Их можно найти в энциклопедиях и специальных справочниках.

Список терминов

Таблица 1

No	Формы и вилы энергии	Код	No	Формы и вилы энергии	Код
1.	Активации	5.1.	28.	Покоя	2.4.1.
2.	Анизотропии	4.2.1	29.	Полная	2.3.
3.	Барионная	1.3.	30.	Пороговая	7.1.
4.	Биологическая	6.	31.	Потенциальная	2.2.
5.	Вакуума	3.8.	32.	Прорастания	5.1.
6.	Ветровая	2.1.2.	33.	Релятивистская	2.4.
7.	Внутренняя (тепловая)	3.	34.	Света (фотонов)	4.4.
8.	Внутренняя в тдинам.	3.2.	35.	Свободная	3.2.2
9.	Водородная	5.8.	36.	Связанная	3.3.
10.	Геотермальная	3. 1.	37.	Связи	5.2.
11.	Гиббса	3.2.4	38.	Солнечная	4.3.
12.	Гидроэнергия	2.1.3.	39.	Сольватации	5.6.
13.	Гравитационная	2.2.1.	40.	Сродства к электрону	5.4.
14.	Звуковая	2.3.3.	41.	Стабилизации	5.7.
15.	Излучения	1.4.	42.	Темная	1.1
16.	Ионизации	5.3.	43.	Темная материя	1.2
17.	Кинетическая	2.1	44.	Упругая	2.2.2
18.	Когезионная	2,2.6	45.	Ферми	3.6.
19.	Космическая	1.	46.	Фотохимич.критическая	5,5
20.	Кристаллич. решетки	3.5.	47.	Химическая	5.
21.	Магнитная	4.2.	48.	Химической связи (диссоц.)	5.2
22.	Механическая	2.	49	Центробежная	2.1.1.
23.	Морских волн	2.3.1.	50.	Электрическая	4.1
24.	Морских приливов	2.3.2.	51.	Электромагнитная	4.
25.	Неустойчив. атмосферы	2.2.3.	52.	Энтальпия	3.2.3
26.	Нулевая	3.7.	53.	Ядерная (атомная)	7
27.	Поверхностная	2.2.4.			

ЭНЕРГИЯ (от греч. energeia – действие, деятельность) – общая количественная мера движения и взаимодействия всех видов материи. Понятие энергии связывает воедино все явления природы. В соответствии с различными формами движения материи рассматривают различные формы энергии.

1. КОСМИЧЕСКАЯ ЭНЕРГИЯ – включает четыре вида энергии-массы, заполняющих Вселенную: темную энергию, темную материю, барионы или обычное вещество, излучение.

1.1. Темная энергия, составляющая более 70 % энергии Вселенной, ответственна за ускорение ее космического расширения, т.е. действует во Вселенной как антигравитационная сила или Всемирное антитяготение. О существовании темной энергии как формы энергии-массы, постоянно действующей и управляющей судьбой космоса, астрономы пришли к выводу в 1998 г. Антитяготение проявляет себя как космическое отталкивание, испытываемое далекими галактиками и наблюдаемое на расстояниях 5-8 млрд световых лет и более. При этом отталкивание сильнее гравитационного притяжения галактик друг к другу. По этой причине общее космологическое расширение происходит с ускорением.

На макроскопическом уровне темная энергия описывается как особого рода непрерывная среда, которая заполняет все пространство мира; обладает положительной плотностью и отрицательным давлением. Физическая природа темной энергии и ее микроскопическая структура неизвестны — это одна из самых острых проблем фундаментальной науки наших дней.

Плотность – главная количественная характеристика темной энергии. Если взять за меру массу атома водорода, то величина плотности темной энергии соответствует присутствию в каждом кубическом метре пространства примерно трех атомов водорода. Для того чтобы представить себе силу антитяготения, которую способна создать антигравитирующая среда с такой плотностью, приводят такой пример. Пусть два нейтральных атома водорода помещены в пространство, в котором нет ничего кроме темной энергии. На эти атомы действуют две силы: ньютоновская сила их взаимного притяжения и сила отталкивания. В этом случае антитяготение сильнее тяготения, если расстояние между атомами больше полуметра. Численное значение плотности темной энергии $\rho_V \approx 0.7 \times 10^{-26} \ {\rm kr} \ {\rm m}^{-3}$. В отличие от обычного вещества она во Вселенной распределена равномерно и всюду имеет одну и ту же указанную плотность. В астрономии и физике наших дней оба новых понятия — «антитяготение» и «темная энергия» постепенно занимают место в одном ряду с самыми фундаментальными понятиями естествознания /3/.

«Ученые установили: разбегание Вселенной, начавшееся после Большого взрыва, продолжается и сейчас. Словно из неизвестного источника в космическом пространстве подбрасывается «свежее топливо». Проблема «темной энергии» чрезвычайно сложная. Возможно, придется пересмотреть самые фундаментальные принципы космологии, физики вещества и пространства на огромных расстояниях. ...Для базовой диагностики Вселенной готовится несколько крупных международных проектов. Один из них называется «Планк». Коллеги обещают, что через десять лет мы будем знать о Вселенной все, что нужно. Хотя бы грубыми мазками» /4/.

1.2. Темная материя, на долю которой приходится около 25 % полной плотности мира; проявляет себя тем, что, концентрируясь вокруг галактик и их скоплений. удерживает их от рассеяния. Она не взаимодействует с излучениями всех видов, не светит сама и ничего не поглощает. Кроме тяготения она ничем себя не выдает. Предполагается, что темная материя состоит из гипотетических нерелятивистских («холодных») стабильных элементарных частиц, не участвующих в сильном ядерном взаимодействии, но участвующих, как и электроны, в электрослабом взаимодействии. Темные частицы считаются стабильными и сохраняются в ходе космологического расширения. Возможно, эти частицы являются наименьшими по массе суперсимметричными партнерами таких частиц, как фотон или гравитон (последнее считают более правдоподобным). Рассматриваются как кандидаты на эту роль и другие гипотетические частицы, например, слабо взаимодействующие массивные частицы (WIMPs, нейтралино). Плотность темной материи в межгалактическом пространстве незначительна: в кубе со стороной 170 000 км (половина расстояния от Земли до Луны) содержится около 10 г темной материи и около 1 г обычного (светящегося) вещества /5/.

Разгадка тайны темной энергии — «в числе, пожалуй, самых важных задач, стоящих перед учеными. Возникла проблема год-два назад, причем совершенно неожиданно. Уже в течение нескольких десятилетий ученые ломают головы над еще одним феноменом: наблюдения показали, что силы гравитации раз в десять превышают те, которые можно

ожидать от таких источников, как звезды. Так родилось понятие «темной массы», или, как еще говорят, «скрытой массы». То есть во Вселенной есть какое-то вещество, которое имеет пока не постижимую для нас природу» /4/.

- О темной энергии и темной материи известно немного. Важные вопросы, касающиеся их природы, остаются по большей части без ответа. Тем не менее, каждую из этих энергий можно описать макроскопически как среду с определенным значением плотности и давления. Известна и связь плотности с давлением, т.е. уравнение состояния каждой из этих сред. Зная уравнение состояния данной космической энергии, можно определить, как она ведет себя в ходе расширения Вселенной /3/.
- 1.3. Барионная материя («обычное» вещество), т.е. протоны, нейтроны и электроны, из которых состоят планеты, звезды и другие обычные тела природы, в полную плотность космической энергии вносит около 5 %. За этой космической энергией закрепилось название «барионы» (хотя электрон и не является тяжелой частицей). Для этого вида космической энергии-массы остается нерешенным вопрос о том, почему во Вселенной имеются указанные частицы и почти полностью отсутствуют античастицы. Согласно одному из общих законов физики, в природе должно соблюдаться равноправие частиц и античастиц.
- 1.4. Излучение четвертая космическая энергия охватывает реликтовые фотоны, а также, возможно, гравитоны. В далеком прошлом они находились в равновесии с веществом и были очень горячими. В ходе космологического расширения излучение остыло до наблюдаемой сейчас очень низкой температуры около 3 К. Фотонов очень много в современную эпоху их ~ 500 см⁻³. Излучение почти идеально равномерно заполняет весь объем Вселенной. На его долю приходятся не более нескольких сотых долей процента полной плотности космической энергии.

Список литературы

- 1. Потапова Т. Энергетика живой клетки //В мире науки. 2006. № 3. С.40.
- 2. Капица П.Л. Энергия и физика // 250 лет Академии наук СССР. Документы и материалы юбилейных торжеств. М.: Наука, 1977. С.254-263.
- 3. Чернин А.Д. Темная энергия и всемирное антитяготение // УФН. -2008. Т. 178. № 3. С. 266-300.
- 4. Ячменникова Н. Роальд Сагдеев: в министры не подхожу // Российская научная газета, 2003, 5 февраля, № 4 (7).
 - 5. Ксанфомалити Л. Темная Вселенная // Наука и жизнь. 2005. № 5. С. 64.