УДК: 539.219.2: 531.222

О РАСПРЕДЕЛЕНИИ НАПРЯЖЕНИЙ В ОСЛАБЛЕННОМ СЕЧЕНИИ КОМПАКТНОГО ОБРАЗЦА С КРАЕВОЙ ТРЕЩИНОЙ ПРИ ВНЕЦЕНТРЕННОМ РАСТЯЖЕНИИ

САПРЫКИН Ю.В.¹, ДУЙШЕНАЛИЕВ Т.Б.¹, КОСТИН В.В.², КУЛАКОВ В.С.¹

¹КГТУ им. И.Раззакова, г. Бишкек ²ООО «АвиаТехСнаб», г. Новосибирск izvestiva@ktu.aknet.kg

Проанализированы модели распределения напряжений в образцах с трещинами при внецентренном растяжении и разном характере поведения материала (упругом, квазиупругом, упругопластическом). Установлены формулы, позволяющие производить расчеты градиентов напряжений в сечениях с трещинами разных длин.

The models are analyzed a pressure in samples with cracks at eccentric a stretching and different character of behaviour material (elastic, quasi-elastic, elastoplastic). The formulas are established, that allowing to make calculations of gradients pressure in sections with cracks in different lengths.

Для построения диаграмм « $K_{\mathfrak{C}} - \sigma_{\mathbb{H}}$ » конструкционной прочности [1] важно знать характер распределения напряжений $\sigma_{\mathbb{H}}$ в сечении с трещиной. При сосредоточенной растягивающей нагрузке, эксцентриситете и при пластическом поведении материала с трещиной распределение $\sigma_{\mathbb{H}}$ может быть исследовано (но только в ограниченных пределах [1]) с помощью известной модели «пластического шарнира» [2] (рис.1).

В соответствие с этой моделью можно записать следующие условия равновесия предельных сил и моментов:

$$P_c = \sigma_B t (B - l - 2x) \tag{1}$$

$$P_c e = \sigma_B t (B - l - x) x \tag{2}$$

здесь: B и t — соответственно ширина, и толщина компактного образца; l — длина трещины; «x» — расстояние до нейтральной оси; «e» — эксцентриситет, равный 0.5(B+l).

Из условия (1) следует, что предельное состояние материала с трещиной наступит в тот момент, когда растягивающая нагрузка P достигнет критической величины P_{c} , а напряжение $\sigma_{\rm H}^{\rm (oc)}$ на границе опасной части [1] ослабленного трещиной сечения, площадью $F^{\rm (oc)}=t(B-l-2x)$, возрастет до пороговой величины $\sigma_{\rm H*}^{\rm (oc)}\cong\sigma_{B}$.

То есть:
$$\sigma_{\text{H*}}^{(\circ c)} \cong \sigma_{B} = \frac{p_{c}}{t(B-l-2x)} = \frac{p_{c}}{F^{(\circ c)}} \quad (3)$$

Как видно из (3), для определения площади $F^{(oc)}$ опасного сечения (ОС - сечение [1]) необходимо знать расстояние «x» до нейтральной оси (puc.1).

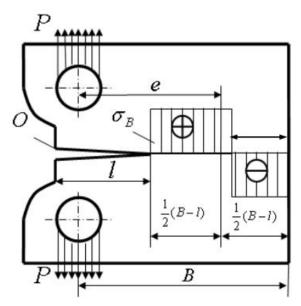


Рис.1 Распределение напряжений в нетто-сечении компактного образца в соответствие с моделью «пластический шарнир» (схема).

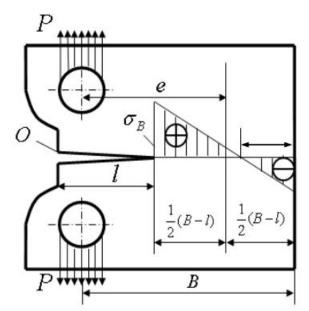


Рис.2 Модель упругого распределения напряжений в сечении с трещиной в соответствии с условием [3] (схема).

Решая совместно (1) и (2), получим уравнение для расчета параметра «х»:

$$(B-x)^2 - 0.5(B^2 + l^2) = 0$$

Или:

$$x = B - \sqrt{0.5(B^2 + l^2)}$$
 (4)

Величина (B-l-2x) в соотношении (3), по сути, эквивалентна расстоянию $r_i = r^{(\text{oc})}$ от конца трещины (в направлении ее распространения) до той точки нетто-сечения, в которой к моменту завершения докритического подростания трещины достигается пороговый уровень напряжения $\sigma_{\text{H}*} \cong \sigma_{\text{B}}$ при нагрузке P_{c} . Эта точка, удаленная на $r^{(\text{oc})}$ от конца трещины, соответствует границе, разделяющей ОС-сечение от остальной, менее напряженной, части нетто-сечения (рис.3÷5).

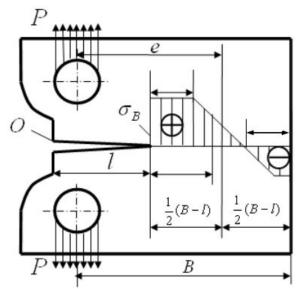


Рис.3 Модель упруго-пластического распределения напряжений в сечении с трещиной компактного образца при эксцентриситете нагрузки (схема).

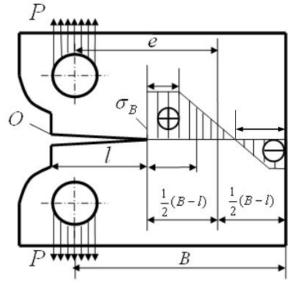


Рис.4 Модель распределения напряжений в сечении с трещиной образца ВР при квазиупругом поведении материала (предложена Сапрыкиным Ю.В [1]).

Из анализа (3) ясно, что при одной и той же разрушающей нагрузке P_c и длине трещины (l=const) по мере удаления от конца трещины, т.е. при увеличении расстояния r_i и переходе за пределы ОС-сечения (при $r_i > r^{(\circ c)}$), напряжение $\sigma_{\mathtt{H}\,i}$ должно уменьшаться. С учетом этого, уравнение (3) можно преобразовать к виду: $\sigma_{\text{H}i} = \frac{P_c}{t(B-l-2x+\Delta)} = \frac{P_c}{tr_i}$ (5)

$$\sigma_{\text{H}i} = \frac{P_c}{t(B-l-2x+\Delta)} = \frac{P_c}{tr_i} \tag{5}$$

где: r_i – расстояние от конца трещины до точки «i» нетто-сечения, в которой при нагрузке P_c величина напряжения соответствует $\sigma_{\text{н}i}$; $(r_i \ge r^{(\text{oc})})$; Δ – расстояние между точками, удаленными на r_i и $r^{(oc)}$ от конца трещины (при $r_i = r^{(oc)}, \Delta = 0$).

Определив в соответствии с (3) и (5) параметры $r^{(\mathfrak{oc})} = (B - l - 2x)$ при разных l, отвечающих интервалу относительно больших длин трещин (0,4 \leq $l/B \leq$ 0,7; B = const), можно установить, что $r_{y,n}^{(oc)} < 0.5(B-l)$, т.е. распределение напряжений в нетто-сечении при l/B > 0.4 (рис.3) не соответствует модели «пластического шарнира» (рис.1), а является промежуточным вариантом между «пластическим шарниром» и моделью упругого распределения напряжений (рис.2).

Однако, эта промежуточная модель (назовем ее моделью упругопластического распределения напряжений, рис.3) несколько отличается от модели квазиупругого распределения напряжений (рис.4) [1]. Причем основное отличие заключается в том, что при квазиупругой модели ОС-сечение имеет меньшую протяженность $r_{\text{к.у.}}^{(\text{oc})}$ в направлении трещины (т.е $r_{\text{к.у.}}^{(\text{oc})} < r_{\text{у.п.}}^{(\text{oc})}$, рис.3 и 4).

Для расчета размера $r_{\kappa y}^{(oc)}$ ОС-сечения при квазиупругом распределении напряжений была применена (в первом приближении) известная формула (6) [3]:

$$P_c = 0.5\sigma_B t (B - l)^2 / (2B + l)$$
 (6)

Или:

$$\sigma_{H*}^{(oc)} \cong \sigma_B = \frac{P_c}{F^{(oc)}} = \frac{P_c}{t0.5(B-l)^2/(2B+l)}$$
 (6')

здесь $\sigma_{\rm H*}^{\rm (oc)}$ — пороговое нетто-напряжение на расстоянии $r_{\rm K.y.}^{\rm (oc)}$ от вершины трещины, т.е. на границе ОС-сечения; $F^{\rm (oc)} = r_{\rm K.y.}^{\rm (oc)} t$ — площадь опасного сечения.

Так же как и $(B-l-2x)=r_{y,n}^{(oc)}$ в (3), величина выражения $0.5(B-l)^2/(2B+l)$ в (6) соответствует (но только в первом приближении) размеру $r_{k,y}^{(oc)}$ ОС-сечения, который не всегда совпадает с экспериментальным $r_{k,y,*}^{(oc)}$ [4].



Рис.5 Схема распределения напряжений в сечении компактного образца с относительно большими трещинами l/B>0.4 при внецентренном растяжении: 1 – гипотетическое (модельное) распределение напряжений [6]; 2 – расчетное распределение напряжений установленное по уравнению (12); $r^{(\text{oc})}$ и $r^{(\text{chc})}$ – расстояния от конца трещины до границ ОС и СНС-сечений соответственно; $r^{(\text{chc})}=k_{\beta}[0.5(B-l)]$ [4]; r_{ϵ} – тоже, до точки отсчета эксцентриситета нагрузки; r_{n} – тоже, до нейтральной оси; x – расстояние от нейтральной оси до края образца; $\sigma_{\text{H*}}^{(\text{oc})}$ и $\sigma_{\text{H*}}^{(\text{chc})}$ – критические напряжения на границах ОС и СНС-сечений соответственно.

Сопоставление расчетных значений параметров $r_{\text{к.у.}}^{(\text{oc})}$ и $r_{\text{у.п.}}^{(\text{oc})}$ для геометрически подобных образцов позволило установить, что $r_{\text{к.у.}}^{(\text{oc})}/r_{\text{у.п.}}^{(\text{oc})} \cong 0$,6. Постоянство соотношения этих параметров, а так же подобие моделей (рис.3 и 4) (при условии постоянства числа «0,6»), могло бы позволить

использовать уравнение (5) для расчета $\sigma_{\text{н}\,i}$ на разных расстояниях $r_i \geq r_{\text{к.у.}}^{(\text{oc})}$ от конца трещины и при квазиупругом распределении напряжений:

$$\begin{cases}
\sigma_{\text{H}i} \cong \frac{p_c}{[0.6(B-l-2x)+\Delta]t} = \frac{p_c}{tr_i} \\
\nu_{\text{J}} \\
\sigma_{\text{H}i} \cong \frac{p_c}{[0.5((B-l)^2/(2B+l))+\Delta]t} = \frac{p_c}{tr_i}
\end{cases} (7)$$

здесь: Δ – расстояние между двумя точками, одна из которых удалена на r_i , а другая на $r_{\kappa,y}^{(oc)}$ от конца трещины; $r_{\kappa,y}^{(oc)}$ – размер «ОС»-сечения, равный 0.6(B-l-2x) или $0.5((B-l)^2/(2B+l))$; x – расстояние до нейтральной оси (4).

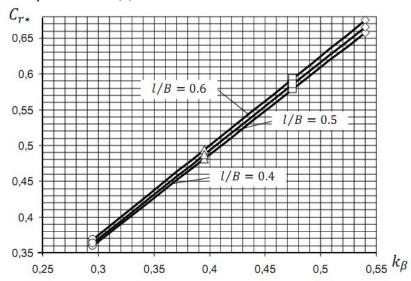


Рис.6 Зависимость C_{r*} от k_{β} для разных сталей, размеров образцов и относительных длин трещин ($l/B=0.4\div0.6$).

Однако, как показано в работе [3], число «0,5» при σ_B в уравнении (6) не постояно и может изменяться с изменением уровня прочности материала, размеров B и t образцов и их соотношения (t/B). Это обусловливает непостоянство числа «0,6»в (7), а также расхождение между расчетным $r_{\kappa,y}^{(\text{oc})}$ и экспериментальным $r_{\kappa,y,*}^{(\text{oc})}$ размерами ОС-сечения. Последнее может быть учтено безразмерным коэффициентом k_β [4]:

$$k_{\beta} = r_{\text{E.y.*}}^{(\text{oc})} / 2r_{\text{E.y.}}^{(\text{oc})}$$
 (8)

Как видно из (8), только при $r_{\text{к.у.}}^{\text{(oc)}} = r_{\text{к.у.}}^{\text{(oc)}}$ величина k_{β} соответствует числу «0,5» в соотношении (6') [3]; в котором выражение $0.5(B-l)^2/(2B+l)$, определяет расчетную величину параметра $r_{\text{к.у.}}^{\text{(oc)}}$. При $r_{\text{к.у.}}^{\text{(oc)}} \neq r_{\text{к.у.}}^{\text{(oc)}}$: $k_{\beta} \neq 0.5$ (см. таблицу). Ранее в работе [4] для корректировки расчетной величины разрушающей нагрузки (P_c по экспериментальной величине P_{c*}) был введен безразмерный коэффициент $\lambda = P_{c*}/2P_c$.

С учетом корректирующих коэффициентов k_{β} и λ уравнение (6) можно представить так:

$$\begin{split} P_{c*} &= \lambda \sigma_B t (B-l)^2 / (2B+l) \quad (9) \\ \text{u:} & \sigma_{_{\rm H}}^{\rm (oc)} = \frac{p_{c*}}{[k_\beta ((B-l)^2/(2B+l))]t} \end{split} \tag{10}$$

Как показали результаты исследований, выполненных на образцах разных размеров из сталей разного структурного класса и уровня прочности ($\sigma_B = 423 \mathrm{Mma} + 962 \mathrm{Mma}$) значения λ и

 k_{β} могут изменяться в широких интервалах с близкими границами: $0,585 \ge \lambda \ge 0,30$ и $0,59 \ge k_{\beta} \ge 0,33$. Однако, значения λ не всегда совпадают с k_{β} и при относительно больших «B» и $\sigma_B - k_{\beta} > \lambda$ (см. таблицу).

В тех случаях, когда k_{β} превышает λ пороговая величина разрушающего неттонапряжения $\sigma_{H*}^{(oc)}$ на границе ОС-сечения оказывается меньше σ_{B} [1]. Это следует из совместного решения уравнений (9) и (10):

$$\sigma_{H*}^{(oc)} = \frac{\lambda \sigma_B}{k_B} \tag{11}$$

Таблица Сопоставление параметров $k_{\beta}\lambda$ и C_{r*} сталей разного уровня прочности и разных размеров образцов.

образдов:					
Стали	σ _В МПа	В мм	k_{eta}	λ	C_{r*} при $l/B = 0,5$
20	423	80	0,54	0,48	0,67
		40	0,59	0,58	0,72
06Г2АФ	60	80	0,48	0,42	0,585
		40	0,52	0,51	0,635
14Х2ГМРЮЧ	96,2	80	0,40	0,33	0,487
		40	0,44	0,41	0,545
40XH2CBA	190	80	0,32	0,24	0,394
		40	0,35	0,3	0,431

Теперь обратимся вновь к уравнениям (5) и (7) и рассмотрим возможность их применения для определения протяженности $r_{\kappa.y.}^{(\text{oc})}$ ОС-сечения (в направлении трещины) при квазиупругом поведении материала. Естественно, этот вопрос сводится, по-существу, к установлению (при разных σ_B , B и t/B) соотношений величин двух параметров: $r_{\kappa.y.*}^{(\text{oc})}$ и $r_{y.n.}^{(\text{oc})}$. Пусть $r_{\kappa.y.*}^{(\text{oc})}/r_{y.n.}^{(\text{oc})} = C_{r*}$. Тогда в общем виде уравнение (7), применительно к «квазиупругой» модели распределения напряжений, можно представить так:

$$\sigma_{\mathrm{H}i} = \frac{p_{c*}}{[C_{r*}(B-l-2x)+\Delta]t} \tag{12}$$

здесь безразмерное число C_{r*} зависит от уровня прочности стали и размеров образцов.

Эта зависимость обусловлена, прежде всего, зависимостью коэффициента k_{β} от параметров σ_{B} , «В» и «t». В этой связи представляет интерес корреляция величин коэффициентов k_{β} и C_{r*} , графическаяинтерпретация которой представлена на рис.6. Видно, что взаимосвязь этих параметров имеет прямолинейный характер, не зависит от размера образца (B), проявляя очень слабую чувствительность к относительным длинам трещин в интервале $0.4 \le l/B \le 0.6$.

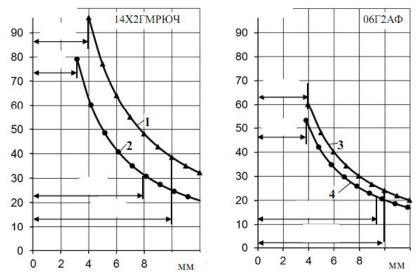


Рис.7 Распределение нетто-напряжений $\sigma_{\rm H}i$ на разных расстояниях r_i от вершины трещины l/B=0.5), в ослабленных сечениях компактных образцов (B=80мм) из сталей 14Х2ГМРЮЧ (1, 2) и 06Г2АФ (3, 4) при внецентренном растяжении: 1, 3 – установлено по стандартной формуле (6, 6'); 2, 4 – по приведеной формуле (12); $r_i^{\rm (oc)}$ и $r_i^{\rm (chc)}$ – соответственно размеры опасного и сильно-напряженного сечений.

На рис.7 представлены установленные по формулам (6 и 12) эпюры распределения напряжений $\sigma_{\mathrm{H}i}$ (за пределами ОС-сечений) в компактных образцах ($B=80\mathrm{mm}$) из сталей 06Г2АФ и 14Х2ГМРЮЧ с трещинами одинаковых исходных длин (l/B=0,5). Пороговые значения $\sigma_{\mathrm{H}*}^{(\mathrm{oc})}$ на расстояниях $r_i^{(\mathrm{oc})}$ от вершин трещин (на границах ОС-сечений образцов) были определены расчетно-эмпирическим путем.

Видно (рис.7), что для обеих сталей зависимости $\sigma_{\text{н}i} = f(r_i)$ установленные по формуле (12) располагаются ниже (см. кривые 2 и 4) таковых, установленных по стандартной формуле (6) (см. кривые 1 и 3), что свидетельствует о более строгой оценке напряженно-деформированного состояния (с использованием формулы (12)) в ослабленном трещиной сечении к моменту достижения критического состояния.

На рис.7 обозначены размеры опасных $(r^{(oc)})$ и сильно напряженных $(r^{(chc)})$ частей ослабленных сечений компактных образцов с трещинами. Как видно, по форме кривых 1-4 (рис.7) не всегда возможно визуально установить границы, разделяющие сильно напряженные (СНС) и слабо напряженные части нетто-сечения размеры которых $(r^{(chc)})$ совпадали бы с установленными другим способом [4]. Понимая, что при относительно больших длинах трещин $(l/B \ge 0.4)$ размеры $(r^{(chc)})$ СНС-сечений имеет важное значение в расчетах на прочность, авторы планируют продолжать исследование в этом направлении с целью изыскания способа установления параметров $r^{(chc)}$ по расчетным кривым распределения напряжений $\sigma_{\rm HI} = f(r_{\rm I})$ (рис.7).

Литература

- 1. Сапрыкин Ю.В. Диаграммы конструкционной прочности при совмещенном осевом и внецентренном растяжении//Известия КГТУ им. И.Раззакова. 2011. №22 С. 11-14.
- 2. Феодосьев В.И. Сопротивление материалов. Учебник для ВУЗов, М.: 1960г., 536с.
- 3. ГОСТ 25.506-85. Определение характеристик трещиностойкости при статическомнагружении. М.: Изд. Стандартов. 1985.

Дуйшеналиев Т.Б., Кулаков В.С., Сапрыкин Ю.В., Костин В.В. Построение диаграммы предельного состояния упругопластического материала с трещинами разных длин при совмещенном осевом и внецентренном растяжении//Труды Международной конференции «Рахматулинские чтения», Бишкек, 2011г., С. 219-224.