МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.РАЗЗАКОВА

КАФЕДРА «МЕНЕДЖМЕНТ НА ТРАНСПОРТЕ»

ГРУЗОВЫЕ ПЕРЕВОЗКИ

Методические указания к выполнению курсового проекта

"УТВЕРЖДЕНО" на заседании кафедры "Менеджмент на транспорте" Прот. № 3 от 26.11.2010 г.

"ОДОБРЕНО" учебно-методической комиссией факультета транспорта и машиностроения Прот. № 4 от 06.12.2010 г.

Составители: АБДЫЛДАЕВ Ч.С., АСАНАЛИЕВ М.М., КАДЫРОВ Э.Т.

УДК 625.073(076)

Грузовые перевозки. Методические указания к выполнению курсового проекта / КГТУ им. И.Раззакова; сост.: Ч.С.Абдылдаев, М.М.Асаналиев, Э.Т.Кадыров. – Б.: ИЦ "Текник", 2011. – 18 с.

Дается структура и содержание курсового проекта, последовательность выполнения, соответствует учебной программе по дисциплине "Грузовые перевозки".

Предназначены для студентов специальности 552102.01 «Организация перевозок и управление на транспорте» всех форм обучения

Рецензент к.т.н., доцент кафедры "ОБД" КНАУ Шаршембиев Ж.С.

Грузовые перевозки Методические указания к выполнению курсового проекта

Составители: Абдылдаев Ч.С., Асаналиев М.М., Кадыров Э.Т.

Тех. редактор Субанбердиева Н.Е.

Подписано к печати 13.01.2011 г. Формат бумаги $60x84^1/_{16}$. Бумага офс. Печать офс. Объем 1 п.л. Тираж 100 экз. Заказ 38. Цена 12,8 сом.

Пояснительная записка

Современный уровень развития экономики, характеризующийся развитием процессов глобализации, специализации и информатизации предусматривает всемерное совершенствование обслуживающих процессов и в первую очередь это относится к перевозке грузов.

На современном этапе в транспортной стратегии необходимо предусмотреть снижение доли транспортной составляющей в стоимости товаров до 10-15%. Для достижения этой цели необходимо снизить потери грузов в процессе их перевозки, хранении и перегрузки. Перевозки грузов, являясь затратной частью экономики, в условиях изменения хозяйственных связей, интеграции экономики в мировой рынок, должны обеспечивать высокое качество доставки грузов.

Перспективные транспортные технологии должны учитывать логистические принципы организации доставки товаров. За счёт объединения в единые цепочки доставки грузовладельцев, перевозчиков и складских операторов появляется возможность на стадии планирования перевозки увязать характеристики грузов и транспортных систем.

Большое внимание должно быть уделено транспортным характеристикам грузов как совокупности их свойств, определяющих условия и технику перевозки, погрузки и хранения.

СОДЕРЖАНИЕ

Введение	5
1. Цель курсового проекта	5
2.Задание на курсовой проект	6
3. Требования по оформлению курсового проекта	6
3.1. Оформление пояснительной записки	6
3.2. Содержание и оформление графической части	7
4. Организационная часть	8
4.1. Технико-эксплуатационные показатели работы	
подвижного состава	8
4.2. Организация движения подвижного состава	10
4.2.1. Кольцевые маршруты	10
4.2.2. Маятниковые маршруты	11
4.3. Технико-эксплуатационные показатели для всех	
маршрутов	12
4.4. Организация движения автомобилей-тягачей со сменными	
прицепами и полуприцепами	12
5. Технологическая часть	13
5.1. Организация движения подвижного состава	13
Библиографический список	19

ВВЕДЕНИЕ

Одной из определяющих систем, обеспечивающих грузовые перевозки на территории Кыргызской Республики, является транспортная система, к которой в рыночных условиях предъявляются высокие требования в отношении качества, регулярности и надежности транспортных связей, сохранности грузов и безопасности перевозки, сроков и стоимости доставки. В соответствии с этим состояние транспортных коммуникаций Кыргызстана должно отвечать требованиям европейской интеграции.

Интенсивный путь расширенного производства ставит перед транспортом ряд важных проблем, требующих неотложного решения:

- комплексное развитие транспортной системы;
- замена малопроизводительных транспортных средств более производительными;
- создание современной техники для погрузочно-разгрузочных работ;
- совершенствование структуры автомобильного транспорта (по типу кузова и грузоподъемности);
- подготовка и повышение квалификации работников, занятых не только эксплуатацией новой техники, но и техническим обслуживанием, и текущим ремонтом;
- совершенствование организации производства и труда;
- сокращение внутрисменных простоев транспортных средств, потерь сырья и топлива, рабочего времени;
- ускорение темпов строительства дорог с твердым покрытием.

Функция транспорта в таком взаимодействии заключается не только в полном обеспечении потребностей производства в перевозках, но и в качественном и своевременном транспортном обслуживании поставщиков и потребителей с колеблющимися ритмами работы, т.е. с учетом постоянно изменяющихся и в перспективе в условиях рыночной экономики часто неопределенных потребностей производства в транспортных услугах.

1. Цель курсового проекта

Целью курсового проектирования является систематизация и дальнейшее углубление полученных студентами теоретических и практических знаний по дисциплине "Грузовые перевозки". Данная цель достигается в процессе выполнения курсового проекта при решении следующих задач:

- приобретение навыков самостоятельного использования специальной литературы, посвященной рациональной организации транспортного процесса и управления им при перевозке различных видов грузов в рыночных условиях работы транспортного комплекса страны;
- знакомится с организацией работы грузового автомобильного транспорта, играющего важную роль в решении задачи полного и своевременного удов-

летворения потребностей экономики и населения в грузовых перевозках, по повышению эффективности и качества работы транспортного комплекса;

- приобретение опыта при решении задач по внедрению мероприятий и согласование с нормативными документами, регламентирующими грузовые перевозки.

2. Задание на курсовой проект

Исходные данные для каждого конкретного задания на курсовой проект выдаются по вариантам.

Курсовой проект выполняется в соответствии с заданием и требованиями настоящих методических указаний. Ответственность за несоблюдение требований или изменение исходных данных, а также за правильность всех расчетов несет студент.

После выполнения всех расчетов и оформления графической и пояснительной частей курсового проекта студент допускается к защите. Курсовой проект состоит из 2-х основных разделов: расчетно-пояснительной и графической части.

3. Требования по оформлению курсового проекта 3.1. Оформление пояснительной записки

В пояснительной записке объёмом 25 - 35 страниц должны быть приведены данные организации грузовых перевозок, расчётные формулы, таблицы, используемые для построения графиков и схем, пояснение методики расчёта, краткие выводы. Пояснительную записку выполняют на одной стороне белой бумаги формата А4. Поля: левое -35 мм, правое - не менее 10 мм, верхнее - 20 мм, нижнее - 25 мм.

Пояснительная записка состоит из разделов. Разделы нумеруются арабскими цифрами на протяжении всей записки. После номера раздела ставится точка. Каждый раздел состоит из нескольких подразделов. Подразделы нумеруются двумя арабскими цифрами в пределах каждого раздела. При необходимости подразделы разбивают на пункты, а пункты - на подпункты. Пункты нумеруют арабскими цифрами в пределах каждого подраздела. Номер пункта состоит из номера раздела, подраздела и пункта, разделенных точками, например, "2.1. Задание на курсовой проект".

Разделы и подразделы должны иметь содержательные заголовки. Заголовки должны быть краткими. Заголовки разделов пишут прописными буквами в середине листа, заголовки подразделов, пунктов и подпунктов пишут строчными буквами с абзаца. Переносы слов в заголовках и подчеркивание не допускаются. Точку в конце заголовка не ставят. Каждый раздел рекомендуется начинать с новой страницы.

В начале пояснительной записки помещается содержание, которое включают в общее количество листов записки. В содержании последовательно перечисляют заголовки разделов и подразделов и указывают номер страниц.

Нумерация страниц сквозная. Первой страницей является титульный лист (номер на нем не проставляют), второй - содержание и т. д. Номер страницы проставляют арабскими цифрами в правом нижнем углу.

В конце пояснительной записки приводят библиографический список источников, использованных при составлении с требованиями ГОСТ 7.1- 84 "Библиографическое описание произведений печати". При ссылке на источник следует приводить его номер по списку литературы, заключенный в косые скобки, например, /4/.

Сокращение слов в тексте и под рисунками не допускают, кроме общепринятых. Значение символов и числовых коэффициентов, входящих в формулу, должно быть приведено непосредственно после формулы, каждый символск новой строки. Первая строка расшифровки должна начинаться со слова "где", без двоеточия после него. Запись вычислений должна производиться по схеме: искомая величина - формула - подстановка - результат, размерность. Подстановка численных величин должна производиться в том порядке, в котором они записаны в формуле. Все расчеты необходимо сводить в таблицы. Таблицы нумеруют арабскими цифрами. Над правым верхним углом таблицы помещают надпись " Таблица " с указанием ее порядкового номера. Над таблицей после слова "Таблица" помещают заголовок таблицы.

Формулы также нумеруют арабскими цифрами. Номер формулы заключают в круглые скобки и помещают на правом поле на уровне нижней строки формулы, к которой он относится.

Все графики и другой иллюстративной материал именуются рисунками. Рисунки нумеруют арабскими цифрами. Каждый рисунок должен сопровождаться содержательной подписью. Подпись пишут под рисунком в одну строку с номером. У параметров, обозначающих координатные оси, должны быть указаны размерности.

Нумерация таблиц, формул и рисунков может быть сквозной или в пределах раздела.

3.2. Содержание и оформление графической части

В графическую часть входят два листа формата A1 (595x841), которые включают:

1 лист. Схемы маятниковых и кольцевых маршрутов.

На листе изображаются пункты перевозок грузов. Объемы перевозок грузов, а также расстояния между пунктами. Указываются направления движения грузовых потоков.

2 лист. График движения автомобиля на маршруте.

На листе изображаются пункты перевозок грузов и расстояния между ними. Транспортные операции такие как: движение без груза, движение с грузом, разгрузка, погрузка с указанием затраты времени на каждую операцию. График выполняется с учетом количества оборотов подвижного состава.

Чертежи выполняются на листе формата A1 стандартного чертежного листа (594 \times 841). Согласно требованиям нормативных документов (ЕСКД, СНиП и ГОСТа).

4. Организационная часть

4.1. Технико-эксплуатационные показатели работы подвижного состава основные формулы для решения задач

Коэффициент технической готовности подвижного состава для всего парка

$$\alpha_T = \frac{A_{co}}{A_{cc}} \tag{1}$$

где $A_{_{\!\scriptscriptstyle \mathcal{D}}}$ - количество автомобилей, готовых к эксплуатации, ед.;

 A_{u} - количество автомобилей инвентарных, ед.

Коэффициент технической готовности для одного автомобиля за \mathcal{A}_u календарных дней

$$\alpha'_{T} = \frac{\mathcal{I}_{z_{9}}}{\mathcal{I}_{u}} \tag{2}$$

Коэффициент технической готовности для (одного) всего парка за \mathcal{J}_u календарных дней

$$\alpha''_{T} = \frac{A \mathcal{I}_{co}}{A \mathcal{I}_{u}} \tag{3}$$

Коэффициент выпуска парка

$$\alpha \cdot \beta = \frac{A_{\mathfrak{g}}}{A_{\mathfrak{g}}} = \frac{A_{\mathfrak{g}} - A_{\mathfrak{g}} - A_{\mathfrak{g}}}{A_{\mathfrak{g}}},\tag{4}$$

где A_{pen} — количество автомобилей, находящихся в ремонте, ед.;

 A_{np} - количество автомобилей, находящихся в простое, ед.

Время пребывания в наряде, ч.,

$$T_{H} = T_{\partial s} + T_{np}, \tag{5}$$

где $T_{\partial s}$ — время в движении, ч; T_{np} — время в простое, ч.

Время работы на маршруте, ч.

$$T_{_{M}}=T_{_{H}}-T_{_{0}},$$
 (6)

где T_0 – время на нулевом пробеге, ч.

Общий пробег автомобиля, км,

$$L_{o \delta u \mu} = L_{z p} + L_{3} + L_{0} , \qquad (7)$$

где L_{xp} — пробег автомобиля с грузом, км; L_{xp} — пробег автомобиля без груза, км; L_{yp} — нулевой пробег автомобиля, км.

Коэффициент использования пробега автомобиля

$$\beta = \frac{L_{zp}}{L_{oбij}}.$$
 (8)

Техническая скорость, км/ч,

$$v_T = \frac{L_{o\delta u_l}}{T_{de}} \,. \tag{9}$$

Эксплуатационная скорость, км/ч.,

$$v_{9} = \frac{L_{obuq}}{T_{M}}.$$
 (10)

Коэффициент статистического использования грузоподъемности

$$\gamma_{cm} = \frac{Q_{\phi}}{q_{\mu} \cdot z},\tag{11}$$

где Q_{ϕ} — фактический объем перевозок, т; q_{π} - номинальная грузоподъемность подвижного состава, т; z — количество ездок за время в наряде.

Коэффициент динамического использование грузоподъемности

$$\gamma_{\partial} = \frac{P_{\phi}}{q_{\scriptscriptstyle H} \cdot z \cdot \ell_{\scriptscriptstyle e2}} \quad , \tag{12}$$

где P_{ϕ} – фактический грузооборот, т.км; ℓ_{ee} – средняя длина ездки с грузом, км. Время ездки, ч, мин.,

$$t_e = \frac{\ell_{ee}}{V_T \cdot \beta} + t_{np} \tag{13}$$

Количество ездок

$$Z = \frac{T_{\scriptscriptstyle M}}{t_{\scriptscriptstyle e}} + \frac{T_{\scriptscriptstyle M} \cdot V_{\scriptscriptstyle T} \cdot \beta_{\scriptscriptstyle e}}{\ell_{\scriptscriptstyle ez} + V_{\scriptscriptstyle T} \beta_{\scriptscriptstyle e} t_{\scriptscriptstyle np}} \ . \tag{14}$$

Производительность автомобиля за рабочий день (смену), т и т.км

$$U_{p\cdot\partial} = q_i \gamma_{c\dot{o}} \cdot Z \tag{15}$$

$$W_{p\cdot\partial} = q_{\scriptscriptstyle H} \gamma_{\scriptscriptstyle \partial} \cdot Z \cdot \ell_{\scriptscriptstyle ez} \ . \tag{16}$$

Часовая производительность автомобиля, т/ч, т.км/ч,

$$U_{pq} = \frac{q_i \cdot \gamma_{cm}}{t_e} \ . \tag{17}$$

$$W_{pq} = \frac{q_i \cdot \gamma_{\tilde{a}} \cdot \ell_{\tilde{a}\tilde{a}}}{t_e} . \tag{18}$$

Производительность парка за любой промежуток времени, т и т.км

$$U_O = q_{\scriptscriptstyle H} \gamma_{\scriptscriptstyle cm} \cdot Z \cdot A_{\scriptscriptstyle u} \cdot \mathcal{I}_{\scriptscriptstyle u} \cdot \alpha \beta \ . \tag{19}$$

$$W_{P} = q_{u} \gamma_{\partial} \cdot Z \cdot \ell_{ez} \cdot A_{u} \cdot \mathcal{A}_{u} \cdot \alpha \beta. \tag{20}$$

Требуемое количество автомобилей для выполнения суточного объема перевозок, ед,

$$A_{cym} = \frac{Q_{cym}}{U_{p\delta}} \quad . \tag{21}$$

4.2. Организация движения подвижного состава **4.2.1.** Кольцевые маршруты

А) за один оборот автомобиль делает несколько ездок: время оборота, ч.,

$$t_{o6} = \frac{\ell_{M}}{V_{T}} + \Sigma t_{np} , \qquad (22)$$

производительность автомобиля за рабочий день, т,

$$U_{p\delta} = q_{H} \cdot Z \cdot \Sigma \gamma_{cmi} \tag{23}$$

ИВТ.КМ
$$W_{p\delta} = q_{\scriptscriptstyle H} \cdot Z \cdot \Sigma \gamma_{\scriptscriptstyle cmi} \cdot \ell_{\scriptscriptstyle ezi}$$
; (24)

коэффициент использования пробега за оборот

$$\beta_{po} = \frac{Z \cdot \Sigma \ell_{eci}}{\ell_{n} + \Sigma \ell_{n}},\tag{25}$$

за рабочий день

$$\beta_{o6} = \frac{\sum \ell_{e2i}}{\ell_{u}}; \tag{26}$$

Б) за один оборот автомобиль делает одну ездку: время оборота, ч,

$$t_{o\delta} = \frac{\ell_{M}}{V_{T}} + t_{3}(n_{3} - 1), \qquad (27)$$

где n_3 - количество заездов на развозочном и сборном маршрутах; производительность за рабочий день:

$$B T - U_{n\dot{\alpha}} = q_{\mu} \cdot \gamma_{cm} \cdot Z_{\alpha\dot{\alpha}}, (28)$$

B T.KM -
$$W_{p\partial} = q_{H} \cdot Z_{o\delta} \cdot \Sigma \gamma_{cmi} \cdot \ell_{eei};$$
 (29)

коэффициент использования пробега

за оборот
$$\beta_{o\delta} = \frac{\sum \ell_{ezi}}{\ell_{M}}$$
 , (30)

за день
$$\beta_{p\delta} = \frac{Z_{o\delta} \cdot \Sigma \ell_{ezi}}{\ell_{M} + \Sigma \ell_{H}} . \tag{31}$$

4.2.2. Маятниковые маршруты

Таблица 1

Технико- эксплуа- тационные показа- тели	С обратным на- груженным пробегом	С обратным не полностью нагруженным пробегом	С нагруженным пробегом в обоих направлениях
Время работы на маршруте	$T_{n} - t_{n} = T_{n} - \frac{\sum \ell_{n}}{V_{T}} ;$	-	$T_{\scriptscriptstyle H} - \frac{\sum \ell_{\scriptscriptstyle H}}{V_{\scriptscriptstyle T}}$;
Время оборота	$\frac{2\ell_{er}}{V_T} + t_{np}$		$\frac{2\ell_{ez}}{V_T} + \Sigma t_{np};$
Количество оборотов	$\left \frac{T_{_{\scriptscriptstyle M}}}{t_{_{o o}}}; \right $		
Скорректированное время на маршруте	$Z_{o\delta} \cdot t_{o\delta}$;		
Скорректированное время в наряде	$T_{_{M}}^{^{CH}}+t_{_{H}};$		
Производительность автомобиля за рабочий день, $U_{p\partial}$, т	$q_{\scriptscriptstyle H} \cdot \gamma_{\scriptscriptstyle cm} \cdot Z_{\scriptscriptstyle o\acute{o}};$	$q_{\scriptscriptstyle H} \cdot Z \ (\gamma'_{\scriptscriptstyle cm} + \gamma''_{\scriptscriptstyle cm});$	
$W_{p\partial}$, T.KM	$U_{p\delta} \cdot \ell_{ee}$;	$U_{p\delta}(\ell^{\prime}_{ez}\!+\!\ell^{\prime\prime}_{ez});$	$U_{p\delta} \cdot 1 \cdot \ell_{earepsilon};$
Пробег с грузом за рабочий день, $L_{\delta i}$, км		$(\ell'_{e\varepsilon} + \ell''_{e\varepsilon}) \cdot Z_{oo};$	$2\ell_{ez}\cdot Z_{o\delta}$;
Общий пробег за день		$2\ell_{e\varepsilon}\cdot Z_{o\delta} + \Sigma\ell_{\scriptscriptstyle H};$	
Коэффициент использования пробега за день, β_{po}	$rac{L_{_{\it 2p}}}{L_{_{\it 06uq}}};$		
Коэффициент ис- пользования пробе-			
га за оборот, β_{ob}	0,5;	$rac{(\ell'_{e\varepsilon}+\ell''_{e\varepsilon})}{2\ell_{e\varepsilon}}$;	1;

4.3. Технико-эксплуатационные показатели для всех маршрутов

Годовая производительность одного автомобиля, т,

$$U_{zo\partial} = U_{p\partial} \cdot 365 . (32)$$

Потребное количество автомобилей для выполнения годового плана перевозок, ед.,

$$A_{zoo} = \frac{U_{zoo}}{Q_{zoo}} . {33}$$

Плановый объем перевозок на рабочий день, т.

$$Q_{nn,p,\partial} = \frac{Q_{nn,e\partial}}{\mathcal{I}_p} . \tag{34}$$

Списочный парк, ед.,
$$A_u = \frac{A_{coo}}{\alpha_s}$$
. (35)

Количество автомобилей, ежедневно выпускаемых на маршрут с учетом режима работы автотранспортного предприятия, ед.,

$$A_i = \frac{U_{p\delta}}{Q_{n\delta}} \ . \tag{36}$$

Число дней работы в году, дн.,

$$\mathcal{A}_{p} = 365 - (\mathcal{A}_{\text{\tiny GbLX}} + \mathcal{A}_{\text{\tiny npa3d}}). \tag{37}$$

Интервал движения автомобилей, мин,

$$I = \frac{t_{o\delta}}{A_{_{M}}} \,. \tag{38}$$

4.4. Организация движения автомобилей – тягачей со сменными прицепами и полуприцепами

Интервал движения автомобилей – тягачей, ч,

$$I_T = \frac{t_{om}}{A_T} \quad , \tag{39}$$

где t_{om} - время оборота автомобиля — тягача, ч; A_{T} - количество автомобилей — тягачей, ч.

Время оборота автомобиля – тягача, ч,

$$t_{om} = \frac{2\ell_{ee}}{V_T} + 2t_{n.o} \quad , \tag{40}$$

где $t_{n,o}$ - время прицепки и отцепки, ч.

Ритм погрузки или разгрузки, ч,

$$R_{n(p)} = \frac{t_{n(p)} + t_{n.o}}{\Pi_{+}(P)},\tag{41}$$

где $t_{n(p)}$ - время погрузки или разгрузки полуприцепа, ч; $\Pi_n(P)$ - количество полуприцепов, находящихся под погрузкой или разгрузкой.

Потребное количество полуприцепов, ед.,

$$\Pi = A_T + \Pi_n + \Pi_p \,, \tag{42}$$

где Π_n - количество полуприцепов, находящихся под погрузкой, ед.; Π_p - количество полуприцепов, находящихся под разгрузкой, ед.

Количество полуприцепов, находящихся под погрузкой или разгрузкой, ед.,

$$\Pi_{n(p)} = [A_T V_T (t_{n(p)} + t_{noz})] \div (2\ell_{ez} + V_T t_{noz})$$
(43)

ИЛИ
$$\Pi_{n(p)} = (t_{n(p)} + t_{noz})/1$$
. (44)

5. Технологическая часть **5.1. Организация движения подвижного состава**

Задание /часть1/

На рис.1 показан маятниковый маршрут с обратным не полностью груженым пробегом. Показатели работы автомобиля MA3-5335 грузоподъемностью $q_H = 8$ т на этом маршруте по вариантам приведены в табл.2.

Таблица 2

Показатель		Вариант									
	1	2	3	4	5	6	7	8	9	10	
L er А-Б, км	10	13	16	17	20	21	24	28	29	15	
Ler Б-С, км	6	7	9	11	13	12	16	12	20	9	
tn A, мин	12	13	14	15	16	17	18	19	20	21	
t p Б , мин	12	11	12	12	14	13	14	15	14	16	
tnБ , мин	21	20	19	18	17	16	15	14	13	12	
t pC, мин	16	14	15	14	13	14	12	11	12	17	

<u>Примечание.</u> Для 11-го -30 – го варианта данные взять из граф табл.2, соответствующих последним цифрам своего варианта.

Данные о технической скорости автомобиля V_T , км/ч, по вариантам:

<i>r</i> 1		1		' '	, 1
вариант	1	2	3	4	5
V_{T}	19	19,5	20	20,5	21
вариант	6	7	8	9	10
V_{T}	21,5	22	22,5	23	23,5
вариант	11	12	13	14	15
V_{T}	24	24,5	25	26	25,5
вариант	16	17	18	19	20
V_{T}	26,5	27	27,5	28	28,5
вариант	21	22	23	24	25
V_{T}	29	29,5	30	30,5	31
вариант	26	27	28	29	30
V_{T}	31,5	32	32,5	33	33,5

Определить время оборота *to* автомобиля на маршруте и коэффициент

использования пробега за оборот β_0 .

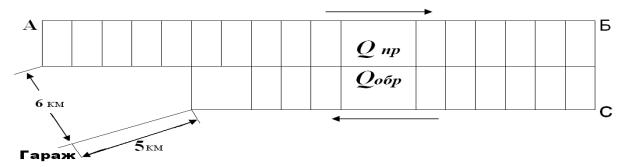


Рис. 1. Маятниковый маршрут с обратным не полностью груженым пробегом

Рассчитать по вариантам число оборотов автомобиля в день n_o , если известно, что расстояние от гаража до пункта погрузки **A** составляет 6 км, а с пункта последней разгрузки **C** до гаража – 5 км.

Данные о времени пребывания автомобиля в наряде $T_{\rm H}$, ч, по вариантам следующие:

вариант	1	2	3	4	5
$T_{ m H}$	8,0	8,5	9,0	9,5	10
вариант	6	7	8	9	10
$T_{ m H}$	10,5	11	11,5	12	12,5

<u>Примечание.</u> Для 11-го – 30-го варианта данные взять из графы, соответствующей последней цифре своего варианта.

Построить график движения автомобиля MA3-5335 на маршруте по образцу, показанному на рис.2, если известно, что начало работы предприятий, расположенных на маршруте, в 8 ч утра, обеденный перерыв водителей – с 12 до 13 ч. Водитель может использовать обеденный перерыв в любом пункте маршрута.

Определить число ездок *ne* автомобиля MA3 – 5335 за рабочий день, а также его производительность $V_{p\partial}$ в тоннах, если коэффициент использования грузоподъемности при перевозках грузов в прямом направлении $\square = 0,9$, а в обратном – $\square = 0,8$.

Определить за рабочий день пробег Lr автомобиля с грузом, общий пробег $Lo\delta$ и коэффициент использования пробега β .

Найти потребность $A_{\mathfrak{I}}$ в автомобилях MA3 – 5335 на маятниковом маршруте, схема которого изображена на рис. 1, если дневной объем перевозок в прямом направлении $\mathbf{Q}_{np} = 300$ т, а в обратном \mathbf{Q}_{o} , т, соответствует следующим данным:

вариант	1	2	3	4	5	6	7	8	9	10
Q обр	100	110	120	130	140	150	160	170	180	190
вариант	11	12	13	14	15	16	17	18	19	20
Q обр	105	115	125	135	145	155	165	175	185	190
вариант	21	22	23	24	25	26	27	28	29	30
Q обр	51	60	70	80	90	55	65	75	85	95

<u>Примечание.</u> При определении потребности в автомобилях необходимо использовать также полученные ранее данные. По ним вычислить производительность автомобиля MA3 – 5335 Wpd, т/км, предварительно найдя среднее расстояние перевозки L2p.

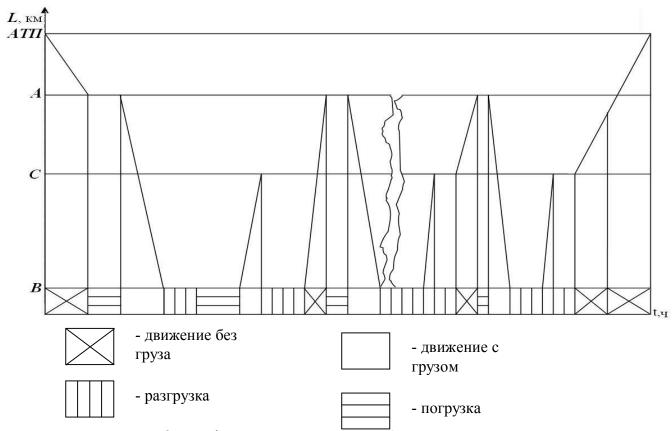


Рис. 2. График движения автомобиля на маршруте

Таблица 3

Вари-	O6	ьем пер	евозокQ	9, т,	Вари-	O6	ьем пер	евозокQ), т,
ант	А-Б	В-Г	Д-Е	Ж-3	ант	А-Б	В-Г	Д-Е	Ж-3
1	100	200	250	300	16	120	105	180	120
2	300	150	200	100	17	110	115	140	110
3	150	300	190	160	18	130	125	160	200
4	250	250	100	140	19	140	135	170	150
5	350	400	70	150	20	160	455	120	160
6	400	75	160	160	21	170	400	60	90
7	450	100	150	170	22	180	60	70	80
8	500	530	140	180	23	190	65	170	180
9	550	120	130	190	24	200	75	120	110
10	275	110	120	150	25	210	90	130	120
11	275	50	70	80	26	220	110	140	130
12	500	70	60	90	27	230	125	150	140
13	550	75	180	150	28	240	135	170	150
14	500	85	110	140	29	260	145	180	160
15	150	95	120	130	30	270	165	140	170

Задание / часть 11/. На рис. З показаны схемы четырех маятников маршрутов с обратным порожним пробегом, по которым перевозили металлоизделия и металлоотходы на автомобиле КамАЗ-5320 грузоподъемностью qн в течение 8 ч. Время работы автомобилей на маршруте T_{M} =9 ч, техническая скорость V_{T} =25 км/ч

Данные о перевозках грузов на участках и расстояниях между ними приведены в табл.3 и 4.

Таблица 4

Вари-	Расстоя	тние мех	кду пун	ктами,	Вари-	Рассто	яние ме	жду пун	ікта-
ант	KM.	км. ант	ми, км.						
	А-Б	В-Г	Д-Е	Ж-3		А-Б	В-Г	Д-Е	Ж-3
1	15	6	6	20	16	26	8	19	12
2	16	7	7	19	17	27	20	18	15
3	17	9	8	18	18	14	19	17	14
4	18	11	9	17	19	15	18	16	13
5	19	13	10	15	20	16	17	15	10
6	20	12	11	14	21	17	15	14	12
7	21	16	12	10	22	18	14	13	6
8	22	12	13	12	23	19	10	12	7
9	14	10	14	16	24	20	16	11	8
10	13	14	15	13	25	21	12	10	9
11	12	15	16	11	26	22	13	9	10
12	10	17	17	9	27	14	11	8	12
13	23	18	18	7	28	10	9	7	13
14	24	19	19	6	29	28	7	6	14
15	25	20	20	21	30	29	6	14	15

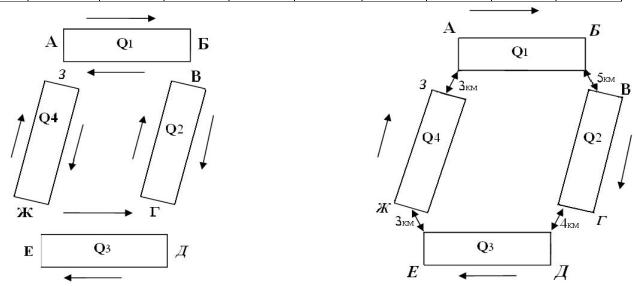


Рис.3. Схемы четырех маятниковых /а / и одного кольцевого /б/ маршрутов

Расстояния между пунктами Б-В, Г-Д, Е-Ж и 3-А показаны на рис.3,б. В плане работы АТП предусмотрено все маятниковые маршруты объединить в один кольцевой и использовать на этих перевозках те же автомобили, поставив на них съемные кузова и кузова большой вместимости, оборудованные системой "мультилифт ". В результате этого время простоя под погрузкой и разгрузкой *tn-p* за каждую ездку сократится до 0,3 ч, а коэффициент использования грузоподъемности □ увеличится до 1,0.

Определить сколько высвободится автомобилей в результате внедрения предлагаемых мероприятий и чему будет равен коэффициент использования пробега $\beta \kappa$ на кольцевом маршруте;

производительность автомобиля на кольцевом маршруте $Up \delta$ в тоннах и $Wp \delta$ в тонно-километрах.

Часовой график работы автомобиля приведен в табл.5.

Таблица 5

№ п/п	Наименование	Обороты автомобиля на маршруте									
		1		2		3		4			
11/11	грузопункта	Время прибы-	Время убытия	Время прибытия	Время убытия	Время прибытия	Время убытия	Время прибытия	Время убытия		
1				· ·							

Время выезда на линию:

Время обеда:

Время пересменки:

Время оборота:

Сменное задание:

перевезти.....т

выполнить.....т/км

Рассчитать, построить и заполнить часовой график работы автомобиля на кольцевом маршруте в соответствии с рис.3, если известно, что начало работы автомобилей на маршруте — 8ч утра, время простоя автомобиля КамАЗ — 5320, оборудованного съемным кузовом, под погрузкой и разгрузкой одинаково и равно 9 мин. Время обеда водителей / 11.30-12.30 / может быть использовано в любом пункте маршрута.

По данным табл.6 определить пропускную способность Amax маятникового маршрута с обратным порожним пробегом.

Таблица 6

Показатель		Вариант										
	1	1 2 3 4 5 6 7 8 9 10										
$V_{\mathrm{T, KM/Y}}$	20	21	22	23	24	25	26	27	28	29		
tn , мин	35	47	48	20	22	24	25	27	29	30		
t p, мин	15	16	20	35	24	31	16	35	42	21		

<u>Примечание</u>. Студенты, выполняющим варианты с 11- го по 30-й, все данные взять из граф табл. 6, соответствующих последним цифрам своего варианта.

Средняя длина ездки	ler по	вариант	гам, км:		
вариант	1	2	3	4	5
<i>ler</i>	11	10	12	13	15
вариант	6	7	8	9	10
<i>ler</i>	14	16	17	18	19
вариант	11	12	13	14	15
<i>ler</i>	18,5	12,5	13,5	14,5	18,5
вариант	16	17	18	19	20
<i>ler</i>	15	20	19,5	13,5	13
вариант	21	22	23	24	25
<i>ler</i>	9	9,5	8	8,5	15,5
вариант	26	27	28	29	30
ler	10,5	11.5	16,5	20,5	21

Определить число необходимых механизмов в пунктах погрузки и разгрузки, если для выполнения заданного объема перевозок по вариантам требуется следующее число автомобилей $A_{\mathfrak{F}}$:

10	вариант	1	2	3	4	5	6	7	8	9
24	Аэ	15	16	17	18	19	20	21	22	23
24	вариант	11	12	13	14	15	16	17	18	19
	A3	25	26	27	28	29	30	14	13	12
11 30	вариант	21	22	23	24	25	26	27	28	29
39	Аэ	10	31	32	33	34	35	36	37	38

Литература

- 1. Горев А.Э. Грузовые автомобильные перевозки. Учебное пособие. М.: Издательский центр «Академия», 2004. 288 с.
- 2. Курганов В.И., Миротин Л.Б., Клюшин Ю.Ф. Автомобильные грузовые перевозки. Учебное пособие / Под ред. Ю.Ф.Клюшина. Тверь: Изд. Тверского ГТУ, 1999. 442 с.
- 3. Правила перевозки опасных грузов автомобильным транспортом. М.: Транспорт, 1995. 105 с.
- 4. Минтранс РСФСР. Правила перевозки грузов автомобильным транспортом. Изданы в соответствии с Уставом автом. тр-та РСФСР. 2-е изд. доп. М.: Транспорт, 1984. 168 с.
- 5. Гуджоян О.П., Троицкая Н.А. Перевозка специфических грузов автомобильным транспортом. Учебник. М.: Транспорт, 2001. 160 с.
- 6. Курганов В.М. Логистика. Транспорт и склад в цепи поставок товаров: Учебно-практическое пособие. М.: Книжный мир, 2005. 432 с.