666.3:549.642.41 (575.2) (04)

ПРИМЕНЕНИЕ РЕНТГЕНОВСКОЙ РАДИОГРАФИИ ДЛЯ ИССЛЕДОВАНИЯ ПОРИСТОЙ КЕРАМИКИ

О.Н. Каныгина – канд. физ.-мат. наук, доц. *А.Н. Айтимбетова* – преподаватель

The possibilities of X-ray radiography in research of porous ceramic structure are shown. The dependence of linear absoption coefficient on silica sand content and thermal processing is found.

В настоящее время из-за истощения природных запасов руд и ухудшающейся экологической обстановки все большее применение в технике, биологии, медицине находят пористые керамические материалы. Для получения пористой керамики с заданными свойствами необходимо установить связь между содержанием компонент, режимом термической обработки и сформировавшейся при спекании структурой твердой фазы и порового пространства. К сожалению, реконструированная с помощью стереологии [1] структура пористой керамики не идентична реальной. Малый фазовый контраст между аморфной стеклофазой и другими фазами увеличивает неточность определения параметров структуры.

В данной работе в качестве неразрушающего метода исследования порового пространства керамических материалов был апробирован метод рентгеновской радиографии (рис. 1) [2]. Контактная съемка образцов проводилась в излучении вольфрама ($\lambda = 0,21$ Å). Для регистрации прошедшего излучения использовалась рентгеновская фотопленка, по степени почернения которой определялась интенсивность прошедшего излучения. Пористая керамика содержала 50–70% волластонита, 10–30% наполнителя, 10% глины Кара-Кече и 10% просяновского каолина, обжигалась при 1050 и 1150⁰C с выдержкой $\tau = 3$ часа и при 1150⁰C без выдержки (т = 0). Общая пористость образцов составляла 22–34%.

При взаимодействии рентгеновского излучения с веществом энергия этого излучения расходуется на различные виды взаимодействия с атомами. Ослабление интенсивности происходит за счет так называемого истинного, или фотоэлектрического, поглощения, а также в результате ослабления через рассеяние и описывается формулой [3]: $I = I_0 \exp(-\mu x) =$ $= I_0 \exp(-\mu_m \rho x)$, где I, I_0 – интенсивность прошедшего и падающего излучения, μ – линейный коэффициент ослабления, $\mu_m = \mu/\rho$ – массовый коэффициент ослабления, *р* – плотность образцов. Считая акты поглощения и рассеяния независимыми, массовый или

в) 30% кварц. песок + 50% волластонит; г) 20% кварц. стекло + 60% волластонит.

Средние линейные коэффициенты поглощения «k», м⁻¹

Вестник КРСУ. 2004. Том 4. № 4

№ п.п.	Состав	Температура обжига и время выдержки		
		1150 °C,	1150 °C,	1050 ^o C,
		τ=0 час.	τ=3 час.	τ=3 час.
1	70% волластонит + 10% кварц. песок	390	300	460
2	60% волластонит + 20% кварц. песок	570	410	320
3	50% волластонит + 30% кварц. песок	410	330	360
4	60% волластонит + 20% кварц. стекло	540	310	270

Применение рентгеновской радиографии

линейный коэффициент ослабления можно представить в виде суммы массовых или линейных коэффициентов поглощения k и рассеяния σ . $\mu_m = k_m + \sigma_m$, $\mu = k + \sigma$. Массовый коэффициент рассеяния σ_m является универсальной постоянной, примерно равной 0,20. Массовый коэффициент поглощения $k_m \approx CZ^4 \lambda^3 / A$, где λ – длина волны рентгеновского излучения, С – коэффициент, зависящий от области длин волн λ, Z – порядковый номер элемента поглотителя, А – его атомная масса. При больших длинах волн λ и с ростом Z поглощение рентгеновских лучей в сотни раз превосходит рассеяние, поэтому рассеянием можно пренебречь, считая $\mu = k$ [3].

Распределение линейных коэффициентов поглощения k для произвольных сечений образцов пористой керамики показано на рис. 2 (а, б, в, г), средние линейные коэффициенты поглощения $\langle k \rangle$ – в таблице. Относительная погрешность определения $\langle k \rangle$ составляет 3–5%.

Как видно из рис. 2.а-в, независимо от содержания кварцевого песка при максимальной температуре обжига увеличение времени выдержки ведет к снижению линейного коэффициента поглощения на 21-27%. Влияние роста температуры на k неоднозначно. Линейный коэффициент поглощения может как уменьшиться на 34% (10% кварц. песка), так и возрасти на 29% (20% кварц. песка). Большой разброс значений k показывает, что при введении кварцевого песка в процессе спекания формируется крайне неоднородная мелкозернистая структура. Крупные образования начинают формироваться при 20-30%-ном содержании кварцевого песка только при длительной выдержке ($\tau = 3$ час.) при 1150 ⁰С.

При анализе влияния строения кристаллической решетки на коэффициент *k* на примере кварцевого песка и кварцевого стекла видно, что независимо от строения кварца линейные коэффициенты поглощения имеют общий характерный вид, отличаясь только численными значениями (рис.2.б, г). При введении 20% кварцевого стекла формируется однородная структура, рост структурных неоднородностей наблюдается при длительной выдержке и максимальной температуре обжига ($\tau = 3$ час.). Для кварцевого стекла увеличение времени выдержки при температуре обжига оказывает большее влияние на линейный коэффициент поглощения (k падает на 43%), чем рост температуры (k возрастает на 13%) (рис. 2.г).

Рис. 3. Зависимость массового коэффициента поглощения *k_m* от истинной плотности образцов.

Как следует из рис. 3, массовый коэффициент поглощения $k_m = k / \rho$ не зависит от истинной плотности волластонитовой керамики и при любом содержании наполнителя (10– 30%) равен 0,15 м²/кг. Следовательно, линейный коэффициент поглощения, являясь однозначной функцией плотности, позволяет найти распределение плотности по сечению пористой керамики.

Рис. 4. Распределение линейного коэффициента поглощения *k*,м⁻¹ по поверхности образца размером 5 мм х 10 мм.

Объединение распределений линейных коэффициентов поглощения *k* для множества параллельных сечений образца дает распреде-

ление линейного коэффициента поглощения *k* по поверхности (рис. 4).

Таким образом, для оценки параметров порового пространства фильтрующих керамических материалов целесообразно использовать неразрушающий метод рентгеновской радиографии, обладающий достаточной чувствительностью для выявления структурных неоднородностей.

Литература

- 1. *Чернявский Г.С.* Стереология в металловедении. М.: Металлургия, 1977. 279 с.
- Ермолов И.Н., Останин Ю.Я. Методы и средства неразрушающего контроля качества. – М.: Высш. шк., 1988. – 368 с.
- Блохин М.А. Физика рентгеновских лучей. М.: Гос. изд-во техн.-теоретич. лит-ры, 1957. – 518 с.