УДК 551.521.3 (575.2) (04)

РЕГИОНАЛЬНЫЕ СТАТИСТИЧЕСКИЕ МОДЕЛИ АЭРОЗОЛЯ

Б.Б. Чен – докт. физ.-мат. наук **П.В. Козлов** – канд. физ.-мат. наук

Little-parametric statistical models of optical and microphysical characteristics of the tropospheric aerosol for region of the Central Asia, as well as methods of their building are given.

Введение. Усовершенствование методов исследования атмосферного аэрозоля и разработка аэрозольных моделей атмосферы являются весьма актуальными для решения задач экологии, климатологии, дистанционного зондирования окружающей среды и т.д.

В настоящее время получены довольно обширные объемы экспериментальных и расчетных данных по оптическим и микрофизическим характеристикам аэрозоля. Одно из наиболее полных обобщений оптических свойств аэрозоля выполнено, например, в работе [1], где рассмотрены вопросы переноса лазерного излучения в атмосфере, подробно проанализированы вертикальные профили оптических характеристик атмосферного аэрозоля на длинах волн наиболее распространенных оптических генераторов (лазеров), обобщены сведения об оптических постоянных различных веществ. Рассмотрены также данные о микроструктуре аэрозоля.

Не вдаваясь в обзор разработанных разными авторами многочисленных аэрозольных моделей для различного применения (см., напр., [2]), отметим, что моделирование свойств реального атмосферного аэрозоля представляет весьма сложную задачу. Это связано с наблюдающейся большой пространственно-временной изменчивостью и неоднородностью концентрации, спектра размеров, формы атмосферного аэрозоля. Основные принципы, которые закладываются в модель, зависят от назначения модели и от того объема экспериментальной или теоретической информации, которой располагают исследователи [6].

В разработке эмпирических моделей условно выделяют два основных подхода [7]: "оптический" и "микрофизический", каждый из которых имеет свои достоинства и недостатки. Так, "микрофизический" подход, в частности, позволяет обеспечить вычисление любой из необходимых оптических характеристик с использованием теоретических расчетов. Но при эмпирическом задании вида функции распределения частиц по размерам и их оптических постоянных весьма трудно оценить вклад частиц, измерение которых не проводилось из-за, например, ограниченных технических возможностей в рассчитываемые оптические параметры. "Оптический" же подход ограничен тем спектральным диапазоном и теми оптическими характеристиками, которые непосредственно измерялись в эксперименте.

На основе экспериментальных данных исследований оптических и микрофизических характеристик атмосферного аэрозоля с помощью многоволнового и рамановского лидара на центральноазиатской лидарной станции Теплоключенка и их анализа построены региональные малопараметрические статистические модели тропосферного аэрозоля. В моделях приведены аналитические выражения, позволяющие рассчитывать (восстанавливать) вертикальные профили оптических характеристик на трех длинах волн зондирования, формирующие во многих случаях обратнорассеянный локационный сигнал и активно влияющие на перенос радиации в атмосфере. Данные по спектрам частиц, в частности, оценки их характерных размеров могут быть использованы для расчета среднего косинуса индикатрисы рассеяния или аналогичных параметров. Информация о вертикальном распределении аэрозольной компоненты, в том числе концентраций и характерных размеров частиц, необходимы при моделировании протекания радиационных процессов в атмосфере. переносе аэрозольного загрязнения и их влияния на климат.

1. К методике построения региональных статистических моделей оптических и микрофизических характеристик аэрозоля. В [9] при анализе статистических характеристик оптических и микрофизических параметров аэрозоля отмечено, что для собственных значений μ_i корреляционных матриц характерно преобладание первых трех значений над остальными, что дает основание для построения малопараметрических статистических моделей. Типичные значения μ_i и их соотношения при этом составляют μ_1 : μ_2 : $\mu_3 \sim 90:30:10$. Анализ поведения профиля первого собственного вектора $\psi_1(h)$ показывает, что в нем можно выделить достаточно протяженные участки монотонного изменения, несущие информацию о наиболее устойчивых свойствах рассматриваемого ансамбля данных, и резкие границы перехода, где весомую роль играют флуктуации (отклонения от средних значений). Разбиение всего профиля на систему интервалов с монотонным поведением $\psi_1(h)$ и последующий корреляционный анализ приводит к следующим выводам.

На каждом из интервалов в отличие от всего профиля преобладающим становится первое собственное значение при типичном соотношении $\mu_1 : \mu_2 \sim 90:10$. При этом μ_3 близко к нулю. Вследствие отмеченного соотношения собственных значений корреляционной

матрицы малопараметрическая статистическая модель сводится к однопараметрической модели на интервале. Появляется, таким образом, возможность аналитического описания вертикальных профилей средних значений характеристик аэрозоля и первого собственного вектора $\psi_I(h)$ корреляционных матриц в виде простых зависимостей от высоты с приемлемой (как правило, с высокой) точностью.

Любая реализация $f_k(h)$ на интервале может быть представлена в виде:

$$f_k(h) = \langle f(h) \rangle + c_{I,\kappa} p_2(h),$$
 (1)

где $p_2(h)$ – полином 2-го порядка.

Одним из важнейших вопросов при построении статистических моделей является оптимальный выбор входных параметров для обеспечения наивысшей в среднем точности восстановления подлежащих определению оптических характеристик при помощи небольшого числа наиболее доступных измерению (наблюдению) оптических или иных параметров.

Для тропосферы введем для ансамбля данных f_k ($\kappa = 1, n$) безразмерный параметр

$$\zeta_{1,\kappa} = \int_{h_1}^{h_2} f_k(h) dh, \qquad (2)$$

где h_1 и h_2 – границы интервала.

Для коэффициента обратного аэрозольного рассеяния, коэффициента ослабления, площади частиц в единице объема воздуха параметр ζ_1 является безразмерной величиной, которую для первых двух характеристик аэрозоля можно интерпретировать как аналог оптического пути.

Оказалось, что для выбранных интервалов между наборами $c_{1,\kappa}$ и $\zeta_{1,\kappa}$ существует высокая степень линейной корреляции с коэффициентом r = 0,99 и более и, как следствие, имеет место линейное регрессионное соотношение вида:

$$c_1 = c_{01} \cdot (\zeta_1 - \zeta_1), \tag{3}$$

где $\overline{\zeta_1}$ – среднее по ансамблю значений ζ_1 , что позволяет по известному значению коэффициента обратного аэрозольного рассеяния, измеренному с помощью лидара, восстанавливать коэффициент разложения *c*₁.

Высокая корреляция между $c_1(\beta_a)$ и параметром ζ позволяет предположить, что может существовать достаточно тесная статистическая связь между $c_1(\beta_a)$ и оптической плотностью атмосферы.

Следовательно, на выбранной системе интервалов данные ансамбля f_k ($\kappa=1$, n) могут быть представлены однопараметрической моделью вида

$$f_k(h) = \langle f(h) \rangle + (ah^2 + bh + c)(\zeta_k - \overline{\zeta}), \quad (4)$$

где $\mathcal{I}(h)$ >, в свою очередь, также является полиномом 2-го порядка.

Заметим, что число интервалов и их размеры определяются типом анализируемых данных и спецификой исследуемого процесса. Так, например, профиль коэффициента обратного аэрозольного рассеяния и профиль первого собственного вектора в фоновый период (рис. 1 и 2) разбивается на два интервала – 1,4-3,0 и 3,0-8,0 км. При этом погрешность аппроксимации среднего коэффициента обратного аэрозольного рассеяния на всем интервале 1,4-8,0 км составляет 25% (рис. 1 *a*), в то время как на интервалах 1,4-3,0 км – 3,0%(рис. 1 *b*) и 3,0-8,0 км – всего 2,0% (рис. 1 *c*).

Рис. 1. Примеры аппроксимации распределения по высоте среднего значения коэффициента обратного аэрозольного рассеяния (λ = 355 nm):

a - h = 1,4-8,0 км, b - h = 1,4-3,0 км, c - h = 3,0-8,0 км.

Рис. 2. Примеры аппроксимации профиля первого собственного вектора ($\lambda = 355$ nm): a - h = 1,4-8,0 км, b - h = 1,4-3,0 км, c - h = 3,0-8,0 км.

Укрупнение интервалов приводит, как правило, к перераспределению собственных значений μ_1 и μ_2 в пропорции ~60:40 при малых значениях μ_3 и, соответственно, к двухпараметрической модели. При этом наряду с парой (c_1 , ζ_1) высокой степенью корреляции обладает и пара (c_2 , ζ_2), если в качестве ζ_2 взять следующий аналог формулы (2):

$$\zeta_{2,k} = \int_{h_1}^{h_2} (f_k(h) - \overline{f_k}) h dh / (h_2 - h_1), \qquad (5)$$

где $\overline{f_k}$ – среднее значение реализации $f_k(h)$ на интервале.

Между набором констант c_2 и ζ_2 также имеет место линейная связь $c_2 = c_{02}(\zeta_2 - \overline{\zeta_2})$. Функциональные зависимости $\langle f(h) \rangle$, $\psi_1(h)$ и $\psi_2(h)$ для двухпараметрической модели также можно представить в виде полиномов 2-го порядка, но, как правило, с большей аппроксимационной погрешностью, чем при поинтервальном разбиении, приводящем к однопараметрической модели.

Необходимо также отметить, что уже при анализе распределений радиусов корреляции в [9] хорошо прослеживалось выделение на всем вертикальном профиле оптических характеристик участков устойчивого поведения соответствующих оптических характеристик, позволяющих описывать их одно- или двухпараметрическими статистическими моделями.

В данной работе авторы ограничились частной задачей построения оптической модели тропосферного аэрозоля, которая бы позволяла решать задачу учета всех особенностей и восстановления оптических характеристик для заданного значения входного параметра.

2. Модели оптических характеристик. В основу приведенных ниже моделей положены результаты статистического анализа данных экспериментальных измерений оптических и микрофизических характеристик аэрозоля в различных условиях для длин волн лидарного зондирования 355, 532 и 1064 пт. Как было отмечено выше, удовлетворительную точность восстановления оптических характеристик обеспечивает, как правило, однопараметрические статистические модели, входными пара-

метрами в которых являются коэффициент обратного рассеяния или ослабления.

В табл. 1 приведены модели среднего вертикального распределения коэффициента обратного аэрозольного рассеяния в фоновый период и в Атмосферных Коричневых Облаках. Здесь же приводятся значения первых трех собственных чисел корреляционной матрицы и погрешности аппроксимации. Средняя точность восстановления (аппроксимации) в приближении однопараметрической статистической модели определялась путем расчета остаточных стандартных отклонений $\sqrt{s_{\beta}^2}$ разностей $\Delta\beta_a(h) = \beta_a^n(h) - \beta_a^s(h)$, где $\beta_a^n(h)$ – наблюдаемые, $\beta_a^s(h)$ – восстановленные функции коэффициента обратного рассеяния.

На рис. 3, в качестве примера, приведено сравнение вертикального профиля коэффициента обратного рассеяния, восстановленного по модели, с измеренным профилем 31.01.2003.

На рис. 3 в качестве примера приведено сравнение вертикального профиля коэффициента обратного рассеяния, восстановленного по модели, с измеренным профилем 31.01.2003.

Видно, что модель хорошо описывает высотное распределение коэффициента обратного рассеяния.

Статистические модели коэффициента ослабления на длине волны 532 nm приведены в табл. 2.

Как правило, модели для ABC являются двухпараметрическими.

Необходимо отметить, что даже при соблюдении основного условия – минимума погрешности аппроксимации на интервалах разбиении профиля оптических характеристик – наблюдается постоянство верхней границы первого интервала. Эта граница располагается, как правило, на высоте ~3 км в фоновый период, что является средней высотой верхней границы слоя активного турбулентного перемешивания (АТП) в наших условиях и в среднем соответствует высоте однородной атмосферы для аэрозольного пограничного слоя.

Таблица 1

Состояние	Слой, км		Аппроксимационная формула		Собственные числа, %			Погрешность аппроксим., %		
аэрозоля	h_1	h_2	восстановления профиля $\beta_a(n)$ μ_1		μ_2	μ_3	$\overline{\Delta\beta_a}$	$\Delta \psi_1$	$\Delta \psi_2$	
Фон,	1,4	3	$\begin{array}{c} 0.00064h^2 - 0.0036h + 0.0059 + (-0.13h^2 + \\ + 0.64h - 0.13)(\zeta - 0.002) \end{array}$	89	10	1	3	13		
$\lambda = 355 \text{ nm}$	3	8	$\begin{array}{l} -5 \cdot 10^{-6} h^2 - 1.03 \cdot 10^{-5} h + 0.00091 + \\ + (-0.0036 h^2 + 0.037 h + 0.12)(\zeta - 0.0034) \end{array}$	91	5	2	6	12		
Фон	1,4	3	$^{+4.67\cdot 10^{-5}h^2-0.00025h+0.00052+}_{+(-0.1h^2+0.46h+0.086)(\zeta-0.00032)}$	89	9	1	8	12		
$\lambda = 532 \text{ nm}$	3	8	$\begin{array}{c} -1.34 \cdot 10^{-6} h^{2} + 5.3 \cdot 10^{-6} h + 0.000163 + \\ + (-0.0106 h^{2} + 0.105 h - 0.032) \times \\ \times (\zeta - 0.00074) \end{array}$	79	12	6	6	26		
Фон	1,4	3	$^{+9.02\cdot10^{-5}h^{2}-0.00051h+0.00081+}_{+(-0.12h^{2}+0.58h-0.037)(\zeta-0.00025)}$	85	13	2	5	17		
$\lambda = 1064 \text{ nm}$	3	8	+2.46 $\cdot 10^{-7}h^2$ -1.4 $\cdot 10^{-5}h$ +0.00012+ +(-0.0077h^2+0.082h-0.0016)× ×(ζ -0.00027)	83	8	6	16	19		
АВС-нижн. λ=355 nm	3,1	3,6	$\begin{array}{c} -0.27h^2 + 1.88h - 3.22 + (-1.7h^2 + 11.2h - \\ -16.4)(\zeta - 0.017) \end{array}$	87	12	1	11	9		
АВС-нижн. λ=532 nm	3,1	3,6	$\begin{array}{c} -0.13h^2 + 0.89h - 1.5 + (-2.14h^2 + 14.2h - \\ -21.6)(\zeta - 0.0068) \end{array}$	85	9	5	10	4		
АВС-нижн. λ=1064 nm	3,1	3,6	$\begin{array}{c} -0.036h^2 + 0.25h - 0.42 + (-4.33h^2 + \\ + 29.3h - 47.5)(\zeta - 0.0021) \end{array}$	80	17	3	4	7		
ABC-верхн. λ=355 nm	6,6	7,1	$\begin{array}{r} -0.0134h^2 + 0.19h - 0.67 + (-35.3h^2 + \\ +493h - 1720)(\zeta_1 - 0.0021) + (25.8h^2 - \\ -342h + 1130)(\zeta_2 - 0.0004) \end{array}$	61	37	2	2	14	15	
	7,2	7,6	$\begin{array}{c} -0.076h^2 + 1.11h - 4.06 + (-4.04h^2 + \\ +59.5h - 217)(\zeta - 0.0021) \end{array}$	95	4	1	10	2		
ABC-верхн. λ=532 nm	6,6	7,1	$\begin{array}{c} -0.015h^2 + 0.21h - 0.72 + (-28.7h^2 + 402h - \\ -1405)(\zeta_1 - 0.0021) + (19h^2 - 248h + 802) \times \\ \times (\zeta_2 - 0.0004) \end{array}$	54	43	2	1	15	13	
	7,2	7,6	-0.077h ² +1.13h-4.1+(-5.71h ² +83.8h- -305)(ζ-0.0021)	92	7	1	9	4		
ABC-верхн. λ=1064 nm	6,6	7,1	$\begin{array}{c} -0.006h^2 + 0.086h - 0.3 + (-44.6h^2 + 628h - \\ -2206)(\zeta_1 - 0.0021) + (60.4h^2 - 815h + \\ +2747)(\zeta_2 - 0.0004) \end{array}$	76	22	2	3	24	20	
	7,2	7,6	$-0.05\overline{1h^2+0.74h-2.71+(-4.7h^2+69.4h254)(\zeta-0.0021)}$	94	5	1	9	2		

Статистические модели коэффициента обратного аэрозольного рассеяния для фонового периода и ABC (λ = 355, 532 и 1064 nm)

Вестник КРСУ. 2004. Том 4. № 6

Рис. 3. Сравнение восстановленного по модели профиля коэффициента обратного рассеяния (1) с измеренным 31.01.2003 (2).

Таблица 2

Статистические модели коэффициента ослабления ($\lambda = 532$ nm)
для фонового периода и АВС

Состояние аэрозоля	Слой, км		Аппроксимационная формула	Соб ч	бственн исла, %	Погрешность аппроксим., %		
	h ₁	h ₂	восстановления профиля α(n)	μ_1	μ_2	μ_3	$\overline{\Delta \alpha}$	$\Delta \psi_1$
Φ он, $\lambda = 532 \text{ nm}$	1,6	2,1	$\begin{array}{c} 0.008h^2 - 0.038h + 0.054 + (-5.64h^2 + \\ + 20.7h - 16.7)(\zeta - 0.0051) \end{array}$	85	12	3	4	4
	2,1	5,1	$\begin{array}{c} -0.00021h^{2}{+}0.0024h{+}0.0059{+}\\ {+}({-}0.02h^{2}{+}0.15h{+}0.05)(\zeta{-}0.034)\end{array}$	84	10	5	8	14
ABC-нижн. λ = 532 nm	3	4	$\begin{array}{c} -0.94h^2 + 6.65h - 11.3 + (-1.38h^2 + 9.83h - \\ -16.4)(\zeta_1 - 0.31) + (-6.06h^2 + 52.7h - \\ -110)(\zeta_2 - 0.02) \end{array}$	69	27	3	15	6
ABC-верхн. $\lambda = 532 \text{ nm}$	7,1	8	$\begin{array}{c} -0.38h^2 + 5.52h - 19.9 + (-0.28h^2 + 4.27h - \\ -15.1189)(\zeta - 0.22) \end{array}$	97	2	1	6	3

Рис. 4. Сравнение восстановленного профиля коэффициента ослабления (1) с измеренным (2) в АВС в нижней тропосфере 28.07.2004 (*a*) и в верхней тропосфере 24.03.2003 (*b*).

Вестник КРСУ. 2004. Том 4. № 6

На рис. 4 видно, что статистическая модель хорошо описывает распределения по высоте коэффициента ослабления в АВС, расположенных на разных высотах в тропосфере.

Заметим, что точность однопараметрической статистической модели в иных случаях может оказаться недостаточной. Точность восстановления можно будет повысить учетом вклада вторых и третьих собственных векторов корреляционных матриц оптических характеристик. Но при этом появляется затруднение в надежности восстановления оптических характеристик по коэффициенту обратного рассеяния при лазерном зондировании атмосферы [4].

2. Модели микрофизических характеристик. Под микрофизическими моделями обычно понимается совокупность моделей микроструктуры и спектральной зависимости комплексного коэффициента преломления [5]. Но при этом задача построения модели функции распределения частиц по размерам не имеет единственного решения, что связано, прежде всего, с тем, что эмпирические функции распределения могут быть аппроксимированы различными законами распределения,

т. е. различными математическими выражениями. Так, в отличие от обратностепенных распределений или распределения типа Юнге экспериментальные данные показали, что в большинстве случаев распределения частиц по размерам (или концентрации, или площади (объема) частиц в единице объема воздуха) являются суперпозицией двух, а иногда и трех, отчетливо разделяющихся одномодальных распределений. Эти распределения соответствуют двум (трем) фракциям атмосферного аэрозоля: мелкодисперсной ($0,05 \le r \le 0,1$ µm), крупнодисперсной ($r \ge 1$ µm) и субмикронной ($0,1 \le r \le 1,0$ µm).

Приведенные в табл. 3 модели распределения площади поверхности частиц в единице объема воздуха S в фоновый период описываются двухпараметрической моделью до 4,5 км для радиуса частиц 0,09 µm, выше – однопараметрической. Это, видимо, обусловлено неустойчивостью в распределении мелкодисперсной фракции аэрозоля в слое АТП. Для радиуса частиц 0,16 µm вертикальное распределение S аппроксимировано однопараметрической моделью.

Таблица 3

Состояние аэрозоля	r, μm	Слой, км		Аппроксимационная формула	Co	обствені числа, 9	Погрешность аппроксим., %		
		h_1	h ₂	восстановления профиля S(h)	μ_1	μ_2	μ_3	$\overline{\Delta S}$	$\Delta \psi_1$
1	2	3	4	5	6	7	8	9	10
Фон	0,09	1,9	3,2	$\begin{array}{r} -4.9h^2 + 17.4h + 60.7 + (-0.75h^2 + \\ +4h - 4.51)(\zeta_1 - 94.1) + (-2.11h^2 + \\ +15.8h - 26.5)(\zeta_2 + 0.82) \end{array}$	67	28	5	1	7
		3,2	4,5	$\frac{1.64h^2 - 26.6h + 135 + (-1.11h^2 + +8.56h - 15.6)(\zeta_1 - 73.8) +}{+(0.077h^2 + 4.84h - 19.8) \times} \times (\zeta_2 + 2.13)$	65	34	1	1	4
		4.5	7	$\begin{array}{c} 0.41h^2 - 5.92h + 65.6 + (-0.013h^2 + \\ + 0.17h - 0.12)(\zeta - 113) \end{array}$	72	18	9	2	10
	0,16	1,9	4,5	$\begin{array}{c} -0.87h^2 + 9.12h + 10.9 + \\ + (-0.0052h^2 + 0.035h + 0.33) \times \\ \times (\zeta - 79.5) \end{array}$	88	8	4	5	5
		4,5	7	$\begin{array}{c} -0.42h^2 + 3.73h + 28.1 + (-0.05h^2 + \\ +0.55h - 1.1)(\zeta - 88.2) \end{array}$	87	12	1	2	5

Статистические модели распределения по высоте площади поверхности частиц по размерам в единице объема воздуха для фонового периода и ABC

Вестник КРСУ. 2004. Том 4. № 6

Продолжение табл. 3									табл. 3
1	2	3	4	5	6	7	8	9	10
АВС-нижн.	0,09	3,2	4	$-13258h^{2}+95599h-169718++(-1.44h^{2}+10.33h-17.2)\times\times(\zeta-1476)$	98	2	0	10	7
	0,52	3,2	4	$\begin{array}{r} -511h^2 + 3013h - 3797 + (-1.36h^2 + \\ +10.08h - 17.4)(\zeta - 317) \end{array}$	90	9	1	7	9
АВС-верхн.	0,09	6,8	8,2	$-1175h^{2}+17500h-64400++(-0.026h^{2}+0.42h-0.81)(\zeta-776)$	99	1	0	9	3
	0,52	6,8	8,2	$-241h^{2}+3531h-12609++(-0.19h^{2}+2.84h-10)(\zeta-370)$	91	8	1	7	8
	1,67	6,8	8,2	$-49.6h^{2}+615h-1676+(-0.24h^{2}+$ +3.64h-13)(ζ -185)	94	4	2	8	5

В АВС, расположенных как в нижней, так и в верхней тропосфере, вертикальные распределения *S* для всех трех фракций аэрозольных частиц описываются однопараметрическими статистическими моделями.

В другой частной задаче – разработке модели комплексного коэффициента преломления – определенные трудности возникают при практическом определении аппроксимационной зависимости коэффициента преломления от входных параметров.

В этой же работе авторы сочли необходимым ограничиться приведением средних величин оптических и микрофизических характеристик в типичных фоновых условиях (табл. 4). Приведенные средние значения оптических и микрофизических характеристик для разных высотных интервалов рассчитаны в результате обработки массива данных, учитывающего все наиболее общие для региона особенности их вертикального распределения.

Среди указанных оптических параметров: коэффициенты обратного рассеяния $\beta(h)$ на трех длинах волн, а также коэффициенты ослабления $\alpha(h)$ и интегральные коэффициенты обратного аэрозольного рассеяния F_a , вычисленные в интервале высот (h_1, h_2) . Коэффициент F_a характеризует оптическую плотность аэрозоля и определяется как:

$$F_a = \int_{h_1}^{h_2} \beta_a(h) dh$$

Спектр распределения аэрозольных частиц представлен средними значениями объема V и площади поверхности S частиц на единицу объема воздуха, эффективного радиуса r_{32} , модального радиуса r_{si} и дисперсии распределения σ .

Приведенные данные отражают тот факт, и это самое главное, что все наиболее существенные вариации оптических и микрофизических параметров относятся к слою активного турбулентного перемешивания. Различный характер поведения и количественные изменения оптических характеристик в слое АТП и в условиях свободной атмосферы обусловили при параметризации средних значений $\beta(h, \lambda)$ и $\alpha(h)$ разбиение всей трассы зондирования на два интервала.

Предлагаемая методика параметрического описания микрофизической информации позволяет охватить достаточно широкое качественное многообразие возможных реализаций дисперсного состава тропосферного аэрозоля. Выявленная двухмодальная дисперсная структура аэрозоля в слое АТП является признаком его фракционной природы. Основные изменения количественного содержания аэрозольных фракций в зависимости от высоты связаны с уменьшением вклада крупнодисперсных частиц, ощутимое влияние которых на оптические свойства фонового аэрозоля ограничиваются верхней границей слоя АТП. Поэтому часто особый интерес представляет наблюдение за более мелкими фракциями тропосферного

аэрозоля, и в приведенных моделях описание пространственного распределения площади поверхности частиц в единице объема воздуха S проведено для мелкодисперсных и субмикронных частиц с радиусами 0,09 μ m и 0,16 μ m соответственно.

Каждой области высот соответствуют свои величины действительной *n* и мнимой части k комплексного показателя преломления. Диапазон принимаемых значений показателей преломления и поглощения при этом связан с изменчивостью соотношения объемного содержания воды, сухого вещества и продуктов горения в составе аэрозольных частиц. Таким образом, уменьшение количества частиц с ростом высоты сопровождается существенным изменением микрофизических свойств аэрозоля. Однако даже при наличии полидисперсного состава смеси частиц в слое АТП, состоящей из разных фракций, можно выделить участки диапазона высот, на которых флуктуация микрофизических параметров в основном связана с изменением концентрации частиц и в меньшей степени обусловлены трансформацией микроструктуры. Как видно из приведенной табл. 4, границы интервала в слое АТП, где наблюдаются преимущественно изменения концентрации частиц, примерно соответствуют тем, что были определены ранее, а именно $\Delta h_1 = 1,9-3,2$ км для $r = 0.09 \ \mu m$. Наличие второго интервала ($\Delta h_2 = 3,2-4,5$ км) связано с флуктуацией верхней границы слоя АТП в зависимости от сезона и метеоусловий. Выше слоя АТП в области высот $\Delta h_3 = 4,5-$ 7,0 км микроструктура аэрозоля достаточно стабильна и преобладают только ее концентрационные изменения. Что касается субмикронных частиц, то при параметризации вертикального распределения их концентрации оказалось достаточным разбиение трассы на два интервала.

Представленные в табл. 4 значения микрофизических параметров для разных высотных интервалов позволяют провести расчеты альбедо однократного рассеяния ω и среднего косинуса индикатрисы рассеяния *g*, например, в соответствии с методикой, приведенной в [8]. Это возможно, на наш взгляд, вследствие совпадения рассматриваемых в обоих случаях областей значений параметров микроструктуры. На рис. 5, в качестве примера, приведены рассчитанные для нашего случая зависимости среднего косинуса индикатрисы рассеяния g и альбедо однократного рассеяния ω от величины мнимой части показателя преломления для $r_m = 0,09$ мкм и $r_m = 0,16$ мкм при $\sigma = 1.8, n = 1.6$.

Линейные параметризации оптических характеристик ω и g, подобные приведенным на рис. 5, могут быть использованы при интерпретации экспериментальных данных по микрофизике аэрозоля, а также для расчета оптических свойств аэрозоля в климатических моделях. Выделенная же область значений параметров в табл. 4 позволяет вычислять оптические характеристики, необходимые для расчета прохождения излучения в видимой области спектра через аэрозольный слой, размеры частиц в котором лежат в области мелкодисперсной и субмикронной фракций.

Литература

- 1. Зуев В.Е., Креков Г.М. Оптические модели атмосферы. Л.: Гидрометеоиздат, 1986. 256 с.
- 2. Ипполитов И.И., Комаров В.С., Мицель А.А. Оптико-метеорологическая модель атмосферы для моделирования лидарных изме-

рений и расчета распространения радиации / Спектроскопические методы зондирования атмосферы. – Новосибирск: Наука, 1985. – 4-44 с.

- Обухов А.М. О статистических ортогональных разложениях эмпирических функций // Изв. АН СССР. Сер. геофиз. – 1960. – Т. 3. – С. 432–439.
- Горчаков Г.И., Свириденков М.А. Статистическая модель оптических характеристик атмосферной дымки // Изв. АН СССР. Физика атмосферы и океана. Т. 15. №1. 1979. С. 53–59.
- Горчаков Г.И., Емиленко А.S., Свириденков М.А. Однопараметрическая модель приземного аэрозоля // Изв. АН СССР. Физика атмосферы и океана. – Т.17. – №1. – 1981. – С. 39–49.

- Панченко М.В., Терпугова С.А., Полькин В.В. Эмпирическая модель оптических характеристик аэрозоля нижней тропосферы Западной Сибири // Оптика атмосферы и океана. – 1998. – Т.11. – №6. – С. 615–624.
- Кабанов В.М., Панченко М.В., Пхалагов Ю.А. и др. Оптические свойства прибрежных атмосферных дымок. – Новосибирск: Наука, 1988. – 201 с.
- Соколик И.Н. Параметризация оптических характеристик полидисперсной аэрозольной системы // Оптика атмосферы. – Т.2. – №6. – 1989. – С. 577–583.
- Chen B.B., Sverdlik L.G., Kozlov P.V. Optics and microphysics of atmospheric aerosol. – Bishkek, 2004. – 222 p.