УДК 631.674.1 (575.2) (04)

ОПРЕДЕЛЕНИЕ УРОВНЯ ГРУНТОВЫХ ВОД МЕТОДОМ МЕЛИОРАТИВНОЙ СЪЕМКИ

Н.И. Иванова— канд. техн. наук, доц. **А.В.** Панова— канд. с.-х. наук, доц. КАУ

Empirical dependences of change groundwater level on a preirrigation level in a working range regulations a water mode in conditions close burials groundwater level are resulted (<3 m). The method of definition groundwater level on agricultural fields by results of ameliorative shootings with use of a test plot.

Для проектирования и эксплуатации вновь создаваемых, а также реконструкции существующих оросительных и коллекторно-дренажных систем необходимо устанавливать фактический уровень грунтовых вод (УГВ) на каждом поле (поливном участке) с необходимой частотой по площади и во времени.

В настоящее время для решения данного вопроса, во-первых, используются рекомендуемые зависимости, не позволяющие достоверно определять фактическое положение уровня грунтовых вод и обеспечивать дифференцированный подход к каждому объекту при регулировании водно-солевого режима ввиду того, что коэффициенты, входящие в формулы, имеют региональный характер и требуют постановки многолетних опытов. Вовторых, для установления фактического уровня экспериментально проводятся бурения скважин и колодцев, что очень трудоемко и дорого. Кроме того, анализ опубликованных данных показал, что направленных полевых экспериментов по дифференцированному и достоверному определению уровня, исключающему бурение, нет [1, 2]. Поэтому нами в течение ряда лет была разработана методика направленного полевого опыта, которая приводится ниже.

Опыт закладывали согласно схеме (рис. 1), по почвенным модулям, представленным сле-

дующими типами почвогрунтов: А — луговой с уровнем вод $H_z=1...3$ м; Б — сероземно-луговой с $H_z=1,3...1,7$ м; С — лугово-сероземный с $H_z=1,7...3$ м и Д — сероземный с $H_z>3$ м .

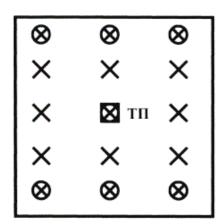
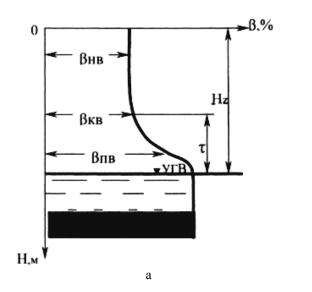


Рис. 1. Схема проведения опыта: × – точки определения влажности почвы по горизонтам; **⊗** – точки определения УГВ (3 раза в месяц); **⊠** – тестовая площадка (ТП).


Площадь каждого модуля характеризуется числом точек не менее 15, в которых определяются технологические параметры водного режима (ТПВР) с необходимой частотой по площади, глубине и времени. Точки на площади располагаются не ближе зоны краевого эф-

фекта по влиянию увлажнения, т.е. через 20—30 м, по створам с учетом влияния дренажа. Таким образом, площадь одного модуля составляет около 1 га, а общая площадь исследований — 4 га. Границы между модулями могут быть неправильной формы, которые наносятся на план по результатам предварительно проведенной мелиоративной съемки (МС). На каждом модуле определяют параметры водного режима, в том числе и уровень грунтовых вод. По водно-физическим свойствам все варианты должны быть в одном таксоне согласно классификации параметрам, разработанной в Кыргызской аграрной академии [3, 4].

На каждом модуле намечают тестовую площадку (ТП), на которой стандартными методами определяют уровень вод и необходимые параметры водно-физических свойств почв по горизонтам до фактического положения грунтовых вод.

Для получения обобщенных зависимостей на различных по комплексу физических свойств в почвах необходимо провести опыт не менее чем для трех таксонов, т.е. за один год на площади 12 га или за 3 года на площади по 4 га.

С целью получения взаимосвязей уровня вод с другими параметрами в основу экспериментальных исследований была положена следующая гипотеза. В условиях близкого залегания грунтовых вод $(H_z < 3 M)$ (рис. 2, а) глубина распространения дефицита влаги $(H_{I\!\!\!/})$ и средневзвешенная относительная влажность почвы в этом слое (γ_{cp}) в рабочем диапазоне регулирования водного режима $(\gamma = 0,7...1,0)$ представляет собой прямо пропорциональную зависимость (рис. 2, б). Угол наклона прямой зависит от положения уровня вод (рис. 3). Установлено, что чем ближе уровень к поверхности, тем меньше глубина дефицита влаги и меньше угол α .

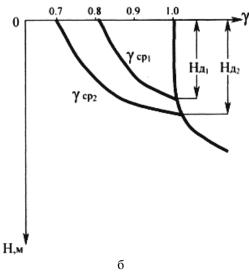


Рис. 2. Схема к определению глубины распространения дефицита влаги: $\beta_{HB}-\text{ наименьшая влагоемкость; }\beta_{KB}-\text{ капиллярная влагоемкость; }\beta_{\Pi B}-\text{ полная влагоемкость; }\tau-\text{ высота капиллярного поднятия; }H_z-\text{ расстояние до УГВ; }\gamma-\text{ влажность почвы в долях от наименьшей влагоемкости; }H_{Д1}$ и $H_{Д2}-\text{глубина распространения дефицита влаги; }\gamma_{cp1}$ и $\gamma_{cp2}-\text{ средняя влажность в соответствующих слоях дефицита влаги.}$

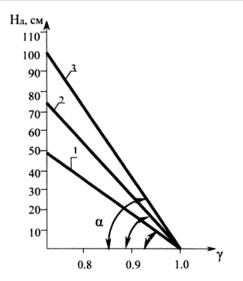


Рис. 3. Зависимость распространения дефицита влаги ($H_{\rm Д}$) от относительной влажности (γ). Изменение угла α при различных УГВ ($H_{\rm z}$, м): $1-0,9...1,3;\ 2-1,3...2,0;\ 3-2,0..3,0.$

Ниже приведены результаты модульного опыта на гидроморфных почвах на площади 100 га.

По результатам эксперимента построен график (рис. 4). Теоретически зависимость положения уровня от $tg\alpha$ имеет криволинейный характер, так как при близком уровне ($H_z < 0,5 \text{м}$) дефицит влаги практически равен 0, а, следовательно, и $tg\alpha = 0$. При уровне больше 3 м дефицит влаги стремится к предельной максимальной величине. В диапазоне измеренных величин часть кривой для почв относительно однородного сложения может быть представлена прямой, описываемой уравнением:

$$H_z = a \cdot tg \alpha - b,$$
 где $a = 1,345$; $b = 0,161$.

Коэффициент корреляции при этом составил 0,818. Адекватность полученного уравнения проверена по критерию Фишера: $K_{\phi}=2,45$ $< K'\phi=2,99$.

Зависимость глубины грунтовых вод (H_z .) от тангенса угла α

№ точек	Наименьшая влагоемкость $\beta_{\text{нв}}$,%м.с.п	Средняя относительная влажность в слое дефицита γ	Слой дефицита Н _Д ,м	Тангенс угла α = Нд $/\gamma$	Фактическая глубина УГВ H_z ,м
1	21,70	0,87	1,40	1,61	2,53
2	21,20	0,81	1,40	1,73	2,43
3	23,85	0,87	0,90	1,03	1,40
4	23,94	0,71	1,10	1,55	1,68
5	23,85	0,78	0,90	1,15	1,44
6	22,05	0,88	1.30	1,48	1,87
7	22,04	0,80	1,40	1,75	2,09
8	21,61	0,85	1,20	1,41	1,92
9	21,74	0,77	1,40	1,82	1,96
10	21,40	0,81	1,20	1,99	2,16
11	26.08	0.92	0.90	0.98	1.10
12	26,10	0,82	1,10	1,22	1,06
13	26,16	0,88	1,00	1,25	1,30
14	27,59	0,85	1,30	1,08	1,17
15	28,14	0,77	1,10	1,43	1,40
16	24,70	0,83	1,00	1,20	1,80
17	27,29	0,88	0,90	1,21	1,37
18	26,94	0,80	0,90	1,36	1,28
19	28,38	0,68	0,90	1,32	1,20

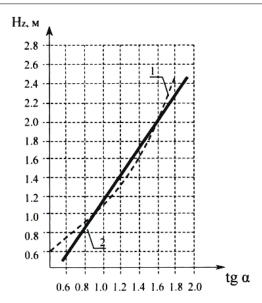


Рис. 4. Зависимость глубины грунтовых вод (H_z) от тангенса угла α: 1 – фактический уровень; 2 – теоретический.

Таким образом, положение уровня в разных точках объекта с необходимой частотой можно найти по результатам МС и экспериментальной зависимости $H_z = f(tg\alpha)$.

Обобщая изложенное выше, получаем следующий алгоритм для определения уровня грунтовых вод.

По двум значениям влажности (β), измеренным через интервал времени t, за который образуется существенный дефицит влаги в почве, определяется репрезентативная для поля скорость изменения влаги – V_{H} и ТП – \overline{V}_{H} . Далее определяются все необходимые параметры на поле и ТП, рассчитывается среднее значение относительной влажности почвы слоя дефицита, которая связана с величиной этого слоя, откуда находится зависимость $H_z = f(tg\alpha)$.

Применяя к уравнению (1) принцип относительного сравнения по МС, находим модель:

$$H_z = a(tg\alpha - \overline{tg\alpha}) + \overline{H}_z \qquad (2)$$

 $H_z = a(tg\alpha - \overline{tg\alpha}\,) + \overline{H}_z \qquad (2)$ где H_z и \overline{H}_z — УГВ на поле и ТП соответственно; α и $\overline{\alpha}$ – углы наклона кривых $H_z = f(tg\alpha)$ на поле и ТП соответственно.

$$a = \frac{H_z - \overline{H}_z}{tg\alpha - \overline{tg\alpha}} \ . \tag{3}$$

На основании исследований получены следующие результаты.

- 1. Уравнения (2) и (3) приемлемы в процессе МС для определения уровня грунтовых вод с необходимой частотой на объекте без бурения и устройства скважин (при УГВ от 1 до 3 м).
- 2. Уравнение (2) может использоваться также для прогнозирования уровня грунтовых вод на поле при измерении его в динамике на ТП в скважине.
- 3. Пути дальнейших исследований должны быть направлены на получение обобщенной модели $H_z = f(tg\alpha)$ для широких пределов уровня и комплекса водно-физических свойств почвогрунтов.

Литература

- 1. Аверьянов С.Ф. Фильтрация воды из каналов и ее влияние на режим грунтовых вод. – М.: Колос, 1982. – 235 с.
- 2. Харченко С.И. Гидрология орошаемых земель. – Л.: Гидрометеоиздат, 1976. – 342 с.
- 3. Иванова П.И., Панова А.В. Метод определения грунтовых вод с использованием мелиоративной съемки // Мат-лы межд. науч. конф. Кырг. техн. ун-т. – Бишкек, 1999. – С. 11–16.
- 4. Иванова Н.И. Методологические основы получения исходной информации при регулировании водного режима орошаемых полей // Мат-лы науч.-практ. семинара, посвящ. І съезду ученых КР. - Вып. 3. - Ч. 2. - Бишкек, 2001. – C. 9–14.