О КОРРЕКТНОСТИ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ТРЕЩИНОСТОЙКОСТИ ПРИ СОВМЕЩЕННОМ ОСЕВОМ И ВНЕЦЕНТРЕННОМ РАСТЯЖЕНИИ КОМПАКТНЫХ ОБРАЗЦОВ

САПРЫКИН Ю.В., КУЛАКОВ В.С. izvestiya@ktu.aknet.kg

Работа посвящена исследованию предельных параметров трещиностойкости для относительно небольших трещин при совмещенном осевом и внецентренном растяжении компактных образцов.

Известно, что при установлении предела трещиностойкости, как совокупности критических коэффициентов интенсивности напряжений - K_{ci} при разных длинах трещин l_i , испытывают образцы, фиксируя разрушающие нагрузки P_{ci} . Затем строят график зависимости K_{ci} от относительных длин трещин l_i / B , где B – размер (ширина) образца в направлении распространения трещины. При этом в соответствующую способу нагружения формулу для K_c подставляют P_{ci} и l_i и определяют расчетным путем (с учетом корректирующих коэффициентов $Y_i = f(l_i / B)$) предельные параметры вязкости разрушения K_{ci} , которые и откладывают на графике при соответствующих относительных длинах трещин (рис. 1).

Из анализа предельных кривых (рис. 1) следует, что только при внецентренном растяжении компактных образцов и только в узком интервале относительно небольших длин трещин $0.1 \le l/B \le 0.25$ устанавливаемые по стандартной [1] формуле (1) расчетные значения параметра K_c изменяются очень резко, достигая при $l/B \approx 0.125$ своего максимума, существенно (на 55-65%) превышающего максимальные значения K_c при других способах нагружения, в том числе и при осевом расстяжении.

Так как многие детали машин с конструктивными и технологическими концентраторами напряжений (боковыми надрезами, канавками, выточками с возможными микропорами в их вершинах, с трещинами и трещиноподобными дефектами) работают в сложных условиях нагружения, при которых материал в вершинах концентратов может поочередно подвергаться и осевому и внецентренному растяжению, то исследование причин аномального изменения параметра K_c при относительно небольших трещинах в компактных образцах является актуальной задачей и основной целью данной работы.

Рис. 1. Типичные кривые предельных значений параметра K_c, устанавливаемые расчетноэкспериментальным путем при разных способах нагружения (схема): 1 - для плоских образцов с центральными трещинами при растяжении; для плоских образцов с краевыми трещинами при трехточечном изгибе или осевом растяжении; для цилиндрических образцов с кольцевыми

трещинами при осевом растяжении или изгибе; 2 - для компактных (прямоугольных) образцов при внецентренном растяжении

В соответствии со стандартом [1] предельные значения трещиностойкости - K_{ci} устанавливаются по формуле:

$$K_{ci} = \frac{P_{ci}}{t\sqrt{B}}Y_i.$$
 (1)

Здесь P_{ci} – разрушающая нагрузка, определяемая экспериментально при конкретной длине трещины l_i ; t и B – соответственно толщина и ширина плоского или компактного образца (рис.3); Y – безразмерная функция, зависящая (при данном способе нагружения) от отношения длины трещины к ширине "B" образца, а при внецентренном растяжении – еще и от эксцентриситета опасного сечения.

Рис.2. Зависимости абсолютных значений аналитических функций Y от длин трещин, установленные по формулам (2) и (3) для осевого (кривая 1) и внецентренного (кривая 2) растяжения соответственно

При осевом растяжении (O.P.): $Y_i^{OP} = (l/B)^{1/2} [1.99 - 0.41(l/B) + 18.7(l/B)^2 - 38.48(l/B)^3 + 53.85(l/B)^4].$ (2) При внецентренном растяжении (B.P.): $Y_i^{BP} = (l/B)^{1/2} [29.6 - 185(l/B) + 655(l/B)^2 - 1017(l/B)^3 + 639(l/B)^4].$ (3)

Графические интерпретации аналитических значений Y при разных относительных длинах трещин (l/B) для О.Р. и В.Р. представлены на рис.2 кривыми 1 и 2 соответственно.

Как следует из формулы (1), при отсутствии аномальных изменений разрушающей нагрузки P_{ci} резкие изменения (скачки) значений K_{ci} при относительно небольших трещинах могут быть обусловлены только характером зависимости Y = f(l/B). Эта функция учитывает влияние конечных размеров образцов с учетом их формы и способа нагружения. Если функция Y = f(l/B) известна для образца определенной формы, то она может быть применена для

геометрически подобных образцов разных размеров, изготовленных из материалов с другими упругими свойствами [2].

В общем случае с ростом длины трещины l_i и уменьшением нетто-сечения образца функция Y = f(l/B) должна монотонно увеличиваться, постепенно достигая своего максимума Y_{max} при $l_{\text{max}} \cong B$. Однако, как следует из рис.2, в компактных образцах именно в интервале относительно небольших длин трещин $0.08 \le l/B \le 0.2$ это условие не выполняется: значения Y почти не изменяются, незначительно отклоняясь то в сторону понижения, то даже повышения так, что в среднем остаются относительно постоянными. Именно это обстоятельство обусловливает существенное завышение (до 65%) значений параметра K_c , устанавливаемых по формуле (1) при указанных длинах трещин (рис.1).

При этом обращаем внимание на то, что подобные аномалии отсутствуют при О.Р. плоских образцов с краевыми трещинами (рис.1 и 3а), а характерны только для компактных образцов (рис.3б).

На рис.3 показаны стандартные образцы, рекомендуемые для испытаний на трещиностойкость при О.Р. (а) и В.Р. (б).

Рис.3. Форма и размеры образцов для испытаний на трещиностойкость при осевом (а) и внецентренном (б)

Видно, что местом приложения нагрузки P к образцам (рис.3) является не только точка "b", расположенная в центре дуги "abc" отверстий для захватов, а все точки этой дуги (как это и принято для плоского образца при О.Р. [1]). В этой связи и для компактного образца за точку отсчета длины трещины l (надреза - l_H), вероятно, должна приниматься точка "a", и, соответственно, за ширину образца – параметр B_* (рис.3 б). Заметим, что при испытании компактных образцов на В.Р. за начало трещины (l = 0) обычно принимается точка "b", а за ширину образца – параметр "B". Как будет показано ниже, выбор точки отсчета длины трещины имеет важное значение при относительно небольших трещинах ($l_* / B_* \le 0.33$).

Из анализа модели компактного образца (рис.4) следует, что при относительно небольших трещинах, концы которых находятся в пределах отрезка "af", в части объема этого образца, сечением $\Delta F_{g\phi\phi} = \Delta B_* t$, может преобладать осевое растяжение потому, что на отрезке длин трещин "ac" эксцентриситет, по-существу, отсутствует, а на отрезке "cd" –

эксцентриситет еще незначителен и его влиянием можно пренебречь, как и при О.Р. плоского образца (рис.3а). На отрезке "df" уже должно проявляться слабое влияние эксцентриситета. Поэтому при таких длинах трещин ($0.2 \le l/B \le 0.25$, или: $0.28 \le l_*/B_* \le 0.33$) вполне возможен постепенный переход от преимущественно О.Р. к В.Р.. Как бы подтверждением этому служит тот

факт, что в соответствии со стандартом РФ [1] испытания на трещиностойкость в условиях В.Р. следует проводить только при l/B > 0.25 ($l_*/B_* > 0.33$).

Рис.4. Модель компактного образца для обоснования выбора точки начала отсчета длины трещины при внецентренном растяжении

Все рассмотренное выше позволяет сделать вывод, что при испытании на трещиностойкость компактного образца с трещинами разных длин материал на фронте трещины, в зависимости от ее длины, может последовательно подвергаться осевому и внецентренному растяжению с постепенным переходом от одного к другому.

кривой 1 для внецентренного растяжения. В соответствии с этим, вероятно, и зависимость предельных значений трещиностойкости от длины трещины (рис.1) должна состоять из двух частей, одна из которых может быть подобной (по форме) зависимости " $K_{ci} = f(l/B)$ " для О.Р. (при l/B < 0.25, или: $l_*/B_* < 0.33$), а другая – для В.Р. (при l/B > 0.25 l/B < 0.25, или: $l_*/B_* < 0.33$).

Рассмотрим теперь два возможных варианта приложения растягивающей нагрузки к компактному образцу (рис.3б и 6). Пусть, например, при первом варианте растягивающая нагрузка действует на все сечение модельного образца шириной $B_* = 1.125B$ (рис.6б), а при втором – нагрузка сосредоточена в пределах отверстий для захвата (рис.6а) и поэтому эффективно воздействует только на часть сечения, шириной ΔB_* (рис.4). С учетом проведенного выше анализа и двух вариантов воздействия нагрузки, можно допустить, что в относительно небольшой части объема образца, ограниченного сечением $\Delta F_{эф\phi} = \Delta B_* t$, могут быть реализованы условия подобия не только по способу, но и по жесткости нагружения образца с относительно небольшими трещинами, которые учитываются аналитической функцией Y = f(l/B) [2].

Из этого следует, что при относительно небольших длинах трещин (при l/B < 0.25, или: $l_*/B_* < 0.33$), концы (вершины) которых находятся в одних и тех же точках отрезка "af" (рис.4) относительные (приведенные) значения $Y/Y_{\rm max}$ для осевого и внецентренного растяжения могут быть сопоставимы.

На рис.5 представлены зависимости приведенных значений Y/Y_{max} от относительных длин трещин для В.Р. и О.Р.. Видно, что одно и то же значение $Y/Y_{\text{max}} = 0.02$ соответствует $l_*/B_* = 0.11$ при О.Р. (кривая 2, точка "b") и $l/B \cong 0$ при В.Р. (кривая 1, точка "b").

Это может иметь место в том случае, если за начало трещины при О.Р. будет приниматься точка "a", а при В.Р. – точка "b"при соответствующих параметрах B_* (или B) ширины образца (рис.4). По аналогии с этим можно установить $Y / Y_{\rm max}$ и для других относительных длин трещин, концы которых, например, будут находиться в точке "c" или "f" (рис.4).

Например, (рис.4) для точки "с" (если начало трещины в точке "а", как и принято, при О.Р.) имеем $l_* / B_* = 0.22$. Проведя вертикаль из точки $l_* / B_* = 0.22$ до пересечения с кривой 2

(рис.5), установим на ней точку "с", по которой определим соответствующее ей значение $Y / Y_{\text{max}} \cong 0.033$.

Так как при В.Р. длину трещины принято устанавливать от точки "b" (рис.36 и 4), то с учетом этого, в точке "c" (рис.4) относительная длина трещины должна соответствовать l/B = 0.125. Из условия, принятого ранее, что в одних и тех же точках отрезка "a÷f"(рис.4) значения $Y/Y_{\rm max}$ могут быть сопоставимы, находим точку "c" при l/B = 0.125 (на кривой 1'), а затем точки "f" и "f"

Рис.6 Кривые предельных значений параметров K_c , установленных по формуле (1) при разных длинах трещин *l/B* и способах нагружения компактных образцов $(B_* = 90, t = 40)$ стали 20 ($\sigma_B = 42,3\kappa_Z/MM^2$), находящихся под воздействием сосредоточенной (вар.а, кривые 1 и 2) и равномерно распределенной (вар.б, кривая 3) растягивающей нагрузки Р: 1 и 1' - кривые, полученные с учетом значений Y = f(l/B), установленных по формуле (3) для В.Р.; 2' - кривая получена с учетом скорректированных (приведенных) значений $Y_{*i}^{BP} = f(l_* / B_*)$ по способу, предложенному в данной работе; 3 – кривая соответствует варианту нагружения (б) $Y = f(l_* / B_*),$ и получена с учетом значений установленных по формуле (2) для О.Р.. Примечание: Все предельные кривые трещиностойкости соответствуют верхней границе квазиупругого поведения материала с трещинами, при котором расчет параметров нагрузки Р B.P.: производится по формулам [1]: для $P = 0.5\sigma_{B}t(B_{*}-l)^{2}/(2B_{*}+l);$ для O.P.: $P = \sigma_{B} t (B_{*} - l_{*})^{2} / (B_{*} + 2l_{*}).$

(рис.5). В результате получаем кривую 1' (b'c'f').

Окончательная корректировка кривой 1 для компактного образца (при относительно небольших трещинах) требует приведения значений $Y/Y_{\rm max}$ на кривой (b'c'f') к единым абсолютным и относительным длинам трещин. Для этого необходимо за точку отсчета (начала) длины трещины в компактном образце принять точку "a" (вместо точки "b") и соответственно за ширину образца – параметр " B_* " вместо "B" (рис.3б и 4). В результате кривая "b'c'f" сместится вправо и совпадет с кривой "abcf " на участке "bcf" (рис.5). Следовательно, на этой кривой и должны располагаться точки приведенных значений $Y^{\Pi P}$, по которым для компактных образцов можно установить уточненные абсолютные величины Y_{*i}^{BP} :

$$Y_{*i}^{BP} = Y^{\Pi P} Y_{\max}^{BP}, \qquad (4)$$

здесь: $Y^{\Pi P}$ - приведенная величина Y/Y_{max} на участке "a÷f " кривой 2 (рис.5); Y_{max}^{BP} - максимальное абсолютное значение Y, установленное по формуле (3) при $(l/B)_{\text{max}} \cong 1.0$ и равное $Y_{\text{max}}^{BP} \cong 122$.

Уточненные значения аналитической функции Y_{*i}^{BP} представлены в таблице в сопоставлении со значениями Y_i^{BP} и Y_i^{OP} , установленными по формулам (2) и (3).

Использование скорректированных коэффициентов Y_{*i}^{BP} в расчетах предельных параметров вязкости разрушения K_{ci} по – формуле (1) позволяет:

Устанавливать реальные зависимости $K_{ci} = f(l/B)$ для относительно небольших длин трещин (см. например, часть зависимости $K_{ci} = f(l_*/B_*)$, представленную кривой 2' на рис.6).

Исключить получение сильно завышенных (аномальных) расчетных значений параметра K_{ci}, представленных на рис.6 кривой 1'.

Таблица

Сопоставление коэффициентов Y для относительно небольших длин трещин, установленных по формулам (2) (осевое растяжение - Y_i^{OP}), (3) (внецентренное растяжение - Y_i^{BP}) и формуле (3), но скорректированной с учетом уравнения (4) (внецентренное растяжение - Y_{*i}^{BP})

l/B	0,05	0,1	0,15	0,20	0,25	0,30	0,33	0,35	0,4
Y_i^{OP}	0,45	0,66	0,87	1,1	1,33	1,61	1,81	1,95	2,36
Y_i^{BP}	4,89	5,28	5,22	5,23	5,45	5,90	6,27	6,55	7,38
Y_{*i}^{BP}	1,53	2,27	2,97	3,71	4,55	5,51	6,17	6,55	7,38

Литература

- ГОСТ 25.506-85. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. М.: Изд. Стандартов, 1985.
 Srawley J.E., B. Gross. Mat. Res. and Sids. 7(1967), S. 155.