УДК 533.9.02, 533.915, 533.92 (575.2) (04)

МОДЕЛИРОВАНИЕ ХАРАКТЕРИСТИК БАРЬЕРНОГО РАЗРЯДА

В СМЕСИ 0.05 XE /0.95 NE

С.В. Автаева – канд. физ.-мат. наук, доцент

Представлены результаты расчета установившейся динамики характеристик барьерного разряда в смеси 0.95 Ne/0.05 Xe в рамках одномерного диффузионно-дрейфового приближения. Проанализировано развитие барьерного разряда.

Ключевые слова: барьерный разряд, одномерная гидродинамическая модель, смесь Ne/Xe.

В настоящее время диэлектрические барьерные разряды (БР) в смесях инертных газов широко используются в качестве источников вакуумного ультрафиолетового излучения в эксимерных лампах и плазменных дисплейных панелях (ПДП) и являются объектом интенсивных исследований [1–6]. Наиболее часто в цветных ПДП используется смесь Xe-Ne с концентрацией ксенона порядка 3–10%. Хе используется в качестве источника ВУФ излучения, а Ne – как буферный газ, снижающий напряжение пробоя [3].

Существенной частью улучшения технологии ПДП является понимание основных физических процессов динамики плазмы, распределения энергии электронов и взаимодействия плазмы с поверхностью в ячейке ПДП. Это подтверждается резким увеличением в последние годы числа научных работ, публикуемых по этой проблеме в трудах конференций и научных журналах как исследовательскими институтами, так и исследователями, представляющими различные компании.

В данной работе в рамках одномерного диффузионно-дрейфового приближения проведен расчет установившейся динамики характеристик барьерного разряда в смеси 0.05Xe/0.95Ne между параллельными плоскими электродами, покрытыми диэлектрическими слоями; приводится краткое описание диффузионно-дрейфовой модели БР и кинетической схемы элементарных физико-химических процессов в смеси неона и ксенона; рассматривается развитие газоразрядного процесса и характеристики БР, проводится анализ кинетической схемы.

Одномерная диффузионно-дрейфовая модель БР. Математическая модель БР основана на континуальном описании плазмы, использующем диффузионно-дрейфовое приближение для потоков частиц, и подробно описана в [7]. Вследствие малой подвижности ионов, диффузионнодрейфовое движение ионов определяется локальным электрическим полем, а их концентрации удовлетворяют стандартным одномерным уравнениям непрерывности. Электронная компонента плазмы описывается уравнениями непрерывности и баланса энергии электронов, чем приближенно учитывается нелокальность функции распределения электронов по энергиям [8]. Напряженность электрического поля определяется через скалярный потенциал, удовлетворяющий уравнению Пуассона. Изменение концентраций нейтральных частиц во времени обусловлено их рождением и гибелью в элементарных физикохимических процессах, заданных кинетической схемой. Система уравнений дополняется граничными условиями на поверхности диэлектрических барьеров. Начальные условия задаются в виде однородных в пространстве распределений концентраций компонентов, энергии электронов и отсутствия электрического поля и поверхностных зарядов.

Транспортные коэффициенты электронов предварительно рассчитываются как функции средней энергии электронов с помощью программы Bolzig+ [9, 10]. Значения подвижностей ионов взяты из [11].

Численное решение системы дифференциальных уравнений проводится методом прямых [12] с полудискретизацией в пространстве методом контрольного объема [13] на квазиравномерной сетке, учитывающей возможность возникновения больших градиентов зависимых переменных вблизи диэлектрических барьеров. Плотности конвективно-диффузионных потоков аппроксимируются экспоненциальной схемой [14].

Использовались две кинетические схемы элементарных физико-химических процессов в смеси 0.05Хе-0.95Ne. Первая кинетическая схема включает 17 компонент: атомы Хе и Ne в основном состоянии, атомы ксенона в метастабильном Xe_m^{*}(³P₂), резонансном Xe_r^{*}(³P₁) и вышележащих возбужденных Хе^{**} состояниях; атомы неона в возбужденных состояниях Ne^{*}, Ne^{**}, молекулы Xe₂^{*}(³Σ_u⁺), Xe₂^{*}(¹Σ_u⁺), Xe₂^{**}(O_u⁺), Ne₂^{*}; атомарные Xe^{*}, Ne^{*}, молекулярные Xe₂⁺, Ne₂⁺ и комплексные NeXe⁺ ионы и электроны. Из второй кинетиче-

ской схемы были исключены атомы Ne^{**} и молекулы Ne₂^{*}, поскольку, как показали расчеты, их концентрации в БР в смеси 0.05Xe-0.95Ne малы и можно ожидать, что реакции с их участием не оказывают заметного влияния на оптические и электрические характеристики разряда. Обе кинетические схемы представлены в табл. 1, а используемые в табл. 1 обозначения приведены в табл. 2. В табл. 1 уравнения, включенные в соответствующую схему, отмечены знаком "+".

Для зависимостей констант скоростей $k_i(\varepsilon)$ реакций с участием электронов от средней энергии электронов используются аналитические или табличные зависимости, здесь ε – энергия электронов. Последние предварительно рассчитываются усреднением сечений соответствующих процессов по функции распределения электронов по энергиям с помощью кода Bolzig+ [9, 10].

Таблица 1

Desurra	Пини	Схема		IC	Источ-
Реакция	Примечание	1	2	Константа скорости	ник
1	2	3	4	5	6
e+Xe→e+Xe	Передача импульса	+	+	k(e)	[15]
e+Ne→e+Ne	«	+	+	$k(\varepsilon)$	[15]
$e+Xe\rightarrow 2e+Xe^+$	Прямая ионизация	+	+	k(ɛ)	[16]
$e+Ne\rightarrow 2e+Ne^+$	«	+	+	k(e)	[15]
$2e+Xe^+\rightarrow e+Xe^{**}$	Электрон-ионная реком- бинация	+	+	$5.4 \times 10^{-27} T_e^{-4.5} cm^6 c^{-1}$	[17]
2e+Ne ⁺ →e+Ne [*]	«	+	+	1.35×10 ⁻²⁷ T _e ^{-4.5} cm ⁶ c ⁻¹	[17]
2e+Ne ⁺ →e+Ne ^{**}	«	+		1.35×10 ⁻²⁷ Т _е ^{-4.5} см ⁶ с ⁻¹	[17]
$2e+Xe_2^+ \rightarrow e+Xe^*+Xe$	«	+	+	5.4×10 ⁻²⁷ Т _е ^{-4.5} см ⁶ с ⁻¹	[17]
$2e+Ne_2^+ \rightarrow e+Ne^*+Ne$	«	+		5.4×10 ⁻²⁷ T _e ^{-4.5} cm ⁶ c ⁻¹	[17]
$e+Xe_{m}^{*}\rightarrow 2e+Xe^{+}$	Ступенчатая ионизация	+	+	$\begin{array}{c} 7.85 \times 10^{-8\overline{\epsilon}} \ ^{0.71} \times \\ \exp(-3.77/\overline{\epsilon}) \ \mathrm{cm}^{3}\mathrm{c}^{-1} \end{array}$	[18]
$e+Xe^*_r \rightarrow 2e+Xe^+$	«	+	+	$7.85 \times 10^{-8}\overline{\epsilon}^{0.71} \times \exp(-3.77/\overline{\epsilon}) \text{ cm}^{3}\text{c}^{-1}$	[18]
e+Xe ^{**} →2e+Xe ⁺	«	+	+	$\frac{2.15 \times 10^{-7} \overline{\epsilon}^{0.71} \times}{\exp(-2.4/\overline{\epsilon}) \text{ cm}^3 \text{c}^{-1}}$	[18]
e+Ne [*] →2e+Ne ⁺	«	+	+	4.1×10 ⁻⁸ € ^{0.74} × exp (-5.0/€) см ³ с ⁻¹	[18]
e+Ne ^{**} →2e+Ne ⁺	«	+		$\begin{array}{c} 1.28 \times 10^{-13} \overline{\epsilon}^{0.74} \times \\ \exp(-3.1/\overline{\epsilon}) \ \mathrm{cm}^{3} \mathrm{c}^{-1} \end{array}$	[18]
e+Xe→e+Xe _m *	Возбуждение	+	+	k(e)	[15]
e+Xe→e+Xe [*]	«	+	+	k(e)	[15]
e+Xe→e+Xe**	«	+	+	$2.8 \times 10^{-8}\overline{\epsilon}^{0.725} \times \exp(-8.73/\overline{\epsilon}) \text{ cm}^3\text{c}^{-1}$	[18]
e+Ne→e+Ne*	«		+	5.05×10 ⁻⁹ є ^{-1.69} × exp (-16.6/є) см ³ с ⁻¹	[18]

Схема и константы скоростей элементарных процессов в смеси Ne/Xe

Окончание табл. 1

	1				
1	2	3	4	5	6
e+Ne→e+Ne**	"			$5.85 \times 10^{-10} \overline{\epsilon}^{0.48} \times$	[18]
				$\exp\left(-18.5/\overline{\epsilon}\right) \mathrm{cm}^{3}\mathrm{c}^{-1}$	[10]
$e + Xe^{+} \rightarrow Xe^{**} + Xe$	Диссоциативная рекомби-	+	+	2.0 ×10 ⁻⁷ T ^{-0.5} cm ³ c ⁻¹	[15]
	нация				[·]
$e+Ne_2^+ \rightarrow Ne^* + Ne$	«		+	$3.7 \times 10^{-87} \text{ cm}^{-0.5} \text{ cm}^{-3} \text{ cm}^{-1}$	[19]
e+NeXe ⁺ →Xe ^{**} +Ne	«	+	+	$8.0 \times 10^{-8} \Gamma_e^{-0.5} \text{ cm}^3 \text{c}^{-1}$	[15]
$e + Xe_2^+ \rightarrow Xe^+ + Xe^+e$	Диссоциация иона димера	+		k(ε)	[20]
$Ne_2^+ + Xe + Ne \rightarrow Xe^+ + 3Ne$	Ионно-атомные реакции	+	+	4.0×10-30 см ⁶ с ⁻¹	[15]
$NeXe^++Xe \rightarrow Xe_2^++Ne$	«		+	5.0×10 ⁻¹² см ³ с ⁻¹	[15]
$NeXe^++Xe \rightarrow Xe^++Ne+Xe$	«	+	+	5.0×10 ⁻¹⁰ см ³ с ⁻¹	[15]
$Xe^++2Xe \rightarrow Xe_2^++Xe$	Ионная конверсия	+	+	2.5×10-31 см ⁶ с-1	[15, 19]
$Ne^++2Ne \rightarrow Ne_2^++Ne$			+	4.4×10 ⁻³² см ⁶ с ⁻¹	[15, 19]
$Xe^++Xe^+Ne \rightarrow Xe_2^++Ne$	«	+	+	1.5×10-31 см ⁶ с-1	[15, 19]
$Ne^++Ne+Xe \rightarrow Ne_2^++Xe$	«	+	+	8.0×10 ⁻³² см ⁶ с ⁻¹	[15, 19]
Xe ⁺ +2Ne→NeXe ⁺ +Ne	«	+	+	1.0×10-31 см ⁶ с-1	[15, 19]
Ne ⁺ +Ne+Xe→NeXe ⁺ +Ne	«	+	+	1.0×10-31 см ⁶ с-1	[15, 19]
$Ne^*+Ne^* \rightarrow Ne^++Ne^+e$	Пеннинговская ионизация	+		5.0×10 ⁻¹⁰ см ³ с ⁻¹	[21]
Ne*+Xe→Xe++Ne+e	«	+	+	7.5×10 ⁻¹¹ см ³ с ⁻¹	[15]
Ne*+Xe→NeXe++e	«	+	+	2.3×10 ⁻¹¹ см ³ с ⁻¹	[15]
$Xe^{**}+Xe \rightarrow Xe_{m}*+Xe$	Девозбуждение атомами	+	+	5.0×10 ⁻¹¹ см ³ с ⁻¹	[15]
$Xe^{**}+Ne \rightarrow Xe_{m}*+Ne$	«	+	+	1.0×10 ⁻¹² см ³ с ⁻¹	[15]
$Xe_{r}^{*}+Xe \rightarrow Xe_{m}^{*}+Xe$	«	+	+	2.18×10 ⁻¹⁴ см ³ с ⁻¹	[15]
$Xe_{m}^{*}+Xe \rightarrow Xe_{r}^{*}+Xe$	«	+	+	1.26×10-16 см ³ с-1	[15]
$Xe_{r}^{m} + Ne \rightarrow Xe_{m}^{*} + Ne$	«	+	+	3.11×10 ⁻¹⁴ см ³ с ⁻¹	[15]
$Xe_{m}^{*}+Ne \rightarrow Xe_{r}^{*}+Ne$	«	+	+	1.62×10 ⁻¹⁶ см ³ с ⁻¹	[15]
Ne**+Ne→Ne*+Ne	«	+		7.0×10 ⁻¹¹ см ³ с ⁻¹	[18]
$Xe_2^{**}+Xe \rightarrow Xe_2^{*(1)}+Xe$	«	+	+	2.65×10 ⁻¹⁰ см ³ с ⁻¹	[15]
$Xe_{m}^{*}+2Xe \rightarrow Xe_{2}^{*(3)}+Xe$	Конверсия в эксимеры	+	+	8.53×10-32 см ⁶ с-1	[15]
$Xe_{z}^{*}+2Xe \rightarrow Xe_{z}^{**}+Xe$	«	+	+	1.55×10-31 см ⁶ с-1	[15]
Ne*+Ne+Ne→Ne ₂ *+Ne	«	+		4.0×10 ⁻³⁴ см ⁶ с ⁻¹	[19]
$Xe_* + Xe + Ne \rightarrow Xe_* + Ne$	«	+	+	4.07×10-32 см ⁶ с-1	[15]
$Xe_{*}^{*}+Xe+Ne \rightarrow Xe_{2}^{*(3)}+Ne$	«	+	+	1.35×10-32 см ⁶ с-1	[15]
Ne [*] +Ne+Xe→Ne ₂ [*] +Xe	«	+		8.0×10 ⁻³⁴ cm ⁶ c ⁻¹	[19]
$Xe^{**}+Xe+Ne \rightarrow Xe_{2}^{*(3,1)}+Ne$	«	+	+	0.8×10 ⁻³² см ⁶ с ⁻¹	[19]
$Xe^{**} \rightarrow Xe^{*} + hv$	Спонтанное излучение	+	+	$2.7 \times 10^7 \text{ c}^{-1}$	[15]
$Xe^{**} \rightarrow Xe_{*}^{*} + hv$		+	+	2.53×10 ⁷ c ⁻¹	[15]
$Xe^* \rightarrow Xe + hv$	«	+	+	$2.7 \times 10^{6} \text{ c}^{-1}$	[15]
$Xe_2^{*(1)} \rightarrow 2Xe + hv$	«	+	+	$5.0 \times 10^8 \text{ c}^{-1}$	[15]
$Xe_2^{*(3)} \rightarrow 2Xe + hv$	«	+	+	1.66×10 ⁸ c ⁻¹	[15]
$Xe_2^{**} \rightarrow 2Xe + hv$	«	+	+	$9.0 \times 10^6 \text{ c}^{-1}$	[15]
$Ne_{2}^{*} \rightarrow Ne+Ne+hv$	«	+		7.50×10 ⁷ c ⁻¹	[20]
$Ne^* \rightarrow Ne+hv$	«	+		$0.5 \times 10^5 \text{ c}^{-1}$	[21]
$Ne^{**} \rightarrow Ne^{*} + hv$	«	+		0.12×10 ⁸ c ⁻¹	[21]

 T_e – температура электронов в эВ, $\overline{\varepsilon}$ – средняя энергия электронов в эВ.

Таблица	2
---------	---

Компонент	Конфигурация	Терм [L, S]-связь	Энергия, эВ	Стат. вес	Примечание
Xe	5s ² 5p ⁶	${}^{1}S_{0}$	0	1	Основное состояние
Xe _m *	$({}^{2}P_{3/2})$ 6s	$({}^{3}P_{2})$	8.31	5	Метастабильное состояние
Xe [*]	$({}^{2}P_{3/2})$ 6s	$({}^{3}P_{1})$	8.44	3	Резонансное состояние
Xe**			≈9.44		Вышележащие возбужденные уровни
$Xe_{2}^{*(3)}$		$({}^{3}\Sigma_{u}^{+})1_{u}$	7.91		Метастабильное состояние
$Xe_{2}^{*(1)}$		$({}^{1}\Sigma_{u}^{+})0_{u}^{+}$	8.05		Резонансное состояние
Xe ₂ **		$({}^{1}\Sigma_{u}^{+})0_{u}^{+}$	8.31		Возбужденные колебательные состояния $({}^{1}\Sigma_{u}^{+})0_{u}^{+}$
Xe ⁺	5s ² 5p ⁵	${}^{2}\mathrm{P}_{3/2}$	12.08		Атомарный ион
Xe ₂ ⁺		$2\sum_{\mu}^{+}$	11.1		Ион димера
Ne	2s ² 2p ⁶	${}^{1}S_{0}$	0	1	Основное состояние
Ne*	3s,3s'		16.65	12	3s,s'возбужденные уровни
Ne**	3p,3p'		18.62	36	3p,p'возбужденные уровни. В схему 2 не включены
Ne ₂ *		${}^{3}\Sigma_{u}^{+}$	15.5		Возбужденные молекулы. В схему 2 не включены
Ne ⁺	2s ² 2p ⁵	${}^{2}\mathrm{P}_{3/2}$	21.56		Атомарный ион
Ne ₂ ⁺		$2\sum_{\mu}^{+}$	20.46		Ион димера
NeXe ⁺			16.0		Комплексный ион
e					Электрон

Обозначения к табл. 1

 $Xe^{+}(^{2}P_{1/2})$ с энергией ионизации 13.4 эВ и $Ne^{+}(^{2}P_{1/2})$ не учитываются.

Результаты и обсуждение

В рамках одномерного диффузионно-дрейфового приближения проведен расчет установившейся динамики характеристик барьерного разряда в смеси 0.05 Хе – 0.95 Ne между параллельными плоскими электродами, покрытыми диэлектрическими слоями с диэлектрической проницаемостью 5. Внешние параметры разряда: толщина диэлектрических слоев – 0,2 мм; ширина разрядного промежутка – 0,4 мм; давление – 350 Тор; напряжение питания – гармонический сигнал с частотой 100 кГц и амплитудой 400 В, температура газа – 300 К.

На рис. 1 показаны подаваемое на электроды напряжение, падение потенциала на разрядном промежутке, падение потенциала на диэлектрических барьерах ('memory' voltage) и плотность тока БР. Электрические характеристики БР в смеси 0.05 Хе – 0.95 Ne, рассчитанные с использованием двух кинетических схем, полностью идентичны. Как видно на рисунке, каждые полпериода подводимого напряжения возникает один короткий импульс тока, после которого плазма распадается. Ограничение тока в БР обусловлено электрическим зарядом (рис. 2), накапливающимся на поверхности диэлектрических барьеров во время прохождения импульса тока.

При прохождении импульса тока (активная фаза разряда) к одному из диэлектрических барьеров движется волна ионизации, на ее фронте средняя энергия электронов достаточно высока, поэтому при прохождении волны ионизации превалируют процессы прямой ионизации и прямого возбуждения атомов, и это приводит к резкому уменьшению средней энергии электронов за фронтом волны ионизации. Резкое повышение концентрации атомарных ионов и возбужденных атомов сопровождается конверсией в эксимеры и ионной конверсией. Процессы рекомбинации при прохождении волны ионизации не играют заметной роли, поскольку константы скорости этих процессов с ростом энергии электронов падают, к тому же у фронта волны ионизации концентрация заряженных частиц достаточно низка.

Во время послесвечения (пассивная фаза разряда), следующего за импульсом тока, плазма распадается со скоростью, определяемой процессами рекомбинации и диффузии. Во время этой

Рис. 1. Подаваемое на электроды напряжение U_s , падение потенциала на разрядном промежутке U_g , падение потенциала на диэлектрических барьерах U_m и плотность тока барьерного разряда J.

фазы ток, протекающий через разряд, достаточно мал, так же как и падение напряжения на разрядном промежутке. Средняя энергия электронов падает до 1 эВ и ниже, скорости прямой ионизации и прямого возбуждения атомов малы. Вследствие процессов ионной конверсии концентрация атомарных ионов резко падает и преобладающими ионами становятся молекулярные ионы.

Приведенная напряженность электрического поля E и средняя энергия электронов ε как функции z и t представлены на рис. 3 и 4. Видны два максимума E и ε , появляющиеся в каждом из полупериодов вблизи одного из диэлектрических барьеров. Более высокий и узкий максимум соответствует фазе импульса тока, а второй – более слабый, широкий – фазе послесвечения.

В момент прохождения импульса тока концентрации всех компонент плазмы у поверхности диэлектрического барьера, к которому направлена волна ионизации, резко увеличиваются. На рис. 5 представлены пространственно-временные распределения концентрации электронов и атомов ксенона в резонансном состоянии. На рис. 6 представлены усредненные за период распределения концентраций N заряженных и нейтральных частиц в межэлектродном промежутке. Максимальные средние за период концентрации компонент плазмы наблюдаются на расстоянии ~0,05–0,1 мм от поверхности диэлектрика.

Несмотря на преобладание атомов неона в смеси 0.95 Ne/0.05 Xe, концентрация ионов Ne⁺ на несколько порядков меньше концентрации ионов Xe⁺, поскольку потенциалы ионизации (21.56 эВ) и возбуждения (16.65 и 18.62 эВ) атомов неона существенно больше потенциалов ионизации (12.08 эВ) и возбуждения (8.31, 8.44

и динамика зарядов на поверхност диэлектрических барьеров.

и ≈9.44 эВ) атомов ксенона. Вклад атомарных ионов неона (так же как и молекулярных Ne_2^+) в формирование электрических и оптических характеристик БР в смеси 0.95 Ne/0.05 Xe мал. В фазе импульса тока в кинетике электронов и атомарных ионов преобладает прямая ионизация, в фазе послесвечения – процессы ионной конверсии и диссоциативной рекомбинации. Молекулярные Xe_2^+ , Ne_2^+ и комплексные NeXe⁺ ионы образуются в результате ионной конверсии, перезарядки и пеннинговской ионизации и гибнут преимущественно в результате диссоциативной рекомбинации. Хотя в фазе импульса тока преобладающим ионом является ион Хе+ и его концентрация близка к концентрации электронов, в среднем за период в центральной части разряда преобладающим ионом является Хе₂⁺.

Среди возбужденных атомов и молекул в БР в смеси 0.05Xe-0.95Ne преобладают атомы ксенона в возбужденных состояниях. Концентрации эксимерных молекул ксенона существенно ниже концентраций возбужденных атомов, поэтому в излучении разряда преобладает излучение из резонансного состояния атомарного ксенона. Концентрации атомов неона в состоянии Ne** и эксимерных молекул неона Ne*2 много меньше концентраций возбужденных атомов и молекул ксенона. Как показали расчеты, исключение Ne** и Ne*, из кинетической схемы незначительно сказывается на характеристиках плазмы, позволяя уменьшить число рассматриваемых элементарных физико-химических процессов и, тем самым, уменьшить время расчета установившихся характеристик БР на 20-25%. При использовании сокращенной кинетической схемы максимальные отличия наблюдаются для кон-

распределение электрического поля.

распределение средней энергии электронов.

0.3

Рис. 5. Пространственно-временные распределения концентраций (а) электронов и (б) атомов ксенона в резонансном состоянии.

Рис. 6. Усредненные за период распределения в разрядном промежутке концентрации: а – заряженных компонент, б – нейтральных компонент.

центраций ионов неона Ne⁺ ~5%, Ne₂⁺ ~10% во время активной фазы разряда. Различия между концентрациями остальных компонент плазмы и концентрациями ионов неона во время пассивной фазы разряда при расчетах с использованием двух кинетических схем не превышают 1%.

Важным вопросом при использовании БР в качестве источника света в ячейках ПДП является эффективность излучения [3]. В данной работе в рамках одномерного диффузионнодрейфового приближения [7] эффективность излучения η_k для возбужденных частиц сорта k рассчитывается как отношение мощности их излучения к вкладываемой в разряд мощности. Результаты расчета эффективности излучения η_k на различных длинах волн и суммарная эффективность излучения $\eta = \sum \eta_k$ представлены в табл. 3.

Таблица 3

Эффективность излучения (η_k) на различных длинах волн и суммарная эффективность излучения $\eta = \sum_k \eta_k$ для схемы 1 и схемы 2

Излучающий	λнм	η_k , %		
компонент	<i>7</i> , 1101	Схема 1	Схема 2	
Xe [*]	147	5.19	5.17	
Ne*	Видимый свет	0.001		
Ne**	УФ	0.001		
Xe ₂ **	152	0.03	0.03	
$\operatorname{Xe}_{2}(^{1}\Sigma_{u}^{+})$	172	1.10	1.10	
$Xe_2(^{3}\Sigma_u^{+})$	172	2.13	2.12	
Ne ₂ *	83	0.002		
	η	8.45	8.43	

Как видно из данных табл. 3, суммарная эффективность излучения БР составляет 8,45% при расчете со схемой 1, и – 8,43% при использовании схемы 2. Основную долю излучения составляет излучение атомов Xe^{*}_r (61%) и эксимеров Xe₂ (${}^{1}\Sigma_{u}^{+}$), Xe₂ (${}^{3}\Sigma_{u}^{+}$) (38% в сумме). На излучение атомов и эксимеров неона приходится менее 1% от суммарного излучения.

В рамках одномерного диффузионно-дрейфового приближения проведен расчет установившейся динамики характеристик барьерного разряда в смеси 0.05 Хе- 0.95 Ne при давлении 350 Тор в газоразрядном зазоре толщиной 400 мкм. Показано, что при расчете характеристик БР эксимерные молекулы неона и атомы в высоколежащих возбужденных состояниях могут не учитываться, поскольку их учет не изменяет электрических и оптических характеристик разряда. Основную долю излучения разряда составляет излучение атомов Xe_r^* и эксимеров $Xe_2({}^{1}\Sigma_u^{+})$, $Xe_2({}^{3}\Sigma_u^{+})$ ксенона. Излучение атомов и эксимеров неона составляет менее 1% от общего излучения. Суммарная эффективность излучения составляет 8,43–8,45%.

Литература

- 1. Ломаев М.И., Скакун В.С., Соснин Э.А. и др. // УФН. – 2003. – Т. 173. – №2. – С. 201.
- Bogdanov E.A., Kudryavtsev A.A., Arslanbekov R.R. and Kolobov V.I. // J. Phys. D: Appl. Phys. – 2004. – V. 37. – P. 2987.
- Boeuf J.P. // J. Phys. D: Appl. Phys. 2003. V. 36. – R53.
- 4. *Oh J.-S. and Tachibana K. //* J. Appl. Phys. 2005. V. 98. 103302.
- Lanlan Yang, Yan Tu, Xiong Zhang et al. // Plasma Sources Sci. Technol. – 2007. – V. 16. – P. 392.
- Kim K.N., Jeong D.C., and Moon C.H. // JAP. 2008. – V. 47. – №4. – P. 2259.
- Автаева С.В., Кулумбаев Э.Б. // Физика плазмы. – 2008. – Т. 34. – №6. – С. 497.
- Иванов В.В., Манкелевич Ю.А., Прошина О.В. и др. // Физика плазмы. – 1999. – Т. 25. – №7. – С. 646.
- BOLSIG+ 2005 CPAT: http://www.codiciel.fr/ plateforme/plasma/bolsig/bolsig.php.
- Hagelaar G.J.M. and Pitchford L.C. // Plasma Sources Sci. Technol. – 2005. – V. 14. – P. 722.
- Piscitelli D., Phelps A.V., Urquijo J., Basurto E. and Pitchford L.C. // Phys. Rev. E. – 2003. – V. 68. – 046408.
- 12. *Калиткин Н.Н.* Численные методы. М.: Наука, 1978.
- Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. – М.: Энергоатомиздат, 1984.
- Allen D., Southwell R. // Quart. J. Mech. Appl. Math. – 1955. – V. 8. – P. 129.
- Meunier J., Belenguer Ph., and Boeuf J.P. // J. Appl. Phys. – 1995. – V. 78. – P. 731.
- Oda A., Sakai Y., Akashi H. and Sugawara H. //J. Phys. D: Appl. Phys. – 1999. – V. 32. – P. 2726.
- 17. Бойченко А.М., Держиев В.И., Жидков А.Г. и др. // Труды ИОФАН. – 1989. – Т. 21. – С. 44.
- Johnson T.H., Cartland H.E., Genoni T.C. et al. // J. Appl. Phys. – 1989. – V. 66. – 5707.
- Kushner M., Rauf S. //J. Appl. Phys. 1999. V. 85. – №7. – P. 3460.
- Eckstrom D.J., Nakano H.H., Lorents D.C. et al. // J. Appl. Phys. – 1988. – V. 64. – P. 1679.
- Uhrlandt D. and Franke St. // J. Phys. D: Apl. Phys. - 2002. - V. 35. - P. 680.