УДК 536.7:662.74 (575.2) (04)

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПАРОКИСЛОРОДНОЙ ГАЗИФИКАЦИИ ГРАФИТА

Р.К. Балан – ст. преподаватель Ысык-Кульский госуниверситет

Проведен термодинамический анализ парокислородной газификации графита при вариации избытка окислителя α.

Ключевые слова: термодинамический анализ; парокислородная газификация графита.

Уголь является одним из основных энергоносителей 21 века. Особую роль играет сжигание и неполное сгорание угля, в том числе для получения горючих газов и синтеза газов. Известны многочисленные монографии и обзоры, посвященные конверсии угля.

Термодинамический анализ газификации твердых бытовых отходов при атмосферном давлении в диапазоне температур от 300 до 4000 К приведен в [1]. Определены температурная зависимость компонентов разложения ТБО, внешние затраты энергии на газификацию, которые идут на компенсацию эндотермического эффекта реакции, увеличение физической теплоты газов и минералов, испарение воды. Исследовано влияние концентрации окислителя на адиабатическую температуру при частичном сжигании ТБО. Определены компоненты горючих газов $(CO+H_2+H)$, продуктов горения (CO_2+H_2O) конденсированных компонентов (огненного шлака). Найдены составляющие баланса энергии - теплотворная способность горючих газов, физическое тепло компонентов горючих газов, продуктов горения и шлака [2].

Термодинамический анализ паровой газификации графита при атмосферном давлении проведен в диапазоне температур от 500 до 4000 К [3]. Паровая газификация углеродсодержащих материалов широко используется в производстве технологического синтез газа – сырья для химической промышленности, горючего газа для непосредственного сжигания и получения тепловой энергии.

В работе [4] приведены результаты термодинамического анализа паровой газификации петрококса. Дан компонентный состав при температуре T=300÷4000 К. Показано, что процесс газификации завершается при T>1050 К. Вычислена температурная зависимость удельных энергозатрат на процесс газификации.

Процессы получения тепла и горючих газов при окислении угля оценки энергетической эффективности конверсии угля рассмотрены в монографии [5].

Нами в работе исследуется парокислородная газификация графита.

Огневое преобразование угля, как природного объекта, сопровождается не только и не столько окислением углерода (графита), но и многочисленными сопутствующими химическими реакциями присутствующих в угле веществ. Все это затрудняет изучение кинетики и термодинамики процессов преобразования угля. Даже в наиболее полных исследованиях указанные затруднения ограничивают рассмотрение реакций при стандартных условиях, т.е. без учета эволюции состава при влиянии температуры.

Насколько нам известно, даже в простейшем случае реакции чистого графита с парами воды и кислородом не исследованы детально. В данной работе восполнен этот пробел. Разработана теория парокислородной газификации графита. Определен термический КПД газификации и сжигания графита.

Метод исследования. Расчет адиабатической температуры и продуктов сгорания проводится по универсальной программе ТЕРРА [6]. Эта программа основана на принципе максимума энтропии, имеет обширную базу данных по термодинамическим свойствам веществ и по-

Таблица 1

Вещество	М	Δh_{1881}	$\Delta H = M * \Delta h_{1881}$	$\Delta_{ m f} { m h}^0$	$\Delta_{\rm f} {\rm H}^0 = {\rm M}^* \Delta_{\rm f} {\rm h}^0$	q _{rr}	$Q_{rr} = M * q_{rr}$
	моль/кг	кДж/моль	кДж/кг	кДж/моль	кДж/кг	кДж/моль	кДж/кг
Н	0,012	32,9	0,41	217,997	2,6	-338,9	-4,07
H ₂	7,13	48,9	348,7	0	0	-241,815	-1719,3
H ₂ O	14,58	66,96	976,3	-241,815	-3525,7		
CO	14,56	52,4	759,8	-110,5	-1609,1	-283,04	- 4121,06
CO ₂	7,16	84,3	603,6	-393,54	-2816,84		
Σ			2689		-7950		-5845

Основные компоненты реакции и результаты анализа. *α*=0,5, *I*_{*ucx*}.=-5227*κ*Дж/кг

зволяет получить полную информацию термодинамического анализа. Программа отличается высоким быстродействием и простотой в использовании.

Адиабатическая температура при вычисленных компонентах равновесной системы находится на основе закона сохранения энергии [7]:

$$I_{np}(T_{ad}) = I_{ucx}(T_d), \qquad (1)$$

$$I_{ucx}(T_d) = \sum_j M_j \Delta_f H_j^0, \qquad (1)$$

$$I_{np}(T_{ad}) = \sum_i M_i \Delta_f H_i^0 + \sum_i M_i \int_{T_a}^{T_{ad}} C_{Pi}(T) dT.$$

Здесь $I_{ucx}(T_0)$ – сумма энтальпий образования исходных компонентов Δ_H^0 с учетом их мольной доли *M*; $I_{np}(T_{ad})$ – сумма энтальпий образования продуктов переработки и энтальпий их нагрева от начальной температуры T₀=298,15 К до адиабатической T_{ao} ; C_p – удельная теплоемкость. В данной работе проведен термодинамиче-

ский анализ парокислородной газификации графита при вариации коэффициента избытка окислителя α, при исходном составе

 $C_{(c)}$ +H₂O+ α O₂, где $C_{(c)}$ – графит; (c) –конденсированное состоя-ние; H_2O – пары воды; O_2 – молекулярный кислород.

Для вхождения в программу ТЕРРА задается исходный состав сырья в мольных долях, давление *P*=0,1 МПа и энтальпия образования *I*_{ucr}.

Методика оценки баланса энергии на примере парокислородной газификации графита представлена в табл. 1 при *а*=0,5, *P*=0,1 МПа, $I_{ucr} = -5227 \ \kappa Дж/кг.$

В табл. 1 Δh^0 – энтальпия образования вещества при стандартных условиях, [кДж/моль], Δh_{1881} – теплосодержание вещества при температуре $T_{ao} = 1881 \ K, \ [\kappa Джс/моль]; \ q_{zz}$ – теплотворная способность продуктов реакции, [кДж/моль]; $\Delta_{f}H^{0}, \Delta H$ и Q_{22} – соответствующие величины с учетом мольной доли вещества, [кДж/кг].

Расчет по программе ТЕРРА выполняется согласно равенству $\Delta H + \Delta_{H^0} \equiv I_{ucx}$. Результаты, приведенные в табл. 1, показывают, что это условие выполнено.

В соответствии с компонентным составом продуктов (табл. 1) результирующая реакция имеет вид:

21,72C_(c)+21,72H₂O+10,87O₂=14,56CO +

+7,16CO₂+7,13H₂+14,58H₂O+0,012H.

Отсюда тепловой эффект реакции паровой газификации графита:

 $Q_{xp} = 14,56\Delta_{f}h^{0}(CO)7,16\Delta_{f}h^{0}(CO_{2})7,13*$ $^{*}\Delta_{h^{0}}(H_{2}) + 14,58\Delta_{h^{0}}(H_{2}O) + 0,012\Delta_{h^{0}}(H) -21,72\Delta_{f}h^{0}(C_{(c)})$ - $-21,72\Delta_{f}h^{0}(H_{2}O)$ - $10,87\Delta_{f}h^{0}$ × ×(O,)≈ 2698 кДж/кг,

где Q_{xp} – тепловой эффект химической реакции, который дает в результате физическое тепло (теплосодержание) системы ΔH , т.е. нагрев компонентов системы с учетом их мольной доли и теплоемкости, $\Delta H \equiv |Q_{xp}|$. Величины ΔH , Q_{xp} вычисляются точно на основе расчетов по программе TEPPA.

Коэффициент полезного действия (КПД) физического тепла системы $\eta_{\Delta H}$ может быть определен как отношение физического тепла (ΔH) продуктов реакции к затраченной энергии – теплотворной способности графита (Q_c):

$$\eta_{\Delta H} = \frac{\Delta n}{|Q_c|}.$$
(2)

При $\alpha = 0.5$ теплотворная способность 1 кг смеси с учетом окислителя равна

Q_c= -8547,7кДж/кг, *Δ*H=2688,8 КДж/кг, что дает в данном случае

$$\eta_{\Delta H} = \frac{\Delta H}{|Q_C|} = 31,5\%.$$

Коэффициент полезного действия (КПД) потенциальной теплоты горючих газов равен отношению потенциального тепла горючих газов *Q*₂₂ к затраченной энергии – теплотворной способности графита (Q_{c}):

$$\eta_{Qzz} = \frac{|Q_{zz}|}{|Q_{C}|}.$$
(3)
При $\alpha = 0,5$ имеем:
 $Q_{zz} = -5849 \ K \square \varkappa / \kappa z, \ Q_{C} = -8547 \kappa \square \varkappa / \kappa z,$
 $\eta_{Qzz} = \frac{|Q_{zz}|}{|Q_{TEO}|} = 68,4\%.$

Если продукты реакции не охлаждаются при последующем сжигании горючих газов, т.е. используются как потенциальное тепло горючих газов и физическое тепло продуктов реакции, то термический КПД газификации определяется соотношением:

$$\eta = \frac{\left|Q_{zz}\right| + \Delta H}{\left|Q_{TEO}\right|}.$$
(4)

В данном случае ($\alpha = 0, 5$) имеем:

$$\eta = \frac{\left|Q_{zz}\right| + \Delta H}{\left|Q_{TEO}\right|} = 99,9\%.$$

Адиабатическая температура и состав продуктов реакции. В табл. 2 приведен состав продуктов реакции парокислородной газификации графита при вариации коэффициента избытка окислителя $\alpha=0\div4$. Компоненты веществ [моль/кг] представлены в последовательности распечатки по программе ТЕРРА (табл. 2). Здесь компоненты исходного состава: графит $C_{(c)ucx}$, паров воды H_2O_{ucx} , молекулярный кислород $O_{2\,ucx}$ [моль/кг], и компоненты состава продуктов реакции: водород H_2 , вода H_2O , графит $C_{(c)}$, оксид углерода CO, диоксид углерода CO_2 , метан CH_4 , атомарный водород H, атомарный кислород O и OH.

Продукты реакции парокислородной газификации графита $C_{(c)} + H_2O + \alpha O_2$ как функции от коэффициента избытка кислорода α представлены на рис. 1, 2.

С увеличением α , увеличивается доля экзотермических реакций сгорания углерода до *CO* и *CO*₂, адиабатическая температура растет и достигает максимального значения при $\alpha=1$ ($T_{ao}=2770 \ K$), далее идет спад температуры ($T_{ao}=2770 \div 2175 \ K$ при $\alpha=1 \div 4$) вследствие того, что избыточный кислород является балластом, снимающим температуру.

В 1 кг исходной смеси с увеличением α , исходный графит $C_{(c)ucx}$ монотонно убывает из-за увеличения количества окислителя кислорода $O_{2 ucx}$. При $\alpha = 0, 3$ весь графит $C_{(c)}$ вступает в химические реакции.

В отрезке $\alpha = 0, 1$ до $\alpha = 0, 4$ концентрация *CO* увеличивается в основном за счет реакции разложения воды графитом, далее основная доля *CO* получается из реакции горения $C_{(c)}$ до *CO*.

Таблица 2

а	Т _{ад}	C _{(c)ucx}	H_2O_{ucx}	O _{2 ucx}	0	<i>O</i> ₂	Н	H_2	ОН	H_2O	C _(c)	CO	<i>CO</i> ₂	CH4
0	272	33,3	33,3							29,59	29,56		1,86	1,86
0,1	747	30,1	30,1	3,01				6,89		14,51	14,55	0,79	10,41	4,34
0,2	869	27,45	27,45	5,5				13,82		9,34	7,66	6,19	11,45	2,14
0,3	929	25,23	25,23	7,6				16,41		6,36	0,28	10,3	13,41	1,23
0,4	1342	23,34	23,34	9,35				12,16		11,18		15,83	7,5	
0,5	1881	21,72	21,72	10,9			0,012	7,13		14,58		14,56	7,16	
0,6	2341	20,31	20,31	12,19	0,0026	0,004	0,154	4,11	0,102	16,07		12,09	8,21	
0,7	2618	19,07	19,07	13,36	0,066	0,176	0,403	2,44	0,622	16,11		9,49	9,57	
0,8	2721	17,97	17,97	14,39	0,216	0,797	0,4892	1,678	1,17	15,46		7,63	10,34	
0,9	2757	16,99	16,99	15,31	0,3596	1,672	0,481	1,265	1,5	14,74		6,32	10,67	
1	2770	16,11	16,11	16,13	0,469	2,629	0,442	0,999	1,68	14,05		5,32	10,79	
1,5	2725	12,81	12,81	19,23	0,63	7,173	0,232	0,402	1,72	11,43		2,48	10,33	
2	2635	10,63	10,63	21,28	0,515	10,77	0,11	0,187	1,36	9,71		1,19	9,43	
2,5	2529	9,08	9,08	22,73	0,351	13,56	0,045	0,089	0,983	8,48		0,56	8,52	
3	2414	7,93	7,93	23,81	0,211	15,76	0,02	0,041	0,66	7,55		0,251	7,68	
3,5	2295	7,04	7,04	24,65	0,114	17,51	0,016	0,018	0,42	6,8		0,105	6,93	
4	2175	6,32	6,32	25,32	0,057	18,93	0,0024	0,008	0,259	6,18		0,041	6,28	

Состав продуктов реакции, моль/кг

Рис. 1. Концентрация исходного графита С_{исх} и компоненты продуктов реакции парокислородной газификации графита: графит С_(c), оксида углерода СО, диоксид углерода СО₂, метан СН₄, [моль/кг]. Адиабатическая температура *T*_{a∂}, *K*, давление Р=0,1 МПа, коэффициент избытка окислителя кислорода α.

Рис. 2. Концентрация исходной воды H_2O_{ucx} и компоненты продуктов реакции парокислородной газификации графита H_2O , H_2 , [моль/кг]. Адиабатическая температура T_{ad} , K, давление $P=0,1~M\Pi a$, коэффициент избытка окислителя кислорода α.

Таблица 3

α	Тад К	$\Delta_{ m f} { m H}^0$ кДж/кг	∆Н кДж/кг	Q _{хр} кДж/кг	I кДж/кг	∆ _г Н⁰+∆Н кДж/кг	Q _т кДж/кг	Q _с кДж/кг	Q=ДН+ Q _{гг} кДж/ кг	$\eta_{\Delta H} = \Delta H/Q_C ~\%$	$\eta_{Q\mathrm{tr}} = Q_{\mathrm{tr}} / Q_{\mathrm{C}} \%$	$\eta = (Q_{\rm tr} + \Delta H)/Q_{\rm C}$ %
0	272	-8025	-36	-29	-8060	-8061	13134	13106	13098	-0,3	100,2	99,9
0,1	747	-8017	740	740	-7284	-7277	11103	11843	11843	6,2	93,7	99,9
0,2	869	-7610	966	973	-6643	-6644	9829	10801	10795	8,9	91	99,9
0,3	929	-7167	1060	1067	-6106	-6107	8862	9929	9922	10,7	89,2	99,9
0,4	1342	-7407	1758	1763	-5650	-5649	7421	9186	9179	19,1	80,8	99,9
0,5	1881	-7950	2689	2698	-5227	-5257	5845	8547	8542	31,5	68,4	99,9
0,6	2341	-8415	3496	3505	-4915	-4919	4469	7992	7965	43,7	55,9	99,6
0,7	2618	-8582	3968	3972	-4615	-4614	3415	7503	7383	52,9	45,5	98,4
0,8	2721	-8444	4094	4099	-4349	-4350	2731	7072	6825	57,9	38,6	96,5
0,9	2757	-8209	4097	4100	-4113	-4112	2257	6687	6354	61,3	33,8	95,1
1	2770	-7955	4056	4055	-3900	-3899	1896	6342	5952	64	29,9	93,9
1,5	2725	-6829	3733	3732	-3100	-3096	876	5041	4609	74	17,4	91,4
2	2635	-5985	3414	3415	-2573	-2571	421	4183	3835	81,6	10,1	91,7
2,5	2529	-5329	3133	3132	-2198	-2196	196	3575	3329	87,7	5,5	93,2
3	2414	-4791	2871	2873	-1919	-1920	0	3120	2871	92	0	92
3,5	2295	-4339	2634	2637	-1703	-1705	0	2769	2634	95,1	0	95,1
4	2175	-3948	2416	2418	-1530	-1532	0	2488	2416	97,1	0	97,1

Компоненты баланса энергии парокислородной газификации графита, *α*=0÷4

Рис. 3. Основные компоненты баланса энергии. Потенциальная теплота горючих газов Q_{zz} , ΔH – физическое тепло (теплосодержание) системы, $Q = \Delta H + Q_{zz}$ – полная теплота, Q_C – теплотворная способность графита, [кДж/кг]. T_{ad} – адиабатическая температура [K], давление – P=0,1 МПа, α – коэффициент избытка окислителя – кислорода.

Рис. 4. Термический КПД парокислородной газификации графита – η %, КПД сжигания графита – η_{AH} %, КПД потенциальной теплоты горючих газов η_{Osc}

Продукт диоксид углерода есть результат горения $C_{(c)}$ до CO_2 , и догорания CO до CO_2 . Метан CH_4 появляется при $\alpha=0\div0,4$. Мак-

Метан CH_4 появляется при $\alpha = 0 \div 0.4$. Максимальная концентрация CH_4 достигается при $\alpha = 0, 1$ и адиабатической температуре $T_{ao} = 750$ K, и составляет примерно 15% от исходного графита. В процессе Хоффмана [5] наработка метана достигает 50%, это обусловлено применением никелевого катализатора и большей температурой (T=1200 K).

При $\alpha=0,3\div0,4$ происходит разложение воды углеродом с выделением молекулярного водорода H_2 и оксида углерода *CO*. Количество продуктов газификации составляет примерно 60% исходного графита, при адиабатической температуре $T_{ao}=930\div1340$ K.

Таким образом, в результате парокислородной газификации графита $C_{(c)}+H_2O+\alpha O_2$ происходят следующие реакции: разложение воды углеродом и наработка синтез газа *CO* и H_2 , частичное сжигание $C_{(c)}$ до *CO*, диоксид углерода есть результат горения $C_{(c)}$ до *CO*₂, и догорания *CO* до *CO*₂ (табл. 3).

Здесь $T_{a\partial}$ – адиабатическая температура продуктов реакции [K], ΔH^0 – энтальпия образования продуктов реакции с учетом их мольной доли, ΔH – физическое тепло – теплосодержание продуктов реакции при адиабатической температуре $\Delta H = \sum_{i} \Delta H_i(T_{a\partial})$, [$\kappa \Box \varkappa c/\kappa c$]. [3], Q_{xp} – тепловой эффект химической реакции, [$\kappa \Box \varkappa c/\kappa c$], $\Delta H = Q_{xp}$. I – энтальпия образования исходных продуктов. Расчетный баланс $I=\Delta_{H^0}+\Delta H$ выполняется точно (ср. компоненты расчетного баланса в табл. 3), что подтверждает надежность получения результатов термодинамического анализа по программному комплексу ТЕРРА (рис. 3).

С увеличением α увеличивается доля экзотермических реакций, что дает повышение адиабатической температуры T_{ao} . Максимального значения T_{ao} достигает при $\alpha=1$, далее идет снижение температуры из-за отбора тепла избыточным кислородом.

 Q_{xp} – тепловой эффект химической реакции, который дает в результате физическое тепло (теплосодержание) системы Δ H, т.е. нагрев компонентов системы с учетом их мольной доли и теплоемкости, $\Delta H \equiv |Q_{yp}|$.

Теплотворная способность горючих газов Q_{zz} уменьшается с увеличением α . Сумма $Q=Q_{zz}+\Delta H$ – потенциального тепла горючих газов \tilde{Q}_{zz} и физического тепла реакции ΔH несущественно отличается от теплотворной способности графита Q_c . Отличие обусловливается тем, что не учтены процессы диссоциации O, u H_2 .

КПД физического тепла системы $\eta_{\Delta H} = \frac{\Delta H}{|Q_c|}$ возрастает с увеличением α и достигает величи-

возрастает с увеличением α и достигает величины $\eta_{AH} = 97\%$.

КПД потенциальной теплоты горючих газов $\eta_{Qzz} = \frac{|Q_{zz}|}{|Q_C|}$ уменьшается от 100% до 5,5% при

возрастании от $\alpha=0$ до $\alpha=2,5$. КПД потенциальной теплоты горючих газов Q_{α} включая физиче-

ское тепло
$$\Delta H - \eta_{Q_{ee} + \Delta H} = \frac{|Q_{ee}| + \Delta H}{|Q_{ee}|}$$
 составляет

величину порядка 100% (рис. 4). Его отличие от 100% связано с потерей тепла на процессы диссоциации кислорода и водорода.

Разработана теория *парокислородной газификации графита при вариации избытка окислителя а.* Получены адиабатическая температура, основные компоненты реакции, теплосодержание продуктов, теплотворная способность горючих газов, КПД физического тепла системы, КПД теплотворной способности горючих газов, как горячих, так и охлажденных. Подобный детальный анализ парокислородной газификации графита, по-видимому, представлен впервые.

При парокислородной газификации графита с избытком окислителя $\alpha = 0 \div 1$, адиабатическая температура изменяется в диапазоне $T_{ao} = 272 \div 2770 \ K$. Соответственно возрастает теплосодержание продуктов $\Delta H = 36 \div 4056 \ \kappa Дж/к2$, что отражает с увеличением α степени сгорания углерода. Далее идет снижение температуры изза отбора тепла избыточным кислородом. КПД физического тепла системы η_{AH} зависит от величины α , и изменяется в диапазоне $\eta_{AH} = 0,3 \div 97\%$ *при* $\alpha = 0 \div 4$.

Наработка горючих газов $(CO+H_2)$ при окислении графита кислородом и разложении воды уменьшается с возрастанием α . Максимальная величина потенциальной теплоты сгорания горючих газов соответствует при коэффициенте избытка кислорода $\alpha=0,4$, КПД газификации графита равен $\eta_{Q22}=80,8\%$. При дальнейшем увеличении α наработка горючих газов снижается,

уменьшается Q_{zz} и соответственно КПД газификации. Если продукты реакции не охлаждаются при последующем сжигании горючих газов, то КПД горючих газов η_{Qzz+AH} мало меняется от α и достигает величины порядка 100%.

Литература

- Балан Р.К., Татыбеков А., Энгельшт В.С. Влияние температуры на газификацию твердых бытовых отходов // Изв. КГТУ им. И. Раззакова. – 2007. – № 11. – С. 160–166.
- Балан Р.К., Татыбеков А., Энгельшт В.С. Термодинамический анализ газификации и сжигания твердых бытовых отходов в атмосфере кислорода // Изв. НАН КР. – 2007. – №4. – С. 68–75.
- Энгельшт В.С., Балан Р.К. Баланс энергии при паровой газификации графита. Горение и плазмохимия. – Алматы: Қазақ университеті, 2005. – С. 302–309.
- Мессерле В.Е., Устименко А.Б., Хан Л. Плазменно-паровая газификация петрококса: IV междунар. симп. по теор. и прикл. плазмохимии / Сб. трудов. Т. II. – Иваново, 2005. – С. 600–605.
- Хоффман Е. Энерготехнологическое использование угля. – М.: Энергоатомиздат, 1983. – 328 с.
- Трусов Б.Г. Программная система ТЕРРА для моделирования фазовых и химических равновесий в плазмохимических системах: 3-й междунар. симп. по теор. и прикл. плазмохимии / Сб. материалов. Т. І. – Иваново, 2002. – С. 217–220.
- Термодинамические свойства индивидуальных веществ: Справочное издание / Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др. – Т. І. – Кн. І. – М.: Наука, 1978–1982.