¹Садыкова Э.З., ¹Орозбек уулу А., ²Кортов В.С.

¹Ысык-Кульский государственный университет им. К. Тыныстанова, г. Каракол, Кыргызстан ²Уральский государственный технический университет, г. Екатеринбург, Россия

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ПРИМЕСЕЙ НА ПАРАМЕТРЫ КРИВОЙ ТЕРМОВЫСВЕЧИВАНИЯ АНИОНОДЕФЕКТНОГО ОКСИДА АЛЮМИНИЯ

В данной работе производилось компьютерное моделирование влияния примесей на параметры кривой термовысвечивания анионодефектного оксида алюминия. Также для определения природы примесных ловушек сделан элементный анализ примесей с использованием энергодисперсионного рентгеновского микроанализатора Rontec в составе растрового электронного микроскопа LEO982.

В дозиметрических кристаллах оксида алюминия, содержащих небольшие концентрации примесных центров, на нарастающем участке основного максимума термолюминесценции (ТЛ) при 450 К могут проявляться как минимум три ТЛ пика, связанных с примесными центрами (при температурах 375, 414 и 425 К).

Для проверки вышеуказанного предположения проводился расчет зависимости полуширины дозиметрического пика ($T_m = 450$ K) от концентрации примесных центров. С этой целью по уравнению

$$I(T) = Sn_0 \exp(-E/kT) \cdot [1 + (b-1)\frac{S}{\beta} \int_{T_0}^T \exp(-E/kT') dT']^{-\frac{b}{b-1}} \frac{1}{1 + C \exp(-W/kT)}$$

рассчитывалась кривая термовысвечивания (КТВ) для пиков ТЛ при 375 и 414 К при различной концентрации примесных центров с учетом найденных для них кинетических параметров (таблица 1).

Рассчитанные значения кинетических параметров ТЛ кристаллов α -Al₂O₃:Ti

			гаолица г.
T_m, \mathbf{K}	<i>Е</i> ±0.1, эВ	S, c^{-1}	b±0.1
375	0.91	$2.0 \cdot 10^{11}$	1.0
414	1.21	$9.2 \cdot 10^{13}$	1.3
425	1.26	$9.7 \cdot 10^{13}$	1.3

Затем находили суперпозицию экспериментальной КТВ дозиметрического пика и рассчитанных КТВ примесных центров. В качестве примера на рисунке 1 приведены результаты компьютерного моделирования КТВ с учетом примесных ионов ($T_m = 375$ и 414 К). Из рисунка видно, что ТЛ при 375 К примесной ловушки не влияет на полуширину дозиметрического пика, тогда как пик ТЛ при 414 К оказывает заметное влияние. Количественные данные, в том числе с учетом пика ТЛ при 425 К, приведены в таблице 2.

Расчет полуширины дозиметрического пика ТЛ при различной концентрации примесных центров

Таблица 2.

Тобяти 1

Характеристики примесного центра		Характеристики	дозиметрического
		пика	
Температура	Концентрация,	Температура	Полуширина

максимума ТЛ, К	CM ⁻³	максимума ТЛ, К	пика ТЛ, К
	0		38
375	$5 \cdot 10^{12}$		38
	10^{13}	450	38
	0		38
414	$1.2 \cdot 10^{11}$		43
	$1.7 \cdot 10^{11}$		55
	$5 \cdot 10^{10}$	450	38
425	9.10^{10}	448	40
	$1.2 \cdot 10^{11}$	446	42
	$1.9 \cdot 10^{11}$	442	47
	$3 \cdot 10^{11}$	433	47

Результаты расчета показывают, что примесные ионы титана и кремния, ответственные за пики ТЛ при 414 и 425 К, вызывают уширение дозиметрического пика ТЛ. При этом рост концентрации примесных центров кремния (ТЛ с пиком при 425 К) сдвигает в сторону низких температур положение максимума дозиметрического пика (рис.1).

Рис.1. Изменение КТВ дозиметрического пика в номинально чистом кристалле α -Al₂O₃ в зависимости от концентрации *m* и *n* примесных ловушек, ответственных за пики ТЛ при 375 и 414 К соответственно: кривая 1 - при *m* = 0, *n* = 0; кривые 2 и 3 - при *m* = $5 \cdot 10^{12}$ см⁻³ и *m* = 10^{13} см⁻³, соответственно; кривые 4 и 5 - при *n*= $1.2 \cdot 10^{11}$ см⁻³ и *n* = $1.7 \cdot 10^{11}$ см⁻³, соответственно.

Для проверки вышеуказанных предположений относительно природы примесных ловушек, ответственных за уширение дозиметрического пика, были поставлены специальные эксперименты. Из серии исследованных кристаллов были выбраны образцы с малой (37 К) и с большой полушириной (52 К) дозиметрического пика. Для них был проведен количественный анализ примесей с использованием энергодисперсионного рентгеновского микроанализатора Rontec в составе растрового электронного микроскопа LEO982. Каждый образец скалывался в атмосфере азота и сразу же помещался в камеру электронного микроскопа. Измерения проведены в Институте электрофизики (Уральское отделение Российской академии наук). Результаты анализа примесного состава для двух образцов приведены в таблице 3.

Примесный состав кристаллов α-Al₂O₃ с различной полушириной дозиметрического ТЛ пика.

Таблица 3.

Полуширина	Элементный состав (в атомных %)			
ТЛ пика, К	Cr	Ti	Si	Fe
37	<00.01	<00.01	<00.01	<00.01
52	< 00.01	< 00.01	01.75	00.10

Элементный анализ подтвердил, что «чистый» кристалл характеризуется узким дозиметрическим пиком. В кристалле с большой полушириной дозиметрического пика найдена относительно высокая концентрация примесей кремния (рис.2, а). В то же время в образце с широким дозиметрическим пиком не выявлены заметные примеси титана, превышающие предел обнаружения (0.01 %), однако это не означает, что указанная примесь отсутствует в других исследованных образцах (рис.2, б). С другой стороны, можно утверждать, что примесные ионы кремния могут вызвать близкое к максимальному уширение дозиметрического пика.

гис. 2, (а). Элементный состав гис.2, (о). Элементный состав кристаллов анионодефектного оксида кристаллов анионодефектного оксида алюминия с узким дозиметрическим ТЛ алюминия с широким дозиметрическим ТЛ пиком (Е2). ТЛ пиком (Е5).

Таким образом, в результате проведенного исследования можно считать установленным, что в температурном диапазоне (350-450) К, соответствующем нарастанию дозиметрического пика (T_m=450 K), существуют по крайней мере 4 типа мелких ловушек, ответственных за максимумы ТЛ при температурах 350, 375, 414 и 425 К. Два вида ионов – ионы титана и кремния – могут создавать центры захвата, участвующие в ТЛ при указанных выше температурах