E-mail: ksucta@elcat.kg.

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ ВОДЫ В СИСТЕМАХ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

Макалада Кыргызстандагы суу менен камсыздоо жана суунун коопсуздугу каралган

В статье изложены развитие системы водоснабжения в Кыргызстане и перспективный способ обеззараживания питьевой воды.

In the article is given development of water supply system in Kyrgyzstan and perspective method of drinking water cleaning

Развитие цивилизации неразрывно связано с использованием воды, масштабы потребления которой все больше расширяются. Обеспечение населения водой, отвечающей конкретным санитарно-гигиеническим требованиям, является одной из основных задач водоснабжения. Системы водоснабжения должны также удовлетворять потребности в воде промышленности и сельского хозяйства. Отсюда системы водоснабжения подразделяются на коммунальные, промышленные и сельскохозяйственные.

Рассмотрим современное состояние и перспективы развития системы водоснабжения населенных мест, промышленных предприятий и сельскохозяйственных объектов с учетом развития народного хозяйства, повышения благосостояния населения и увеличения выпуска продукции.

История и геолого-географические особенности Кыргызстана свидетельствуют о том, что население селилось в основном вблизи источников природной воды, т.е. на участках с высоким уровнем грунтовых вод, по берегам рек и прудов, в местах выхода на поверхность подземных вод. При этом большое значение имели талые снега, ледники и атмосферные осадки, количество которых на территории республики колеблется от 300 до 800 мм и более.

До ввода в эксплуатацию централизованных систем водоснабжения малых и больших населенных мест и пастбищ население пользовалось водой из постоянных поверхностных прочных источников, шахтных колодцев, каналов, озер или искусственных копаней — хаузов, которые наполнялись в период дождей либо из арыков. Для подъема воды использовались вертушки, журавли и другие приспособления, которые работали за счет ее кинетической энергии либо при непосредственном участии человека.

При отсутствии близлежащих естественных источников вода в населенные пункты поступала самотеком по арычной сети. В высокогорных зимовьях в месяцы с отрицательными температурами для хозяйственно-питьевых нужд использовались талые снега или лед.

Вода для небольших промышленных предприятий и артелей подавалась из проточных водоемов с помощью труб или лотков, изготовленных из деревянных досок, цельно разработанных брусьев или керамических (глиняных) материалов /1, 2/. С расширением благоустройства населенных мест, строительства капитальных жилищно-коммунальных и промышленных объектов в республике все больше назревала необходимость организации централизованной системы водоснабжения, прежде всего в ее столице.

Первую водопроводную сеть в г. Бишкеке начали строить в 1929 г., она вступила в строй во второй половине 1931 г. /2, 3, 4/, имея длину 9 км. Ежесуточно точно водопотребители получали 6,2 тыс. м³ воды. Водопроводная сеть была выполнена из деревянных труб и подавала воду потребителям из накопительного резервуара объемом около 500 м³. Источником водоснабжения служили родники у подножия Байтийской возвышенности, расположенной в пригородной южной части города. Вода родника обработке не подвергалась.

Водоснабжение других населенных мест республики началось значительно позже, о чем свидетельствуют данные, характеризующие отдельные водопроводы к концу 1972 г., приведенные в табл. 1. Большая работа по созданию системы центрального водоснабжения и других местах республики развернулась в 60-е и последующие годы XX века. Темпы ее развития отражены в табл. 2, согласно /2, 5-9/, с дополнениями.

В 1970-1972 гг. протяженность наружной водопроводной сети населенных мест /5-8/ находилась в определенной соизмеримой пропорции с численностью населения в них. От подаваемого расхода воды в водопроводную сеть 20-48 % использовалось промышленными предприятиями. Общее водопотребление на одного жителя в сутки колебалось в широких пределах и в 1970 г. составило от 24 до 179 л, а в 1990 г. – от 104 до 395 л (в населенных пунктах, получающих воду через водораспределительные колонки, составило 19-38 л/сут. на одного жителя).

Анализ данных о себестоимости 1 м³ воды в различных населенных пунктах за 1991 г. показывает, что она зависит главным образом от рельефа местности, вида источника водоснабжения и качества воды. В населенных пунктах, использующих поверхностные воды, себестоимость 1 м³ воды в 3-6 раз выше, чем в получающих воду из подземных источников (без дополнительной обработки, кроме обеззараживания).

Таблица 1

Характеристика водопроводной сети

	Населен-	Hace-	Год	Про-	Подача воды, м ³ /сут.	Водо-
--	----------	-------	-----	------	-----------------------------------	-------

ные пункты	ле-	ввода в	тяжен-	всего	для	Для насе-	потреб-
	ние,	эксплуа-	ность		промыш-	ления и	ление
	тыс.	тацию	сети, км.		ленности	комму-	на 1
	чел.					нального	чел.,
						хозяй-	л/сут
						ства	
1	2	3	4	5	6	7	8
Бишкек	452	1931	512,0	235,0	59,0	176,0	390
Кок-Янгак	16	1941	23,0	2,6	0,55	2,05	128
Нарын	22	1947	15,3	5,0	1,5	3,5	159
Майли-Су	24	1953	23,0	6,3	2,1	4,2	175
Жалал-	47	1954	69,0	7,1	1,5	5,8	121
Абад							
Ош	132	1958	102,0	12,0	5,1	7,7	58
Каракол	44	1958	48,0	6,9	2,3	4,6	103
1	2	3	4	5	6	7	8
Кызыл- Кия	32	1960	62,0	6,2	2,0	4,2	131
Сулюкта	18	1961	68,0	5,4	2,0	3,4	184
Узген	25	1961	18,0	1,3	0,2	1,1	45
Кара-Суу	18	1964	24,0	1,6	0,3	1,3	71
Балыкчи	30	1964	39,0	9,0	2,7	6,9	210
Талас	21	1964	21,0	0,8	0,3	0,5	26
Токмак	46	1965	36,0	3,2	1,2	2,0	44

Для строительства водопроводной сети повсеместно используются стальные, чугунные и асбестоцементные трубы. Улучшение качества воды производится в системах водоснабжения городов Ош, Шамалды-Сай и Ташкумыр., где предусмотрена двухступенчатая обработка исходной воды на основе использования технологической схемы в соответствии с /10, 11/.

При заборе поверхностных вод в других местах расселения людей предусмотрены простые водоосветительные устройства типа ковшей, резервуаров и обеззараживания населенных мест, базирующихся на подземных водах. Вода предварительной обработке не подвергается (производится только ее обеззараживание) с разрешения санэпидемстанции.

Таблица 2 Развитие централизованной системы водоснабжения в количественном отношении

Объекты	1960 г.	1970 г.	1980 г.	1985 г.	1990 г.	2003 г.
водоснабжения						
Города	7	15	18	21	22	22
Поселки	3	23	25	27	28	28
Сельские	4	38	93	800	927	1130
населенные						
пункты						
Всего	14	76	136	848	977	1180

В республике не все централизованные системы водоснабжения, обеспечивающие население водой, относятся к коммунальным водопроводам в связи с их разной ведомственной подчиненностью. Так, водопроводы, обслуживающие сельские населенные пункты, входят в подведомство Минсельхоза г. Бишкека — в службу местной госадминистрациии. Многие населенные пункты используют воду ведомственных водопроводов — сахарных, электротехнических и других заводов, рудо- и шахтоуправлений, комбинатов и пр.

В сельской местности более 1200 населенных пунктов имеют системы питьевого водоснабжения. А в 500 населенных пунктах необходимо предусмотреть централизованные системы водоснабжения. Из имеющихся 1200 систем водоснабжения около 500 требует полной реабилитации.

В настоящее время с развитием местного самоуправления идет тенденция по подчинению всех служб водохозяйств водоснабжения и водоотведения местной власти, т.е. по принципу: в городах – к мэрии, районных центрах – поселковым советам, сельских местностях – айыл окмоту. Кроме того в Кыргызстане ведется работа по созданию общественной организации – Ассоциации водопотребителей.

Современные требования к качеству питьевой воды и безопасности промышленных комплексов ставят перед службами водоснабжения противоречивые, на первый взгляд, задачи. Например, повышение надежности обеззараживания, поскольку хлорирование не достаточно эффективно в отношении вирусов и паразитарных цист. Однако снижение концентрации хлорорганических соединений в питьевой воде достигается только снижением доз хлора или использованием сорбционных или других методов глубокой очистки воды. Традиционно используемый на водопроводных станциях газообразный хлор обусловливает жесткие требования к безопасности содержания хлорного хозяйства, что создает дополнительные сложности при эксплуатации.

Сочетание физических и химических методов обеззараживания позволяет значительно повысить эпидемическую безопасность питьевой воды и минимизировать образование побочных продуктов. Ультрафиолетовое (УФ) облучение — наиболее распространенный физический метод обеззараживания, имеющий многолетний положительный опыт применения в системах полготовки питьевой воды.

К достоинствам метода относятся:

- отсутствие влияния УФ облучения на физико-химический состав воды;
- отсутствие побочных явлений и вторичных продуктов, оказывающих негативное влияние на здоровье человека;
- высокая эффективность в отношении устойчивых к хлорированию микроорганизмов (вирусов и цист простейших);
 - отсутствие необходимости в организации специальных мер безопасности при эксплуатации;
 - простота эксплуатации УФ установок;
 - низкие эксплуатационные расходы в связи с малой энергоемкостью УФ оборудования.

Современный уровень развития УФ технологии позволил значительно расширить диапазон физико-химических показателей качества воды, приемлемых для применения метода УФ обеззараживания. В системах водоподготовки для централизованного водоснабжения УФ облучение применяется как на этапе первичного обеззараживания, так и на заключительном этапе эпидемиологической безопасности питьевой воды. Целесообразность повышения ультрафиолетового обеззараживания речной воды обеспечивается при мутности не более 1,5 мг/л и цветности до 50-60 град. По рекомендации профессора В.Л.Драгинского доза облучения в этом случае выбирается в зависимости от концентрации микроорганизмов в источнике воды. При содержании колиформных микроорганизмов на уровне не более нескольких сотен в 100 мл эффективное обеззараживание обеспечивается дозой 25 мДж/см². При более интенсивном загрязнении исходной воды требуются дозы облучения до 40 мДж/см².

Таким образом, уже на этапе первичной обработке воды УФ облучением в большинстве случаев можно обеспечить снижение индикаторных микроорганизмов на 3-4 порядка, а в ряде случаев – и до нормативных требований. Это создает условия для корректировки регламента первичного хлорирования и повышает в целом барьерную роль сооружений в отношении возбудителей заболеваний, передающихся водным путем.

Использование УФ облучения в дополнение к основной схеме обработки на этапе заключительного обеззараживания наиболее целесообразно с экономической точки зрения, поскольку в этом случае облучению подвергается вода, имеющая высокую прозрачность для УФ лучей. Обеззараживание УФ облучением обеспечивает эпидемиологическую безопасность питьевой воды в отношении устойчивых к хлорированию микроорганизмов вирусов и цист простейших. Эффективность обеззараживания УФ облучением в отношении этих микроорганизмов доказана исследованиями ведущих российских институтов и практикой эксплуатации действующих сооружений /12/.

На практике, при видимой простоте и дешевизне применения жидкого хлора, процесс хлорирования требует строгого соблюдения правил безопасности хлораторных, а затраты на обеспечение безопасности при хлорировании воды превосходят затраты на собственно хлорирование воды. Для крупных водопроводных станций, расположенных вблизи жилой застройки, где транспортировка, хранение и применение больших количеств жидкого хлора

вызывает серьезную опасность для жизни и здоровья населения, поиск новых методов хлорирования приобретает большое практическое значение. Гипохлорит натрия является малотоксичным, безопасным и более простым в эксплуатации реагентом. Опыт применения гипохлорита натрия для обеззараживания воды показал его высокую надежность, безопасность и эффективность. Гипохлорит натрия используется на многих станциях, крупнейшие системы эксплуатируются в г. Санкт-Петербург. В 2003 г. на ГВС в Санкт-Петербурге была проведена модернизация оборудования И осуществлен переход применение на высококонцентрированного гипохлорита натрия, а в 2004 г. – и на Волковской водопроводной станции (ВВС). В целях обеспечения надежности процессов подготовки в течение года после перехода на применение гипохлорита натрия хлорное хозяйство на объектах ГВС и ВВС находилось в резерве. В этот период был разработан проект ликвидации хлорного хозяйства, а в апреле 2004 г. ликвидировано хлорное хозяйство на ГВС, в июле 2005 г. – и на ВВС. Управление процессом дозирования осуществляется на основании показания датчиков остаточного хлора, установленных в местах ввода реагента. Одной из основных проблем, с которыми столкнулись специалисты ГУП «Водоканал Санкт- Петербург» при эксплуатации станции обеззараживания гипохлоритом натрия, были недостатки в системе управления. В датчиках остаточного хлора реализован кондуктометрический принцип, следовательно, при вводе реагента в исходную воду необходимо иметь узлы подготовки пробы воды перед ее подачей на датчик, а это осложняет работу системы. Указанный фактор был учтен при проектировании системы обеззараживания на ВВС, и система управления процессом работала по сигналу расхода воды с ручным вводом заданной дозы. Датчики остаточно хлора выполняют в этом случае контролирующую функцию.

Выводы:

Для повышения безопасности эксплуатации технологического оборудования и эффективности обеззараживания питьевой воды необходимо учитывать:

- на первичном этапе хлорирования не допускать перехлорирования;
- необходима обработка воды ультрафиолетовым облучением, дополнительно использование отдельных окислителей;
 - возможности замены газообразного хлора на гипохлорит натрия или кальция.

Список литературы

- 1. Абдрасулов И.А., Матыченков В.Е., Кожобаев К.А. За воду не благодарят. Фрунзе: Илим, 1990. 104 с.
- 2. Межов А.А Развитие водоснабжения и канализации в городах, поселках городского типа и районных центрах Киргизкой ССР // Тр. ФПИ. Фрунзе, 1974. C.82-89.
- 3. Межов А.А. Водоснабжение и канализация города Фрунзе /Тр. Фрунзенского политехнического ин-та. Специальное строительство. Вып. 70. Фрунзе: ФПИ, 1974.- С.105-108.

- 4. Фрунзе: Энциклопедия. Фрунзе: Главная редакция Кыргызской Советской Энциклопедии, 1984. 288 с.
- 5. Киргизия в цифрах. Фрунзе: Госстатиздательство, 1963. 186 с.
- 6. Народное хозяйство Кыргызской ССР в 1980 г. Фрунзе: Кыргызстан, 1981. С.245-247.
- 7. Народное хозяйство Кыргызской ССР за годы советской власти // Статистический ежегодник. Фрунзе: Кыргызстан, 1987. 246 с.
- 8. Народное хозяйство Кыргызской ССР в 1987 году: Статистический ежегодник. Фрунзе: Кыргызстан, 1988. 263 с.
- 9. Абдрасулов И.А. Введение в специальность: Водоснабжение, канализация, рациональное использование и охрана водных ресурсов: Учебное пособие. Бишкек: КАСИ, 1993. 80 с.
- СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения. М.: Стройиздат, 1985.
 134 с.
- 11. Абрамов Н.Н. Водоснабжение. М.: Стройиздат, 1974. 480 с.
- 12. Драгинский В.Л., Алексеева Л.П. Современные технологические решения по отчистке природных вод // Сборник статей и докладов 3-й Международной выставки и конференции СУ АРНАСЫ 2007. Астана: Казахстан, 2007. С.49-58.