МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ПОЛЗУЧЕСТИ ОРГАНО-ПОЛИМЕРНЫХ КОМПОЗИТОВ

Органо-полимердик композиттердин касиеттеринин матерматикалык моделдери температуралык-нымдуулук факторлорду эсепке алуу менен берилген.

Приведены математические модули свойств органо-полимерных композитов с учетом изменения температурно-влажностных факторов.

Mathematical models of property of the organic-polymeric composites, by considering the temperature-moisture parameters, are described.

В настоящее время теоретически могут быть решены лишь некоторые простые задачи нелинейной ползучести. Экспериментальное же исследование ползучести затруднительно и неэкономично.

Попытки моделировать ползучесть металлов, бетонов и полимеров с помощью пластмасс представляются перспективными, так как поведение материалов с различной структурой в некоторых рамках может быть описано одними и теми же уравнениями.

Пластмассы из ряда органо-полимерных композитов применимы для моделирования ползучести конструкций при постоянных напряжениях, т.е. установившейся и квазиустановившейся ползучести. Такое состояние реализуется при развитых деформациях ползучести, когда объемные силы и внешние нагрузки неизменны, а в случае внешне статически неопределимых конструкций опорные связи недеформируемы (смещения в направлении связей равны нулю) /1/.

В случае постоянных напряжений зависимость между компонентами деформации ε_{ij} и напряжения σ_{ii} для пластмасс, как показали опыты над целлулоидом, можно записать в виде /2/

$$\varepsilon_{ij} = \varepsilon_{ij}^{0} + \varphi(t)f(T)\sigma_{ij}^{\prime},$$

(1)

где $\varepsilon_{ij}^{\,0}$ — мгновенная деформация; t — время; T — интенсивность касательных напряжений; $\sigma_{ij}^{\,\prime}$ — компоненты девиатора напряжения.

В пользу уравнения (1) говорит, в частности, тот экспериментально установленный факт; что для ряда пластмаес справедлива гипотеза единой кривой. Свойства пластмаес при растяжении и сжатии (при малых деформациях) практически одинаковы.

Для пластмасс функции ϕ и f можно аппроксимировать зависимостями

$$\varphi(t) = t^n (0\langle n\langle 1);$$

(2)

$$f(T) = aT^m (m \ge 0),$$

(3)

где n, a, m — функция температуры и параметра, характеризующего скорость деформации.

Среди пластмасс встречаются материалы, следующие как нелинейному, так и линейному закону ползучести. В последнем случае в формуле (3) следует принять m=0.

Для функции f используется также вместо степенной экспоненциальная зависимость, или зависимость по гиперболическому синусу; эти зависимости для среднего и высокого уровней напряжения дают близкие результаты.

Анализ зависимостей между величинами в модели и натуре показывает, что при моделировании ползучести с помощью пластмасс в условиях статики время исследования сокращается в десятки и сотни раз. Так, состояние квазиустановившейся ползучести в пластмассовой модели уже при среднем уровне напряжений в ней наступает через несколько часов после нагружения. К модели нужно прикладывать нагрузки, значительно меньшие действующих на конструкцию. Размеры модели выбираются произвольно /3/.

С изменением температуры или степени пластификации механические свойства пластмасс заметно изменяются, что расширяет область их применения в качестве моделирующих материалов. По имеющимся сведениям значения показателя степени для пластмасс находятся в интервале от 0 до 5.

Оптимизация свойств и прогнозирования долговечности органо-полимерных композитов при изменении температурно-влажностных факторов проводилась с использованием метода экспериментально-статистического моделирования /4/.

Был проведен трехфакторный эксперимент по плану B_3 . В качестве варьируемых факторов были взяты: X_1 – влажность в помещении, %; X_2 – температура, ${}^{o}C$; X_3 – продолжительность времени эксплуатации, год. Уровни варьирования факторов приведены в табл. 1.

Таблица 1 Уровни варьирования

Уровни факторов	X_1 – влажность, %	X_2 – температура, °С	Х ₃ – продолжи-	
			тельность времени	
			эксплуатации, год	
-1	30	18	1,0	
0	40	20	1,5	
+1	50	22	2,0	

План и выходные значения эксперимента по В3

№	План эксперимента					У1 прочность	У ₂	\mathbf{y}_3	
в нормализованнь				в натуральных		при изгибе	прочность	потеря	
	переменных		переменных		после	контрольного	прочности при		
							длительных	образца при	изгибе от
	\mathbf{x}_1	\mathbf{x}_2	X3	X_1	X_2	X_3	испытаний,	изгибе, МПа	контрольного
							МПа		образца, %
1	+	+	+	40	20	2,0	19,72	19,8	0,4
2	+	+	-	40	20	2,0	19,83	19,9	0,35
3	+	-	+	40	20	2,0	19,54	19,6	0,33
4	-	+	+	30	20	1,5	18,74	18,8	0,3
5	-	-	-	30	18	1,5	18,46	18,5	0,2
6	-	-	+	30	18	1,5	17,86	17,9	0,2
7	-	+	-	30	18	2,0	17,85	17,9	0,3
8	+	-	-	40	22	1,0	18,78	18,8	0,1
9	+	0	0	40	22	1,5	18,36	18,4	0,2
10	-	0	0	30	18	1,5	17,78	17,8	0,1
11	0	+	0	50	20	1,5	18,25	18,3	0,25
12	0	-	0	50	20	1,5	18,46	18,5	0,2
13	0	0	+	50	20	2,0	17,55	17,6	0,3
14	0	0	-	50	20	1,0	17,38	17,4	0,1
15	0	0	0	50	20	1,5	17,98	18,0	0,1

Критерии оптимизации были приняты:

 $Y_1 = f(X_1, X_2, X_3)$ – прочность при изгибе после длительных испытаний, МПа;

 $Y_2 = f(X_1, X_2, X_3)$ – прочность контрольного образца при изгибе, МПа;

 y_3 – потеря прочности при изгибе от контрольного образца, %.

Исходя из эксперимента уровни варьирования трех факторов (X_1, X_2, X_3) , план и результаты эксперимента приведены в табл. 1 и 2.

При экспериментально-статистическом моделировании фактора X_i из натуральных переменных переводятся в нормализованные X_i с ограничением $-1 \le X_i \le +1$, что значительно упрощает расчет коэффициентов полиномиальных моделей. Критериями оптимизации служили $15 \le V_i \le 20$ МПа.

По результатам эксперимента рассчитаны на ЭВМ коэффициенты моделей целевых функций $Y_1=fig(X_1,\quad X_2,\quad X_3ig),\ Y_2=fig(X_1,\quad X_2,\quad X_3ig)$ и $Y_3=fig(X_1,\quad X_2,\quad X_3ig)$

$$y_1 = 17,15 + 1,44X_1 - 0,85X_1^2 - 0,46X_2 - 1,12X_2^2 - 0,03X_2X_3$$
$$- 0,13X_3 - 0,51X_3^2$$
(4)

$$Y_2 = 18,11 - 1,46X_1 - 0,9X_1^2 - 0,04X_1X_2 + 0,13 X_1X_3 - 0,52X_2$$
$$-1,12X_2^2 - 0,04X_2X_3 - 0,52X_3^2$$
(5)

$$y_3 = 0,22 - 0,11X_1 + 0,36X_1^2 - 0,03X_1X_2 + 0,06X_1X_3 - 0,33X_2 - 0,20X_2^2 + 0,03X_2X_3 - 0,15X_2 - 0,13X_3 - 0,51X_3^2$$
(6)

Анализ коэффициентов математических моделей свойств органо-полимерного композита позволяет сделать следующие выводы:

— наибольшее влияние на прочность оказывают фактор X_1 —относительная влажность воздуха; X_2 — температура в помещении и X_3 — время длительных испытаний. Однако необходимо уточнение зоны оптимума, так как на это указывает коэффициент — 0,85 при X_1^2 . Прочность при статическом изгибе снижается по мере увеличения относительной влажности и времени длительных испытаний. Потеря прочности органо-полимерных композитов незначительна, т.е. $0,1 \le Y_3 \le 0,3$ %.

Относительно показателей потери прочности $Y_3 = f(X_1, X_2, X_3)$ следует отметить, что температурно-влажностные факторы в помещении $(X_1 \cup X_2)$ зависят от продолжительности испытания (X_3) . На рис. 2 приведены графические образы моделей изолиний ползучести.

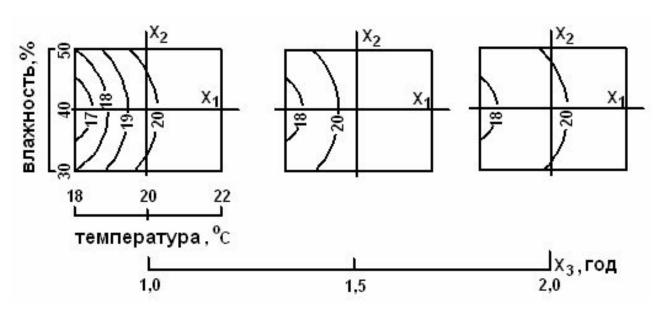


Рис. 1. Изолинии прочности $Y_1=fig(X_1,\quad X_3ig)$ при $X_2=$ -1; 0; +1

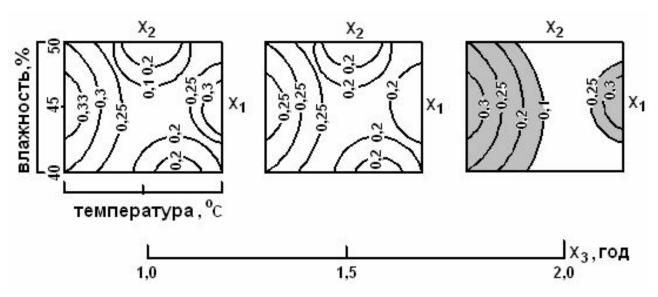


Рис. 2. Изолинии ползучести $V_3 = f(X_1, X_2)$ при $X_2 = -1; 0; +1$

По всем точкам плана показатель потери прочности плит находится в допустимых пределах $0.3 \le y_3 \le 0.1$ %.

Для выделения границ ползучести, где удовлетворяются требования по критериям номограммы прочности $Y_1 = f(X_1, X_3)$ при $X_2 = +1$, т.е. при максимальной продолжительности испытаний;

- вторым по влиянию на прочность является фактор X_2 , что обусловлено наличием коэффициента B_{22} =-1,12;
- третий фактор X_3 время испытаний на прочность влияние оказывает незначительное, и его значение должно быть минимальным, т.е. X_3 =-1.

Наиболее наглядно влияние всех трех факторов на прочность органо-полимерных композитов при ползучести (потеря прочности) можно наблюдать на графическом образе моделей (рис. 2).

На рис. 3 видно, что область границ ползучести, где удовлетворяется требование критериев $15 \le Y_1 \le 20$, занимает все факторное пространство $Y_1 = f(X_1, X_2, X_3)$ и $Y_3 = f(X_1, X_2, X_3)$.

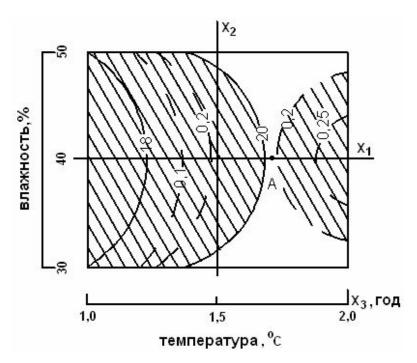


Рис. 3. Область границ ползучести, где $y_1>18$ МПа, (не заштрихованное поле)\

Аналогично с вышеуказанной методикой математико-статистического моделирования оптимизирован состав многокомпонентного органо-полимерного композита.

В качестве выходных параметров при планировании эксперимента приняты следующие свойства:

 $Y_1^{u_{32}}\,$ – предел прочности при статическом изгибе, МПа;

 $Y_2^{\textit{pas6}}$ – разбухание по толщине за 24 ч, %.

Эти показатели наиболее полно характеризуют эксплуатационные свойства строительных плит из смеси растительных отходов.

Параметрами оптимизации явились целевые функции: y_1^u — предел прочности при статическом изгибе; y_2^p — разбухание за 24 часа.

Исследовалась зависимость целевых функций от трех основных переменных факторов: X_1 – процент содержания стеблей табака; X_2 – содержание связующего; X_3 – содержание в наполнителе частиц стеблей хлопчатника или соломы.

По результатам эксперимента рассчитаны на ЭВМ коэффициенты моделей целевых функций. Критерием оптимизации служил $17 < y_1 < 23$ МПа. Получены уравнения:

$$Y_1^{use} = 17,92 + 1,54X_1 - 0,88X_1^2 + 0,84X_2 - 1,39X_2^2 - 0,07X_1X_2;$$
(7)

$$Y_2^{\textit{pas6}} = 3,91 - 0,21X_1 + 0,46X_1^2 - 0,05X_1X_2 - 0,44X_2 - 0,25X_2^2$$
 .

(8)

Рациональное соотношение фракции частиц в органо-полимерном композите установлено: древесная стружка -8 %; стебли табака -30 %; стебли хлопчатника или соломы -55 %; связующее PMDI -7 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бартенев Г.М. и др. Физика полимеров. Л.: Химия, 1990.– 430 с.
- 2. Бартенев Г.М., Зеленев Ю.В. Физика и механика полимеров. М.: Высшая школа, 1983. 390 с.
- 3. Абдыкалыков А.А, Сатыбалдиев Ж.Ж., Абдраимов Ж. Методические рекомендации по применению экспериментально-статистических моделей для оптимизации наполнителя в композиционных материалах. Бишкек: РУЦПНРК. 65 с.
- 4. Курдюмова В.М., Ильченко Л.В., Чымыров А.У., Суворова Е.С. Термодинамический анализ структуры строительных композитов из растительного сырья // Межд. сб. научн. тр. «Экология и ресурсосберегающие технологии в строительном материаловедении». Новосибирск, 2005.— С. 7-11.