О ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ДВУМЕРНОГО МОДЕЛИРОВАНИЯ К ЗОНЕ ТАЛАСО-ФЕРГАНСКОГО РАЗЛОМА

Е.А. Баталева, В.Ю. Баталев

На основе анализа тензора импеданса для зоны Таласо-Ферганского разлома определены количественные характеристики, подтверждающие правомочность применения двумерного моделирования в этой зоне.

Ключевые слова: магнитотеллурические исследования; тензор импеданса; двумерное моделирование; глубинное строение; Тянь-Шань.

Введение. Реальную геологическую среду всегда сложно аппроксимировать даже с помощью трехмерных и двумерных математических моделей, причем некорректный выбор размерности модели может привести к значительным ошибкам при моделировании. Настоящая работа посвящается применению некоторых способов количественной оценки "электрической размерности" для зоны Таласо-Ферганского разлома.

Анализ тензора импеданса. Параметризация импеданса, то есть определение параметров неоднородности N, углового параметра асимметрии A, амплитудного параметра асимметрии Skew и фазочувствительного параметра Eta производится с целью районирования исследуемой территории (рис. 1) по степени двумерности среды. Параметр неоднородности определяется по формуле:

$$\mathbf{N} = \frac{Z_p^+ - Z_p^-}{Z_p^+ + Z_p^-} \cdot$$

Он характеризует степень горизонтальной неоднородности среды, если среда горизонтально-однородна (1D), то N = 0. Угловой параметр асимметрии:

$$A = \left\| \theta_p^+ - \theta_p^- \right\| - \frac{\pi}{2} \, \right|,$$

где θ_p^+ , θ_p^- азимуты главных направлений тензора импеданса, определяемые методом ортогонализации Эггерса [1]. Он служит для определения степени асимметрии среды. В двумерном случае (2D) A=0. Отклонение A от 0 свидетельствует о трехмерности среды (3D). Амплитудный параметр асимметрии также является мерой асимметрии среды. Если среда двумерна, то Skew = 0. Параметры A и Skew дублируют друг друга. Фазочувствительный параметр асимметрии

$$Eta = \frac{\sqrt{2|\mathrm{Im}(ZyxZxx^* - ZxyZyy^*)|}}{|Zxy - Zyx|}$$

где * обозначает комплексную сопряженность, позволяет распознать среду, в которой на региональную двумерную структуру наложены ло-

Рис. 1. Схема сети региональных (I-I, II-II, VI-VI) и локальных (a-a, b-b, c-c, d-d, e-e, f-f, g-g) профилей МТЗ, в зоне Таласо-Ферганского разлома, а также расположенных на прилегающих площадях. Разломы: ТФ – Таласо-Ферганский, ЛН – "линия Николаева", АИ – Атбаши-Иныльчекский, ЮФ – Южно-Ферганский, КА – Кичик-Алайский, ГЛ – Гюльчинский. Профили МТЗ показаны прямоугольниками; 1 – пункты МТЗ, 2 – граница Кыргызстана, 3 – крупные разломы.

кальные трехмерные неоднородности (Eta = 0) [2].

На рис. 2 и 3 представлены карты магнитотеллурических (МТ) параметров на 3-х периодах: 1, 100 и 1600 с. Сначала рассмотрим высокочастотные карты, т.е. карты для T = 1 с. Значения параметра N на большей части территории для T = 1 с превышают 0.4, что свидетельствует о сильной горизонтальной неоднородности приповерхностных слоев. При этом значения параметра A колеблются от нескольких градусов до нескольких десятков градусов, что указывает на присутствие в разрезе как двумерных, так и трехмерных приповерхностных структур. На некоторых участках высокочастотных карт большим значениям Skew (больше 0.2) соответствуют небольшие значения Eta, характерные для суперпозиции региональных двумерных и локальных трехмерных структур. С понижением частоты эти соотношения сохраняются. Области повышенных или пониженных значений МТпараметров N, A, Skew, выделяемые на картах для T = 1 с, повторяются с некоторыми деформациями на картах T = 100 с и T = 1600 с, таким образом, подтверждая слабую зависимость N, A, Skew для исследуемого района от частоты. Это позволяет связать искажения низкочастотного магнитотеллурического поля с гальваническим влиянием приповерхностных неоднородностей. Примечательно, что на низкочастотных картах участкам с большими значениями Skew (0.4 до 1) отвечают значения Еta не превышающие 0.2. Таким образом, предположение о наложении локальных трехмерных структур на региональные

Рис. 2. Карты магнитотеллурических параметров на периодах T=1 с, 100 с, 1600 с: Skew – амплитудный параметр асимметрии, А – угловой параметр асимметрии.

Рис. 3. Карты магнитотеллурических параметров на периодах T=1 с, 100 с, 1600 с: N – параметр неоднородности, Eta – фазочувствительный параметр асимметрии.

двумерные получает дополнительное подтверждение.

Анализ матрицы Визе-Паркинсона. Матрица Визе-Паркинсона, связывающая вертикальную составляющую магнитного поля с его горизонтальными составляющими Hz = WzxHx + WzyHy, предоставляет наиболее надежную информацию о глубинных проводящих структурах, так как с увеличением периода теллурические токи индуцируются в более глубоких слоях Земли и их магнитное поле освобождается от искажающего влияния приповерхостных неоднородностей за счет уменьшения их вклада в суммарное магнит-

Рис. 4. Частотный разрез меридиональной компоненты реального вектора ReW вдоль поперечного Алайку(g-g)-Арпинского(f-f) профиля.

ное поле [2]. Матрица Визе-Паркинсона обычно изображается в виде вещественной и мнимой индукционной стрелок ReW и ImW, которые также называют типперами. Они позволяют локализовать зоны повышенной и пониженной электропроводности и использовать как амплитудные, так и фазовые магнитовариационные характеристики. Этот подход обеспечивает лучшую наглядность изображения и более высокую чувствительность к горизонтальным изменениям электропроводности. Данные магнитовариационных наблюдений на низких частотах обладают замечательным свойством – они практически не зависят от влияния приповерхностных неоднородностей, и в случае вытянутых структур точно указывают местоположение оси тока, так как над ней длина векторов ReW равна нулю. По мере удаления от нее в одну сторону ReW принимает положительные значения, а в другую - отрицательные. С увеличением расстояния и те, и другие стремятся к нулю. На частотном разрезе меридиональной компоненты ReW, представленном на рис.4, имеются области положительных и отрицательных значений, причем наблюдается значительный размах: от +0,3 до -0,3. Нулевая изолиния ReW располагается между этими областями с некоторым наклоном к западу. В случае, если электропроводящее тело, пересекаемое поперечным Алайку-Арпинским профилем, связано с Таласо-Ферганским разломом, то можно предположить, что и он, соответственно, наклонен к западу. Окончательные выводы о наклоне Таласо-Ферганского разлома в районе Алайку можно будет сделать на этапе количественной интерпретации при расчете моделей.

Анализ псевдоразрезов фаз импеданса. Для определения структуры коровой проводимости в зоне Таласо-Ферганского разлома не только по трансформантам, но и по исходным данным проанализируем частотные разрезы продольных (так как в целом Тянь-Шань вытянутая субширотная структура) фаз импеданса Fi_{ху} для имеющихся профилей МТЗ. Фазы основных импедансов, представленных на рис. 5, обладают замечательным свойством - они мало зависят от влияния приповерхностных неоднородностей. Даже учитывая тот факт, что фазы определяются, как известно из практики, с меньшей точностью, чем модули импеданса, их вклад в построение предварительных интерпретационных моделей должен быть значительным. Рассмотрим частотный разрез фаз импеданса Fi, по Кекиримскому профилю (d-d). По всему профилю на периоде около 1600 с (ЛТ=40 с) наблюдаются значения Fi_{xv} от -20 до -30°, что свидетельствует о наличии высокоомных комплексов пород, залегающих под проводящим коровым слоем, где значения фаз составляют -45,-60°. Проводящий слой далеко не однороден, изолинии -45° разделяются Таласо-Ферганским разломом на две изолированные зоны. Значения фаз от -50, -60°, свидетельствующие о существенном возрастании проводимости по слою, располагаются на разрезе локальными участками. На южном участке профиля значения фаз -50, -70° наблюдаются в высокочастотной части разреза, а в низкочастотной части при этом увеличивается область фаз со значениями -20, -30°, то есть проводимость низов коры здесь уменьшается. По Капташскому (с-с) профилю наблюдается сходное по характеру поведение фаз импеданса Fi_{xv}. Вблизи Таласо-Ферганского разлома изолинии -45° также разделяются на две зоны, между которыми значения фаз составляют -30,-40°, что указывает на наличие там мало проводящих массивов пород между участками корового слоя с высокими значениями проводимости. В южной части разреза коровая проводимость уменьшается по сравнению с центральной частью, а в высочастотной части разреза появляется область с Fi_{xv}=-60°, что так же, как и на Кекиримском профиле, по-видимому, связано с выходом профилей в окраины Ферганской впадины.

Рис. 5. Частотные разрезы фаз импеданса Fi_{xy} по профилям, секущим зону Таласо-Ферганского разлома. Обозначения профилей взяты из рис. 1. Светлые участки разрезов соответствуют изоляторам, темные – проводникам.

В северной части Капкаташского (с-с) профиля, в отличие от Кекеримского (d-d), наблюдается мощная субвертикальная зона повышенной электропроводности, о чем свидетельствуют соответствующие значения фаз - 60, -75°. Если сопоставить эту субвертикальную проводящую зону с подобной же зоной на следующем к западу Карасуйском профиле (b-b), то можно заметить ее соответствие "линии Николаева", которая в рассматриваемом районе приближается к Таласо-Ферганскому разлому и чуть дальше к северозападу сочленяется с ним. Кекеримский же профиль просто пересекает зону "линии Николаева", начинаясь в 10 км южнее нее. При дальнейшем рассмотрении Карасуйского (b-b), Торкентского (a-a), Алайку-Арпинского (g-g, f-f) и Таласского (VI-VI) профилей, секущих Таласо-Ферганский разлом легко заметить наличие тех же основных особенностей поведения фаз Fi, и, соответственно, значений проводимости.

А именно: а) разделение проводимости в средней части земной коры вблизи Таласо-

Ферганского разлома на участки с достаточно контрастными значениями сопротивлений – проводник-изолятор-проводник; б) уменьшение коровой проводимости в сторону Ферганской впадины.

Морфологический анализ МТ-кривых. Основными задачами морфологического анализа кривых МТЗ являются:

 а) диагностика эффектов, вызванных приповерхностными неоднородностями;

б) выделение искомой информации о глубинных проводящих структурах по соотношению продольных и поперечных кривых;

в) "расшифровка" поведения этих кривых вдоль профиля в зависимости от приповерхностных и глубинных структур, то есть понимание процессов, деформирующих кривые МТЗ, при переходах между соседними пунктами по профилю.

Рассмотрим данные МТЗ, полученные на серии региональных и локальных профилей, секущих зону Таласо-Ферганского разлома, схема

Рис. 6. Сравнение поперечных кривых МТЗ, наблюдаемых: а – повсеместно на территории Северо-Восточного Тянь-Шаня, б – только на склонах Каратау-Ферганской системы хребтов.

которых представлена на рис. 1. Кривые МТЗ, полученные на северо-восточном склоне Ферганского хребта, резко отличались от обычных кривых кажущегося сопротивления, получаемых повсеместно на Тянь-Шане. МТЗ, располагающиеся в этой зоне интересны тем, что кривые ρ^{\perp} (поперечные к Таласо-Ферганскому разлому) в отличие от всех МТЗ, выполненных в других районах Тянь-Шаня, являются круто восходящими во всем рабочем диапазоне периодов от 0,1 до 1600 сек. Сравнение аномальных кривых с обычными приводится на рис. 6.

При обобщении поведения поперечных кривых кажущегося сопротивления р[⊥] по девяти профилям вблизи пересечения зоны Таласо-Ферганского разлома отмечается следующее:

а) при подходе с северо-востока к зоне Таласо-Ферганского разлома на семи профилях наблюдается изменение поведения ρ^{\perp} — из имеющих протяженные нисходящие правые ветви они становятся восходящими во всем рабочем диапазоне периодов. При этом по уровню значения кажущегося сопротивления увеличиваются на разных профилях от одной декады до 3,5 декад;

б) это явление наблюдается как в виде резкого перехода между соседними точками, так и в виде плавного перехода с одной или двумя промежуточными точками по профилю. Но основное в этом даже не плавность перехода, а то, что эффект возрастания поперечных кривых начинается не непосредственно над зоной Таласо-Ферганского разлома, а на расстоянии от 3–5 до 15 км к северо-востоку от нее;

в) протяженность участков профилей с возрастающими ρ^{\perp} также различна и составляет от 15–20 км до 30 км;

г) азимут поперечных кривых при движении от профиля к профилю с северо-запада на юго-восток закономерно меняется от 60–70° до 20–30°, что является вполне понятным, если заметить, что при этом простирание Таласо-Ферганского разлома меняется столь же закономерно.

Работа выполнена при поддержке РФФИ грант 10-05-00572-а

Литература

- 1. *Eggers D.E.* An Eigenstate formulation of the magnetotelluric impedance tensor. Geophysics. 1982. V.47. P.1204–1214.
- Trapeznikov Yu. A., Andreeva E.V., Batalev V.Yu., Berdichevsky M.N., Vanyan L.L., Volykhin A.M., Golubtsova N.S. and Rybin A.K. Magnetotelluric Sounding in the Kyrgyz Tien Shan // Izvestiya, Physics of the solid Earth. 1997. №1. P. 3–20.