МОДЕЛИРОВАНИЕ МИКРОВОЛНОВОГО НАГРЕВА

ПЛОСКОГО СЛОЯ ВОДЫ

П.В. Козлов

Разработана математическая модель микроволнового нагрева плоского слоя воды при симметричном подводе микроволновой мощности. Исследовано влияние величины мощности на время нагрева воды до кипения.

Ключевые слова: микроволновое излучение; коэффициент поглощения мощности.

Рассматривается достаточно протяженная плоская ($\partial/\partial y = 0$, $\partial/\partial z = 0$) стеклянная емкость с водой, расположенная в центре микроволновой печи в поле плоских симметрично распространяющихся вдоль оси *х* электромагнитных волн с компонентами $\vec{E}_+(0,0,E_z = E_+(x))\exp(i\omega t)$,

$$\vec{B}_{+}(0, B_{v} = B_{+}(x), 0) \exp(i\omega t)$$
 (рис. 1).

Рис. 1. Схема сечения XZ плоского слоя воды в стеклянной емкости с характерными областями: I, III – газовая среда, II – стеклянная емкость с водой. R_c, R, δ₀ – размеры стеклянной емкости, камеры микроволновой печи и тонкого слоя стекла. Волновыми стрелками показано распространение электромагнитного излучения. Предполагается, что окружающая газовая среда неподвижна, а нагрев воды осуществляется за счет баланса энергии между процессами диссипации мощности электромагнитного излучения в плоском слое воды и кондуктивного отвода потока тепла с поверхности стеклянной емкости через окружающую газовую среду на охлаждаемые металлические стенки микроволновой печи.

Математическая модель. Теплофизические и электромагнитные характеристики плоского слоя воды при микроволновом нагреве в области [$t \ge 0$, $-R_c \le x \le R_c$] находятся из совместного решения уравнения баланса энергии и приведенного волнового уравнения:

$$\rho \tilde{N}_P \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) + \frac{1}{2} \sigma \left| E \right|^2, \qquad (1)$$

$$\frac{d^2 E}{dx^2} + k^2 E = 0.$$
 (2)

Здесь
$$k = k_0 \sqrt{\varepsilon} = (\omega / c) \sqrt{\varepsilon}$$
 , ω – круговая

микроволновая частота, c – скорость света в вакууме, $\varepsilon_k = \varepsilon_r - i\varepsilon_i$ – комплексная диэлектри-

ческая проницаемость воды, $\sigma = \varepsilon_0 \varepsilon_i \omega$.

Индукция магнитного поля для случая гармонических электромагнитных полей определяется из закона Фарадея :

$$B = \frac{1}{i\omega} \frac{dE}{dx}$$

Начало координат располагается в центре стеклянной емкости с водой. Вследствие симметрии совместное решение уравнений (2–4) проводится в области изменения аргумента [$0 \le x \le R$].

Температура в микроволновой печи в начальный момент времени полагается постоянной: $T(x, 0) = T_{R}$. На оси выполняются условия симметрии, температура и напряженность электрического поля достигают своих экстремальных значений. Внутренняя поверхность стенок камеры микроволновой печи поддерживается при постоянной температуре $T_{R} = const$ путем внешнего охлаждения.

Начальные и граничные условия:

$$t = 0, \ 0 \le x < R: \ T(x,0) = T_R;$$

$$t > 0, \ x = 0: \ \partial T / \partial x = 0, \ \partial E / \partial x = 0; (3)$$

$$x = R: \ T = T_R, \ E = E_R(t).$$

На контактных поверхностях (вода – стеклянная емкость – газ) выполняется непрерывность температуры, тепловых потоков, напряженностей электрических и магнитных полей.

Решение приведенного волнового уравнения (2) в области изменения аргументов [$t \ge 0$, $0 \le x \le R$] (рис. 1, области I,II) запишется так:

$$E(x,t) = E_0(t)\varphi(x), \ 0 \le x \le R_c;$$

$$E(x,t) = A(t)exp(ik_0x) + B(t)exp(-ik_0x),$$

$$R \le x \le R$$
(4)

где $E_0(t)$ – напряженность электрического поля в центре плоского слоя, A(t), B(t) – амплитуды падающих и отраженных электромагнитных плоских волн. Функция $\varphi(x)$ находится из численного решения задачи Коши для приведенного волнового уравнения

$$\varphi''(x) + k_0^2 \varepsilon_k(x) \varphi(x) = 0, \ \varphi(0) = 1, \ \varphi'(0) = 0.$$

Коэффициенты A(t) и B(t) в (4) находятся путем сшивки численного решения приведенного волнового уравнения при $x \le R_c$ (2.4) и аналитического решения при $x \ge R_c$ (4) из условия непрерывности электромагнитных полей на границе раздела двух сред (вода, воздух) $x = R_c$. Значение напряженности электрического поля на оси симметрии и на охлаждаемых металлических стенках камеры микроволновой печи ($E_0(t)$, $E_{R}(t)$) выражаются через заданную подводимую мощность электромагнитного излучения $Q_{n}(t)$ (вектор Умова-Пойтинга)

 $Q_n(t) = (E_R H_R^* + E_R^* H_R)/2\mu_0 = |A(t)|^2/c\mu_0.$ (5)

Амплитуды электрических полей A(t), B(t), $E_0(t)$, $E_R(t)$ определяются из следующих выражений:

$$\begin{aligned} A(t) &= [c\mu_0 Q_n(t)]^{0.5}, \\ B(t) &= A(t) exp(2ik_0 R_c) f_1(R_c) / f_2(R_c), \\ E_0 &= 2A(t) exp(ik_0 R_c) f_1(R_c) / k_0 / f_2(R_c), \\ E_R(t) &= A(t) [exp(ik_0 R) + exp(i2k_0 R^{-} ik_0 R_c) f_1(R_c) / f_2(R_c), \\ f_1(x) &= k_0 \varphi(x) + i\varphi'(x), f_2(x) = k_0 \varphi(x) - i\varphi'(x). \end{aligned}$$

Коэффициенты отражения и диссипации электромагнитных волн находятся по формулам: $k(t) = |R(t)|^2 (A(t))^2 = |f(R)|^2 (f(R))^2$

$$k_{r}(t) = |D(t)| / |A(t)| - |f_{1}(K_{e})| / |f_{2}(K_{e})| ,$$

$$k_{d}(t) = 1 - k_{r}(t) .$$
(6)

Уравнение энергии (1) решается численно методом линий [1]. Для этого выполняется дискретизация данного уравнения по пространственной переменной x методом контрольного объема [2]. Интегрирование уравнения баланса энергии (1) по контрольным объемам и переход к конечноразностным аналогам производных по пространственной переменной дает систему обыкновенных дифференциальных уравнений, определяющих динамику изменения по времени температуры в узлах пространственной сетки χ_i :

$$(\rho C_{p})_{j} \frac{dT_{j}}{dt} = a_{j}T_{j-1} - b_{j}T_{j} + c_{j}T_{j+1} + q_{j}, \quad (7)$$

$$a_{j} = \frac{2\lambda_{j-1}\lambda_{j}}{(\lambda_{j-1} + \lambda_{j})\Delta x^{2}}, \quad b_{j} = a_{j} + c_{j}, \quad c_{j} = a_{j+1},$$

$$q_{j} = \begin{cases} 1/2\sigma_{j} |E_{j}|^{2}, & x_{j} < R_{c}, \\ 0, & x_{j} > R_{c}, \end{cases} \quad j = 2,3,...,n-1.$$

Для замыкания системы уравнений (7) используются граничные условия (3), из которых следуют два обыкновенных дифференциальных уравнений в начальном (j = 1) и конечном (j = n)узлах пространственной переменной χ_i :

$$(\rho C_p)_n \frac{dT_n}{dt} = a_n T_{n-1} - b_n T_n + q_n, \qquad q_n = c_n T_R.$$

В матричной форме система дифференциальных уравнений (7) записывается так:

$$\rho C_p \frac{dT}{dt} = AT + Q, \qquad (8)$$

$$(\rho C_p)_1 \frac{dT_1}{dt} = -c_1 T_1 + c_1 T_2 + q_1,$$

где *А* – трехдиагональная матрица, *Т* и *Q* – векторы-столбцы определяются в следующем виде:

$$A = \begin{bmatrix} -b_{1} & c_{1} & 0 & \cdots & \cdots & 0\\ a_{2} & -b_{2} & c_{2} & 0 & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ 0 & \cdots & 0 & a_{n-1} & -b_{n-1} & c_{n-1}\\ 0 & \cdots & \cdots & 0 & a_{n} & -b_{b} \end{bmatrix}$$
$$Q = \begin{bmatrix} q_{1} \\ q_{2} \\ \cdots \\ 0 \\ c_{n}T_{R} \end{bmatrix}, \quad T = \begin{bmatrix} T_{1}(t) \\ T_{2}(t) \\ \cdots \\ T_{n-1}(t) \\ T_{n}(t) \end{bmatrix}$$

Коэффициенты λ , σ , ρ , C_p вычисляются в узлах пространственной сеточной области χ_j как функции температуры T_j . Численное решение уравнений выполняется методом Рунге-Кутта с автоматическим выбором шага по времени. Температура в центре плоского слоя ($x_1 = 0$) находится после решения системы уравнений (8) по формуле

$$T_0(t) = (9T_1(t) - T_2(t) / 8.$$

Результаты. Проводится расчет нагрева плоского слоя воды с симметричным подводом мощности электромагнитного поля в микроволновой печи с поперечными размерами камеры $2R = 10 \ cm$ и температурой охлаждаемых металлических стенок $T_{R} = 20^{\circ}C$. Вода находится в центре камеры микроволновой печи в тонкой стеклянной плоской емкости с размерами $d = 2R_{c} = 4 \, cm$. Толщина стекла б принимается достаточно малой и в расчетах не учитывается. Камера заполнена неподвижным газом (воздухом) при атмосферном давлении. Нагрев проводится от начального значения температуры окружающей среды $T(x, 0) = T_R$ до температуры кипения воды $T(x,t) = T_K = 100^{\circ}C$ в какой либо точке плоского слоя $[0 \le x \le R_c]$. Циклическая частота электромагнитного излучения $f = 3 \Gamma \Gamma \mu$. В зависимости от времени подводимая к воде мощность электромагнитного поля задается следующим образом:

 $Q_n(t) = 0, t < 0,$

 $Q_n(t) = Q_0 = 10 \ Bm/cm^2, \ t \ge 0.$

Теплофизические, переносные и электромагнитные коэффициенты уравнений для воды и воздуха: C_{p} , λ , ρ , σ , ε_{r} , ε_{r} , – берутся в виде табличных данных [3].

Как следует из результатов расчета (рис. 2), в начальный момент времени вследствие суперпозиции подводимой и отраженной электромагнитных волн в стеклянной емкости с водой устанавливается стоячая волна. В пучностях электромагнитной волны, которые распределены по всему объему жидкости и являются источниками тепла в уравнении энергии, происходит диссипация мощности электромагнитного поля и начинает интенсивно выделяться тепло. Нагрев воды в данных точках (объемах) приводит к появлению градиента температуры и возникновению кондуктивных потоков тепла, направленных из области источников в сторону узлов электрического поля и стенкам стеклянной емкости и стремящихся "выровнять" температуру по сечению плоского слоя. Например, в течение первых 5 минут температура воды на оси симметрии возрастает практически пропорционально времени и достигает значения ~ 60°С. Далее, всего за 1 минуту, происходит быстрый как бы резонансный нагрев воды до температуры T_o ~ 90°С. В дальнейшем, также в течение ~ 1 минуты, интенсивность нагрева воды до температуры кипения заметно снижается.

Данное изменение температуры хорошо объясняется зависимостью от времени диссипированной мощностью электромагнитного излучения (рис. 2). Видно, что в течение первых 3 минут коэффициенты $k_d(t)$ или $Q_d(t)$ незначительно уменьшаются (~ 5%) по отношению к своим начальным значениям $(K_d(0) = 0.3, Q_d(0) = 30 \ \kappa Bm/m^2)$, затем в течение следующих 3 минут наблюдается их быстрый рост (~ 300%) до максимальных величин (при t =340 с: $k_d(t) \sim 0.9$; $Q_d(t) \sim 90 \ \kappa Bm/m^2$), а далее за последнюю минуту происходит резкое (более, чем в 2 раза) их уменьшение. Полное время нагрева воды, соответствующее температуре кипения $T(x,t_{K}) = T_{K} = 100^{\circ}$ С, составляет $t_{K} = 375$ с. Кипение воды происходит вблизи стеклянных стенок $(x \approx R_{c})$, при котором $k_{d}(t_{s}) \sim 0.4$; $Q_{d}(t_{s}) \sim 40$ кВт/ м². Согласно выражению (6), коэффициент отражения $k_{i}(t)$ изменяется в противофазе по отношению к коэффициенту диссипации мощности электромагнитного излучения – $d_d(t)$ (рис. 2).

Распределение модуля напряженности электрического поля по сечению камеры микроволновой печи имеет сложную периодическую структуру (5 пучностей и 4 узла, рис. 2). В воздухе амплитуда |E(x,t)| в 5 раз больше, чем в воде, и уменьшается в направлении к оси симметрии. С течением времени, начиная от значения t = 0, модуль напряженности электрического поля возрастает в слое воды практически в 4 раза, тогда как в воздухе амплитуда |E(x,t)| незначительно

Рис. 2. Распределение характеристик плоского слоя воды в стеклянной емкости, воздуха и микроволнового излучения с симметричным подводом мощности электромагнитного поля: f=3 ГГц, $2R_c=4$ см, $Q_n=10$ Вт/см², для различных промежутков времени Δt .

уменьшается и сдвигается по фазе. Изменения $E_0(t)$, $E_c(t)$ качественно повторяют функциональную зависимость от времени значений $k_d(t)$, $Q_d(t)$. Характер распределения |E(x,t)| определяет изменение температуры по сечению плоского слоя в микроволновой печи (рис. 2).

Проведено сравнение характеристик плоского слоя воды при нагреве с фиксированной температурой на стенке камеры (T(R,t) = const)

и нагреве при тепловой изоляции стенок $(\partial_x T(R,t) = 0)$, показавшее практически пол-

ное совпадение как температурных распределений (рис. 3), так и остальных характеристик в области нагрева $|x| \le R_c$.

Таким образом, при микроволновом нагреве воды теплопроводностью отводится на периферию незначительная доля выделяемой в воде микроволновой мощности, которая в основном идет на нагрев воды, а роль теплопроводности сводится к выравниванию температуры в объеме воды (сравни рис. 3 и рис. 4). Рис. 4 показывает, что процесс нагрева без учета теплопроводности приводит к расслоению жидкости на прогретые и холодные участки в соответствии с положением точек пучностей и узлов в распределении электрического поля.

Влияние на время t_m нагрева воды до температуры кипения таких параметров, как величина потока мощности микроволнового излучения, представлено на рис. 5. Зависимость $t_m(Q_i)$

имеет монотонно падающий характер, близкий к закону обратно пропорциональной зависимости $t_m = \frac{C}{2}$ (точки на рис. 5).

$$_{n} = \overline{Q_{p}}$$

Коэффициент пропорциональности зависит от толщины слоя, в данном случае при d=4 см он равен C=61.7, если Q_p измерять в Bt/cm².

Рис.3. Динамика изменения температурных профилей с шагом по времени 1 минута для вариантов нагрева с охлаждаемой стенкой камеры микроволновой печи (слева) и с теплоизолированной камерой. f=3 ГГц, 2R_c=4 см, Q_n=10 BT/см².

Рис. 4. Динамика изменения температурных профилей без учета теплопроводности при толщине слоя воды 4 см и 8 см. f=3 ГГц, Q_n=10 Bt/cm².

Рис. 5. Зависимость времени нагрева плоского слоя воды до температуры 100 °С от величины потока мощности микроволнового излучения: f=3 ГГц, d=4 см. Таким образом, располагая одной расчетной точкой при заданной толщине слоя, можно по заданной подводимой мощности определять время нагрева и, наоборот, по требуемому времени нагрева оценивать необходимую подводимую мощность.

Литература

- 1. *Калиткин Н.Н.* Численные методы. М.: Наука, 1978. 512 с.
- 2. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. 152 с.
- Лелевкин В.М., Кулумбаев Э.Б., Козлов П.В., Кайрыев Н.Ж. Моделирование микроволнового нагрева воды / Под ред. В.М. Лелевкина. – Бишкек: Изд-во КРСУ, 2009. 161 с.