УДК 531.3 (575.2) (04)

УПРУГОПЛАСТИЧЕСКАЯ МОДЕЛЬ УДАРНОЙ СИСТЕМЫ "БОЕК – ВОЛНОВОД – ПЛАСТИНА"

В.Э. Еремьянц

Разработана модель ударной системы, состоящей из бойка, наносящего удар по упругому стержню (волноводу), опирающемуся на пластину. В отличие от существующих моделей эта модель учитывает конструкционную податливость пластины и её пластические деформации в контакте с волноводом.

Ключевые слова: боек; волновод; пластина; удар; волны деформации; упругопластические контактные деформации; модель.

При выборе оптимальных параметров ударной системы машины для виброударной очистки поверхностей одним из критериев является обеспечение требуемого качества ее обработка – она не должна иметь вмятин, глубина которых превышает допускаемые значения. Этот критерий находится в противоречии с критерием повышения производительности машины, для улучшения которого необходимо увеличивать энергию удара. Но с увеличением энергии удара при прочих равных условиях увеличивается глубина остаточных вмятин.

Для нахождения компромисса между этими двумя критериями необходимо знать взаимосвязь между размерами остаточной вмятины, параметрами ударной системы и условиями соударения её элементов. В задачи данной работы входила разработка модели ударной системы и методики расчета, позволяющей установить эту взаимосвязь. Работа выполнялась при финансовой поддержке МОиН КР, грант КР – 04.

Наиболее простой моделью упругопластической контактной характеристики, связывающей контактные силы и деформации, является характеристика вида:

$$P = b\alpha^n, \tag{1}$$

где P – контактная сила; α – сближение центров масс соударяющихся тел, равное местной контактной деформации; b и n некоторые коэффициенты, подлежащие определению.

Судя по литературным источникам, зависимость (1) была впервые предложена Г.С. Батуевым и его коллегами в работе [1] (1964 г.). В более поздней работе [2] (1969 г.) эти же авторы приводят результаты экспериментального определения коэффициентов *b* и *n* для некоторых частных случаев соударения тел с различной геометрией контактных поверхностей.

Практически в то же время, проводя экспериментальные исследования, к зависимости (1) приходит М.С. Дрозд [3] (1965 г.). Но он, в отличие от Г.С. Батуева, делает попытку определить коэффициенты b и n в формуле (1) расчетным путем. Позднее [4] (1986 г.) М.С. Дрозд с коллегами разрабатывает метод, основанный на введении новой характеристики материала: "пластической твердости", позволяющий достичь этого результата. Было предложено ввести новый параметр, характеризующий пластичность материала, названный авторами пластической твердостью HD. Пластическая твердость связана с глубиной остаточного отпечатка *h* на поверхности контртела после внедрения в него сферического индентора диаметром *D* под действием силы *P* соотношением:

$$HD = \frac{P - P_0}{\pi Dh},\tag{2}$$

где P_0 – величина силы, при которой начинается пластическая деформация.

Экспериментально установлено, что величина P_0 связана с пластической твердостью *HD* зависимостью:

$$P_0 = 11 \exp\left[1,9\left(10^{-3} HD - 1\right)^{0.668}\right] (D/10)^2, \text{ H.} \quad (3)$$

В этих формулах силы P и P_0 имеют размерность H, а диаметр сферы D и глубина отпечатка h имеют размерность в мм. Пластическая твердость HD в этом случае имеет размерность МПа.

В [4] разработаны формулы для пересчета чисел твердости по Роквеллу *HRB* и Бринеллю *HB* в твердость *HD*, например:

$$HD = \frac{88300}{130 - HRB}, \text{ M}\Pi\text{a.}$$
(4)

По данным работы [3] при ударе линейная зависимость между ударной силой и глубиной остаточного отпечатка на поверхности контртела, вытекающая из (2), сохраняется, но численные значения пластической твердости при одинаковой ударной силе, но различной скорости удара отличаются друг от друга и могут быть найдены как:

$$HD_{\partial} = \eta_{HD} HD, \tag{5}$$

где η_{HD} – коэффициент динамичности, определяемый в диапазоне изменения скоростей соударения от 1 до 10 м/с по эмпирической формуле:

$$\eta_{HD} = \frac{1}{2} \left(1 - \frac{137}{HD} v_0 + \sqrt{1 + \frac{2250}{HD} v_0} \right), \tag{6}$$

где v₀ – начальная скорость удара.

Далее методика, приведенная в [4], позволяет при заданной силе P определить глубину внедрения индентора в контртело α , а затем найти значения коэффициентов b и n в формуле (1). Это делается следующим образом.

Задаются два значения действующих сил P_1 и P_2 , и из соотношения (2) определяются глубины соответствующих им остаточных отпечатков h_1 , h_2 :

$$h_1 = \frac{P_1 - P_0}{2\pi RHD_{\delta}}, \quad h_2 = \frac{P_2 - P_0}{2\pi RHD_{\delta}},$$
 (7)

где *R* – радиус индентора или приведенный радиус внедряющегося тела, если соударяются два тела с разной кривизной поверхностей.

Полные сближения соударяющихся тел определяются как сумма упругой деформации тел α_y и остаточной пластической деформации *h*, т.е.

$$\alpha_1 = h_1 + \alpha_{\nu_1}, \quad \alpha_2 = h_2 + \alpha_{\nu_2},$$
 (8)

 α_{y_1} и α_{y_2} – максимальные значения упругих составляющих деформаций при действии сил P_1 и P_2 .

Если сжатию подвергаются два тела двоякой кривизны, то их контактные поверхности принято характеризовать параметрами:

$$A = \frac{1}{2} \left(\frac{1}{R_{11}} \pm \frac{1}{R_{12}} \right), \quad B = \frac{1}{2} \left(\frac{1}{R_{21}} \pm \frac{1}{R_{22}} \right), \tag{9}$$

где R_{11} , R_{21} – радиусы контактных поверхностей первого тела; R_{12} , R_{22} – радиусы поверхностей второго тела. Знак плюс в этих формулах соответствует выпуклому контуру контртела, а минус – вогнутому контуру.

В работе [4] показано, что при упругопластических деформациях наличие остаточной вмятины оказывает влияние на максимальное значение упругой деформации, которое зависит от безразмерного параметра *Q* и определяется по формулам:

При *Q* < 1

$$\alpha_{y} = \frac{2h}{3} \left[2\cos\frac{1}{3}\arccos(2Q-1) - 1 \right];$$
(10)

при *Q* ≥ 1

$$\alpha_{y} = -\frac{2h}{3} \left[1 + 2\sin^{-1} \left(2 \operatorname{arctg} \sqrt[3]{tg \frac{1}{2} \operatorname{arcsin}} \left(\frac{1}{1 - 2Q} \right) \right) \right], (11)$$

где

$$Q = \frac{27}{32} \left(\frac{\alpha_0}{h}\right)^3, \ \alpha_0 = \frac{n_\delta}{2} \sqrt[3]{\frac{9}{4} \pi^2 (k_1 + k_2)^2 P^2 \sum k}; \ (12)$$

 $\alpha_0 -$ сближение центров масс тел при чисто упругих деформациях, определяемое по формуле Герца; n_δ - коэффициент, зависящий от соотношения главных кривизн тел *A/B*, который приводится в справочных таблицах [4]. $k_1 = (1 - \mu_1^2)/E_1$, $k_2 = (1 - \mu_2^2)/E_2$, $\sum_k k = 2(A + B)$. После определения α_{y1} и α_{y2} по формулам (8)

находятся величины α_1 и α_2 , а затем и значения коэффициентов *b* и *n*, входящих в формулу (1):

$$n = \frac{\lg(P_1 / P_2)}{\lg(\alpha_1 / \alpha_2)}, \quad b = \frac{P_1}{\alpha_1^n} = \frac{P_2}{\alpha_2^n}, \quad (13)$$

Определив величины α_y и *h*, можно найти размеры полуосей остаточного отпечатка на поверхности контртела. В случае внедрения сферы радиусом *R* в плоскость диаметр отпечатка определяется по формуле:

$$d = 2\sqrt{R(\alpha_y + 2h)} = 2\sqrt{R(\alpha + h)}.$$
 (14)

При этом по данным [4] упругое восстановление контактных поверхностей не оказывает существенного влияния на диаметр остаточной вмятины.

Рассмотренная методика была составлена для случая соударения двух тел (рис. 1а) и принятые в ней условия соударения отличаются от условий в ударной системе машин для виброударной очистки поверхностей (рис. 1б).

Это потребовало соответствующей корректировки методики, введением в неё учета волновых процессов, протекающих в волноводе, и учета конструкционной податливости или прогиба пластины, опертой по краям.

Во-первых, в системе, показанной на рис. 1а, скорость деформации максимальная в начальный момент удара и эта скорость принимается за начальную скорость v₀ при определении коэффици-

Рис. 1.

ента динамичности (6). В системе, показанной на рис. 16, в начальный момент действия на пластину волны деформации, распространяющейся по волноводу, скорость контактной деформации равна нулю. При этом было неясно, что принимать за скорость v_0 в формуле (9). Во-вторых, необходимо было ввести в модель волновые процессы в волноводе и учесть влияние прогиба пластины на контактную жесткость волновода и пластины.

Эти задачи решались следующим образом. Принималось, что зависимость силы в контакте волновода с обрабатываемой поверхностью от местных контактных деформаций $P_k(\alpha)$ имеет вид, показанный на рис. 2. Она состоит из двух ветвей. Ветвь 1 соответствует упругопластическому внедрению волновода в пластину и описывается зависимостью (1). Ветвь 2 соответствует упругому восстановлению поверхностей после снятия нагрузки и описывается зависимостью Герца:

$$P_k = K_2 (\alpha - \alpha_*)^{3/2}, \quad K_2 = \frac{2E}{3(1 - \mu^2)} \sqrt{R_2}, \quad (15)$$

где R_2 – радиус контактной поверхности волновода; α_* – величина остаточной деформации, определяемая при известной максимальной силе P_{km} как

$$\alpha_* = \alpha_m - \left(P_{km} / K_2\right)^{2/3}.$$
 (16)

Для упрощения математической модели проводилась линеаризация контактной характеристики методом В.Л. Бидермана, как показано на рис. 2б, и математическая модель этой характеристики записывалась в виде:

$$\begin{cases}
P_{k} = 0, & 0 < \alpha < \alpha_{01}, & \dot{\alpha} > 0; \\
P_{k} = c_{21}(\alpha - \alpha_{01}), & \alpha_{01} < \alpha < \alpha_{m}, & \dot{\alpha} > 0; \\
P_{k} = c_{22}(\alpha - \alpha_{02}), & \alpha_{m} > \alpha > \alpha_{02}, & \dot{\alpha} < 0; \\
P_{k} = 0, & \alpha_{02} > \alpha > \alpha_{*}, & \dot{\alpha} < 0.
\end{cases}$$
(17)

Постоянные c_{21} и α_{01} , входящие в эти уравнения, находятся из условия равенства максимальных контактных сил P_{km} и потенциальных энергий деформаций в момент наибольшего сближения α_m в линейной и нелинейной моделях. Постоянные c_{22} и α_{02} находятся из условия равенства максимальных контактных сил и энергий, возвращенных в систему при упругом восстановлении контактных поверхностей в линейной и нелинейной и нелинейной и нелинейной и нелинейной в линейной и нелинейно

$$c_{21} = 0,5(n+1)b\alpha_m^{n-1} = 0,5(n+1)b^{\frac{1}{n}}P_{km}^{\frac{n-1}{n}}, \quad \alpha_{01} = \frac{n-1}{n+1}\alpha_{h_{-}}(18)$$

$$c_{22} = 1,25K_2(\alpha_m - \alpha_*)^{0,5} = 1,25K_2^{\frac{2}{3}}P_{km}^{\frac{1}{3}},$$

$$\alpha_{02} = 0,2(\alpha_m + 4\alpha_*). \quad (19)$$

Линеаризация контактной характеристики позволила использовать решение, полученное авторами ранее в работе [5] (2006 г.) при описании ударных процессов в системе с кусочнолинейной контактной характеристикой.

Далее, вначале рассматривается этап нагружения, для которого формулы, определяющие контактную силу и скорость контактных деформаций имеют вид [5]:

$$P_{k1}(t) = -B_0 \exp(-h_1 at) \times$$

$$\times \left(\frac{g_{21}}{\lambda_1} \sin \lambda_1 at - \cos \lambda_1 at + \exp(-g_{21} at) \right)$$
(20)

$$\dot{\alpha} = \frac{4b_{21}h_1V_0}{H_{21}}\exp(-h_1at) \times \\ \times \left(\frac{k_1^2 - b_{21}h_1}{b_{21}\lambda_1}\sin\lambda_1at + \cos\lambda_1at - \exp(-g_{21}at)\right),$$
(21)

где
$$B_0 = \frac{2b_{21}c_1V_0}{aH_{21}}, \ H_{21} = \lambda_1^2 + g_{21}^2, \ g_{21} = b_{21} + \beta_1 - h_1,$$

$$b_{21} = \frac{c_{21}}{EF}, \ \beta_1 = \frac{c_{21}}{8a\sqrt{Dm_0}}, \ h_1 = \frac{c_1}{2EF}, \ k_1^2 = \frac{c_1}{ma^2},$$
$$\lambda_1 = \sqrt{k_1^2 - h_1^2}, \ c_1 = 1,25K_1^{2/3}P_{nm}^{1/3}, \ K_1 = \frac{2E}{3(1 - \mu^2)}\sqrt{R_1}$$
$$P_{nm} = \frac{c_1V_0}{ak_1}\exp\left(-\frac{h_1}{\lambda_1}arctg\frac{\lambda_1}{h_1}\right)$$

m — масса бойка; R_1 — радиус сферы ударной поверхности бойка; F— площадь поперечного сечения волновода; a — скорость распространения волны деформации в волноводе; m_0 — масса квадратного метра пластины, D — её цилиндрическая жесткость; E, μ — модуль упругости и коэффициент Пуассона материала бойка и волновода; V_0 — скорость соударения бойка с волноводом.

В этих формулах максимальные величины сил в контакте бойка с волноводом P_{nm} и в контакте волновода с пластиной P_{km} , а также соответствующие им контактные жесткости c_1, c_{21} и скорость контактных деформаций $\dot{\alpha}$ находятся методом последовательных приближений.

На этапе разгрузки зависимость усилия от времени имеет вид:

$$P_{k2}(t) = -B_3 \exp(-h_1 at) \times \\ \times \left[\frac{g_{22}}{\lambda_1} \sin \lambda_1 at - \cos \lambda_1 at - \frac{C_0}{B_3} \exp(-g_{22} at) \right],$$
(22)

где C_0 – постоянная, определяемая из условия неразрывности функции $P_k(t)$ в момент достижения максимума контактной силы P_{km} ;

$$B_{3} = \frac{c_{1}V_{0}(g_{22} + l)}{aH_{22}}.$$

$$H_{22} = \lambda_{1}^{2} + g_{22}^{2}, g_{22} = b_{22} + \beta_{2} - h_{1}, b_{22} = \frac{c_{22}}{EF},$$

$$\beta_{2} = \frac{c_{22}}{8a\sqrt{Dm_{0}}}.$$

Определив силу P_{km} и зная пластическую твердость пластины HD_{∂} , можно найти максимальную деформацию контактных поверхностей α и остаточную деформацию h на поверхности пластины после удара.

Исследования, проведенные с использованием этой модели, показали, что при определении коэффициентов n и b в формуле (1), а следовательно при определении усилий в контакте волновода с пластиной, в большинстве практических случаев с погрешностью, не превышающей 5%, за начальную скорость v_0 можно принимать скорость соударения бойка с волноводом V_0 . Но при определении глубины остаточной вмятины или диаметра отпечатка начальная скорость деформаций имеет существенное значение, поскольку она определяет пластическую твердость материала. В этом случае в качестве начальной скорости в формуле (9) необходимо принимать максимальное значение скорости контактной деформации, найденное из формулы (21).

Вестник КРСУ. 2010. Том 10. № 10

137

Физика. Механика. Химия

Таким образом, предложена следующая методика расчета параметров ударных процессов в рассматриваемой системе.

1. При известной твердости материала пластины по Роквеллу HRB по формуле (4) вычисляем пластическую твердость материала.

2. Определяем динамический коэффициент η_{HD} (6) при начальной скорости v_0 , равной скорости соударения бойка с волноводом V_0 .

3. Находим пластическую твердость материала при ударе *HD*_a (5).

4. Находим величину силы *P*₀, соответствующей началу пластической деформации (3).

5. Задаваясь двумя произвольными силами P_1 и P_2 , большими P_0 , по формулам (7) вычисляем соответствующие глубины отпечатков h_1 и h_2 .

6. По формулам (10), (11) находим величины сближений тел под действием упругих деформаций α_{v1} и α_{v2} .

7. Вычисляем величины полных сближений тел α_1 и α_2 (8).

Параметры	Значения параметров		
Толщина пластины δ , мм	6	8	9,8
Начальная скорость $v_0 = V_0$, м/с	3,5	3,5	3,5
Динамический коэффициент <i>η</i> _{нр}	1,572	1,508	1,572
Пластическая твердость <i>HD</i> , МПа	2480	2865	2480
Критическая сила Р ₀ , кН	10,5	15,89	10,5
Показатель степени п	1,397	1,399	1,397
Коэффициент <i>b</i> ·10 ⁻⁹ , Н/м ⁿ	3,921	4,107	3,921
Максимальная контактная сила P_{km} , кН	9,483	4,187	17,64
Скорректированные значения			
Максимальная скорость деформаций $v_0 = \dot{\alpha}_m, \text{м/c}$	1,31	2,22	2,86
Динамический коэффициент <i>η</i> _{HD}	1,290	1,372	1,503
Пластическая твердость <i>HD</i> , МПа	2034	2607	2370
Критическая сила Р ₀ , Н	6220	12100	9290
Показатель степени п	1,393	1,398	1,397
Коэффициент <i>b</i> ·10 ⁻⁹ , Н/м ⁿ	3,656	3,993	3,887
Максимальная контактная сила P_{km} , кН	9,423	4,128	17,60
Упругое сближение α_{y} , мм	0,09196	0,12334	0,13708
Полное сближение α, мм	0,09753	0,12609	0,14948
Глубина отпечатка <i>h</i> , мм	0,00557	0,00275	0,01240
Диаметр отпечатка при одном ударе d_l , мм	4,31	4,82	5,40
Максимальная сила в прямой волне P_{nm} , кН	44,15	44,15	44,15
Максимальная сила в отраженной волне <i>P_{nm}</i> , кН	36,44	33,93	32,60
Экспериментальные значения			
Диаметр отпечатка после 100 ударов d ₁₀₀ , мм	5,5	6,1	7,0
Отношение диаметров d_{100}/d_1	1,28	1,27	1,30
Максимальная сила в прямой волне P_{nm} , кН	44,92	45,46	44,34
Максимальная сила в отраженной волне <i>P_{om}</i> , кН	37,82	33,45	29,0
Расхождения в теоретических и экспериментальных значениях			
сил, % <i>Р_{пт}</i> ,	1,7	3,0	0,5
	3,8	1,5	12,4

Результаты расчета параметров ударных процессов с учетом упругопластического контакта волновода с пластиной

8. Находим коэффициенты *b* и *n* (13).

9. Вычисляем значение контактной жесткости с21 при произвольном значении контактной силы P_{km} (18).

10. Из формулы (20) численно находим максимальное значение силы P_{km} и по нему уточняем значение коэффициента жесткости c₂₁. Затем вновь находим максимальное значение силы и т.д., пока не будет достигнута требуемая точность определения P_{km} и c_{21} .

11. Находим максимальное значение скорости деформаций α_m (21).

12. Уточняем динамический коэффициент $\eta_{\rm HD}\left(6\right)$ при начальной скорости $v_{\rm 0}$, равной максимальному значению скорости $\dot{\alpha}_m$.

13. Уточняем пластическую твердость материала при ударе $HD_{a}(5)$.

14. Повторяем пункты 4-10 и уточняем ве-

личины $P_0, b, n, c_{21}, P_{km}$. 15. Принимая в (7) $P_1 = P_{km}$, находим глубину остаточной вмятины *h*.

16. Уточняем значения упругих деформаций $\alpha_{v}(10), (11).$

17. Рассчитываем диаметр контура остаточной вмятины *d*.

В качестве примера использования данной методики рассчитаны параметры ударных процессов, протекающих в системе, показанной на рис. 1б.

При расчете принимались следующие исходные данные. Модули упругости, коэффициенты Пуассона и плотность для материалов всех элементов ударной системы одинаковые и равны: $E = 20,4 \cdot 10^{20}$ Па, $\mu = 0,3$, $\rho = 7800$ кг/м³. Боек жесткий с податливой сферической ударной частью. Масса бойка 1 кг, радиус сферы его ударной поверхности 55 мм. Скорость соударения бойка с волноводом 3,5 м/с. Волновод представляет собой стержень длиной 1135 мм и диаметром 28 мм. Торец волновода, опирающийся на пластину сферический с радиусом сферы 45 мм. Расчет проводился для трех видов пластин толщиной 6 мм, 8 мм и 9,8 мм. Все пластины квадратные с размером сторон 0,6 м, опертые по двум противоположным краям. Твердость пластин толщиной 6 и 9,8 мм составляла 74 HRB, а пластины толщиной 8 мм - 83,5 HRB. Полученные результаты представлены в таблице.

Тамже приведены максимальные значения усилий в начальной волне деформации P_{nm}, генерируемой бойком в волноводе, максимальные значения усилий в отраженной от пластины волне деформации *P*_{om}, и полученные авторами методом тензометрирования экспериментальные значения максимальных усилий в прямой и отраженной волнах, а также экспериментальное значение диаметра контура остаточной вмятины после 100-120 ударов.

Результаты расчета по предлагаемой методике хорошо согласуются с экспериментом. Во всех рассматриваемых случаях после 100 ударов экспериментальное значение диаметра остаточного отпечатка на пластине в 1,27-1,3 раза больше расчетного значения, полученного для первого удара, что полностью соответствует результатам экспериментов, приведенных в работе [4].

Расхождения расчетных и экспериментальных значений амплитуд усилий в прямой волне Р_{пт}, распространяющейся по волноводу к пластине, и в отраженной волне P_{om} для пластин толщиной 6 и 8 мм не превышает 4%, что лежит в пределах погрешности эксперимента. Несколько большее расхождение - до 12,4% - наблюдается для волны, отраженной от пластины толщиной 9,8 мм. Предположительно это связано с неоднородностью материала пластины в точке контакта с волноводом.

Разработанная модель и методика расчета позволяет проводить исследования влияния различных факторов на глубину остаточного отпечатка на поверхности пластины и устанавливать взаимосвязь этого параметра с параметрами ударной системы и условиями соударения.

Литература

- Батуев Г.С., Федосов А.А., Ефремов А.К. 1 Соударение массивных тел при упруго-пластических деформациях в зоне контакта // Расчеты на прочность. Вып. 10. М.: Машиностроение, 1964.
- 2. Батуев Г.С., Голубков Ю.В., Ефремов А.К., Федосов А.А. Инженерные методы исследования ударных процессов. М.: Машиностроение, 1969. 251 c.
- 3. Дрозд М.С. Определение механических свойств металла без разрушения. М.: Металлургия, 1965. 171 c.
- 4 Дрозд М.С., Матлин М.М., Сидякин Ю.М. Инженерные расчеты упругопластической контактной деформации. М.: Машиностроение, 1986. 224 c.
- 5 Еремьяни В.Э., Панова Л.Т. Слепнев А.А. К задаче о продольном ударе по стержню, опирающемуся на пластину // Проблемы машиностроения и надежности машин. 2006. №4. C. 58-63.