ФОРМООБРАЗОВАНИЕ КРИВЫХ С ИСПОЛЬЗОВАНИЕМ БИКВАДРАТИЧНОГО ПРЕОБРАЗОВАНИЯ

Макалада айлананы колдонуп ар турдуу тартиптеги ийри сызыктарды тузуудо биквадраттык кайра тузуулордун геометриялык моделин колдонуу мумкунчулугу каралган.

В статье рассматривается возможность использования геометрической модели биквадратичных преобразований окружности для формообразования кривых линий различных порядков.

The article deals with using a geometrical models for plase of forms for different form lines of building bicvadrats and again consist them.

В статье рассматривается способ формообразования кривых с использованием графической модели биквадратичного преобразования, порождаемого отображением однополостного гиперболоида и конуса, обозначаемого в дальнейшем символом Γ_4 , где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости. Графическая модель биквадратичного преобразования Γ_4 . приведена на рис. 1/2/.

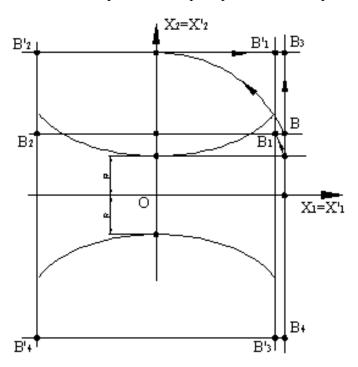


Рис. 1. Графическая модель биквадратичного преобразования

Биквадратичное преобразование плоскости является взаимно (4-4)-значным соответствием между точками двух совмещенных плоскостей $H_1 \equiv H'_1$.

Другими словами, каждой точке плоскости H_1 соответствуют четыре точки на плоскости H'_1 . И наоборот каждой точке плоскости H'_1 соответствуют четыре точки H_1 .

Для получения кривых прообраз-окружность (р) подвергаем биквадратичному преобразованию Γ_4 . Каждая точка-прообраз преобразуется в четыре точки-образы. Последовательно соединяя полученные точки-образы, построим кривую и обозначим ее символом р'. Прообраз преобразуется в общем случае в кривую 4-го порядка. На рис. 2

показано преобразование точки-прообраза 1 окружности (р) в четыре точки-образы $1'_{1}$, $1'_{2}$, $1'_{3}$ и $1'_{4}$ с использованием графической модели биквадратичного преобразования Γ_{4} , где прообраз-окружность задается радиусом r=15 мм (размер берется произвольно). Центр окружности расположим на оси OX_{2} , на расстоянии, равном t (t>R) относительно начала координат. На графической модели указываем область существования биквадратичного преобразования для более точного построения образа.

Обозначим точки на прообразе-окружности цифрами 1, 2, 3 и т.д. Заданную точку-прообраз 1 подвергнем биквадратичному преобразованию Γ_4 и построим точки 1_1 , 1_2 , 1_3 , 1_4 . Через точки 1_1 , 1_2 проводим вертикальные линии параллельные оси OX_2 , а через точки 1_3 и 1_4 - горизонтальные линии параллельные оси OX_1 . Таким образом, пересечение этих линий определяет образы точек $1_1'$, $1_2'$, $1_3'$ и $1_4'$ прообраза точки 1. Следующие образы заданных точек находим согласно вышеизложенному алгоритму. Затем, последовательно соединяя полученные точки-образы, строим кривую (р'). В результате прообразокружность (р) преобразуется в кривую 4-го порядка (р'), которая распадается на две кривые второго порядка (рис.2). Используя уравнение обратного биквадратичного преобразования Γ'_4 /2/, определим уравнение для данной кривой:

$$X_{1} = \sqrt{\frac{X_{1}^{2} + X_{2}^{2} - R^{2}}{2}}$$

$$X_{2} = \sqrt{\frac{X_{2}^{2} - X_{1}^{2} + R^{2}}{2}}$$
(1)

где X_1 , X_2 – координаты точек-образов, X'_1 , X'_2 – координаты точек – прообразов, R – коэффициент преобразования.

Значения X_1 и X_2 подставляются в уравнение прообраза-окружности:

$$(X_1 - a)^2 + (X_2 - b)^2 = r^2,$$
(2)

где a, b- координаты центра окружности-прообраза; r – радиус прообраза-окружности.

Определяем уравнение кривой (рис. 2):

$$\left(\sqrt{\frac{X_1^2 + X_2^2 - R^2}{2}}\right)^2 + \left(\sqrt{\frac{X_2^2 - X_1^2 + R^2}{2}} - b\right)^2 = r^2.$$
(3)

Формообразование кривой-образа зависит от расположения прообраза-окружности (рис. 2) относительно начало координат.

Полученные графические и математические модели кривой дают возможность использовать биквадратичное преобразование Γ_4 в конструировании кривых четвертого и восьмого порядков в начертательной и прикладной геометрии.

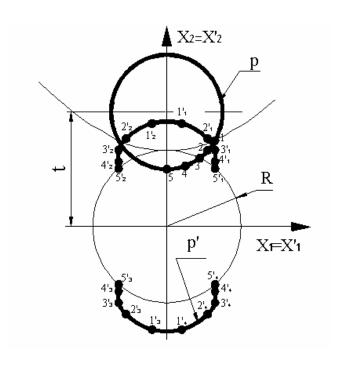


Рис. 2. Определение кривой с использованием биквадратичного преобразования Γ_4

Список литературы

- 1. Фролов А.С. Методы преобразования ортогональных проекций. М.: Машиностроение, 1970. 160 с.
- 2. Нурмаханов Б.Н., Кубентаева Г.К. Моделирование одного вида биквадратичного преобразования и исследование его свойств // Поиск:Научный журнал Министерства образования и науки РК, Алматы, №1, 2008. С. 214-218.