МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

ЖАЛАЛ-АБАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ЭЛЕКТРОСНАБЖЕНИЯ

ЭЛЕКТРОМЕХАНИКА ТЕСТЫ: ОСНОВНЫЕ ПОНЯТИЯ, ТРАНСФОРМАТОРЫ

«Рекомендовано» Кафедрой Электроснабжения Протокол №13 от 10.04 2010 г

«Утверждено» Методическим советом ЖАГУ Протокол №___ от ____2010 г

Рецензент: ст.преп. 🛮 🖺 🖺 🖽 К.А.

Электромеханика (Основные понятия. Трансформаторы). Каримов А., Кочкорова М.Б., Шекерова Г.Ы. – ЖАГУ, 2010 г. - с.

В учебном пособии приведены обучающие тестовые задания по первой части дисциплины «Электромеханика» в соответствии государственным образовательным стандартом и рабочей программой. В пособии включены обучающие тесты по разделам «Основные понятия» и «Трансформаторы». Учебное пособие служит для контроля текущей и итоговой успеваемости студентов и является дополнительным учебником для организации самостоятельной работы.

Пособие предназначено для студентов, обучающихся по специальности электроэнергетика.

Содержание

Введение

- 1 Тест № 1 Основные законы электротехники
- 2 Тест № 2 Трансформаторы, основные определения
- 3 Тест № 3 Принципы действия трансформатора
- 4 Тест № 4 Трансформатор, режим холостого хода
- 5 Тест № 5 Трансформатор, режим работы при нагрузке
- 6 Тест № 6 Трансформатор, Режим короткого замыкания
- 7 Тест №7 Трансформатор, изменение вторичного напряжения
- 8 Тест № 8 Трансформатор, коэффициент полезного действия
- 9 Тест № 9 Трансформатор, магнитопровод
- 10 Тест №10 Трансформатор, обмотка
- 11 Тест №11 Трансформатор, бак
- 12 Тест №12 Трансформатор, переключатели и вводы
- 13 Тест №13 Трансформатор, вспомогательная аппаратура
- 14 Тест №14 Типы трансформаторов
- 15 Тест №15 Трехфазный трансформатор. Схемы соединения обмоток
- 16 Тест №16 Схемы и группы соединений облаток трехфазных трансформаторов
- 17 Тест №17 Трансформатор, параллельная работа
- 18 Тест №18 Автотрансформаторы
- 19 Тест №19 Сварочные трансформаторы
- 20 Литература

ВЕДЕНИЕ

Обучающие тесты по дисциплине «Электромеханика» составлены в соответствии с Государственным образовательным стандартом и рабочей программой дисциплины утвержденной установленном порядке. В первую часть учебного пособия, включены тестовые задания по разделам «Основные понятия» и «Трансформаторы». Всего по 20-ти темам составлено 220 вопросов, ответов на каждый вопрос 4, один правильный. Студентам рекомендуется после теоретических и практических занятий по каждой теме, самостоятельно изучить соответствующий тест, отметив правильные ответы по своему усмотрению. После этого необходимо проверить правильность ответов, используя учебники и конспекты занятий. Тесты предназначены не для заучивания и запоминания правильных ответов, а на развитие умений и навыков по применению полученных знаний во время теоретических и практических занятий.

Тестовые задания так же можно использовать для контроля текущей и итоговой успеваемости студентов, для сдачи модулей

Тест № 1 Основные законы электромеханики

№ п/п	Вопросы	Ответы
1	При электромагнитной индукции в проводнике индуктируется э.д.с.:	A) e= B·l·V·H δ) e= B·l/V B) e= H·l·V Γ) e= BIV
2	По этой «правиле» определяется направление:	A) $x = V$; $y = B$; $z = e$ B) $x = B$; $y = e$; $z = V$ B) $x = V$; $y = e$; $z = B$ C) $x = e$; $y = B$; $z = V$
3	Направление магнитных силовых линий:	A) $x = B$; $y = e$ B) $x = B$; $y = V$ B) $x = V$; $y = B$ C) $x = B$; $y = H$
4	Взаимодействие проводника с током и магнитного поля:	A) x=N; f=S; y=F; z=B b) x=N; f=S; y=B; z=F B) x=B; f=S; y=N; z=F r) x=N; f=B y=S; z=F
5	Электромагнитная сила:	A) x=I; y=F; z=B B) x=F; y=I; z=B B) x=B; y=I; z=F Γ) x=B; y=I; z=H
6	Для генератора переменного тока, в данном положении: N S	A) $e = 0$; B) $e = +e_{MAX}$ B) $e = +e_{MAX}$ Γ) $e = -e_{MAX}$

7	Определите направления магнитных силовых линий: С- Сноружи В-вунтри	A) C_1 $B_1:S \rightarrow N$ B) $C: S \rightarrow N;B: N \rightarrow S$ B) $C: S \rightarrow N; B = 0$ Γ) $C: N \rightarrow S; B:S \rightarrow N$
8	Электрический ток в проводнике образует вокруг него поле:	А) электрическое Б) магнитное В) электроное Г) силовое
9	Магнитное поле постоянных магнитов пораждается молекулярными:	А) силами притяжения Б) электронными силами В) электрическими токами Г) взаимодействиями
10	x y	A) x=N; y=S B) x=N; y=N B) x= S; y= N Γ) x=S; y=S
11	x	A) x=N; y=S B) x=N; y=N B) x= S; y= N Γ) x=S; y=S
12	Величина, равная произведению силы тока количеству витков катушки называется:	А) э.д.с. Б) м.д.с. В) к.п.д. Г) индуктивность
13	Магнитодвижущая сила катушки вычисляется по формуле:	A) M=I·U; δ) M=I·n; B) M=I·W; Γ) M=I· <i>I</i> ;
14	Напряженность магнитного поля:	А) H=I·U/ <i>l</i> ; Б) H=I·n/ <i>l</i> ;

		B) $H=I\cdot W/l$;
		Γ) H=I·R/ <i>l</i> ;
15	Интенсивность магнитного поля катушки	А) магнитный поток
	называется:	Б) магнитная проницаемость
		В) магнитная напряженность
		Г) магнитная индукция
16	Магнитная индукция катушки без сердечника	
	вычисляется по формуле:	A) Bo= μ_0 H
		δ) Bo=μ H
		B) Bo= μ_o / H Γ) Bo= H / μ_o
		Ι / Β0- 11 / μ ₀
17	Магнитная проницаемость вакуума	Α) μ
	обозначается:	<u>δ</u>) μ _o
		B) Bo
10	M	Г) Но
18	Магнитная индукция катушки со	A) B= μ ₀ вο
	сердечником вычисляется по формуле:	Б) В=µ во
		В) В=µН
		Γ) B=Bo / μ
		1
19	Относительная магнитная проницаемость	Α) μ
	материала:	δ) μ ₀
		B) μ _a
20	1.6	Γ) μ_{κ}
20	Абсолютная магнитная проницаемость	A)
	материала:	A) μ Б) μ ₀
		Β) μ _a
		Γ) μ_{κ}
		1) Mr
21	Магнитная индукция катушки со	Α) Β=μ Η
	сердечником:	b) B=μ _o H
		B) B=μ _a H
22	1.5	Γ) B= ŋ H
22	Абсолютная магнитная проницаемость	A) =
	материала:	$A) \mu_a = \mu \mu_o$
		B) $\mu_a = \mu + \mu_o$ B) $\mu_a = \mu - \mu_o$ Γ) $\mu_a = 1/\mu_o \mu$
		$\begin{bmatrix} D_1 & \mu_0 \\ \Gamma \end{bmatrix} = 1 / \mu_0 $
		- / ma - 1/ mo m
23	Магнитная индукция измеряется в:	A) A
		Б) Вб
		В) Ом
	D & DC/DC	Г) Тл
24	Величина Ф=В S (Вб) называется:	А) магнитная индукция
		Б) м.д.с
		В) магнитный поток Г) магнитная напряженность
		т у магиятия напряженность

Тест № 2 Трансформаторы, основные определения

	Вопросы	Ответы
1	При каком напряжении целосообразно нередавать электрическую энергию	A) высоком Б) низком В) нет разницы Г) незнаю
2	При каком напрежении целосообразно	А) высоком Б) низком
	потреблять электрическую энергию	В) нет разницы Г) незнаю
3	Чем отлечается переменный ток от постоянного тока	 А) возможностью передавать ее на больше расстояния Б) возможностью изменят с помощью трансформатора В) возможностью получения тепла Г) нет разницы
4	Какой трансформатор показан на схеме:	А) новыщающий
	U₁=100 B	Б) понижающийВ) измерительный
		Г) автотрансформатор
5	Укажите рядь повышения напряжений (кВ)	A) 1,2,3,4 B) 1;3;5 B) 6; 10; 16; 32; 110 Γ) 8; 10; 16; 32; 110
6	Номинальной мощностью S _H трансформатора называют мощность (BA):	А) назажимах первичной обмотки Б) мощность потребителей В) на зажимах вторичной обмотки Г) суммарную мощность
7	Номинальным первичным напряжением $U_{\rm H1}$ называют:	А) напряжение первичной сети Б) напрежение сети при х.х. трансформатора В) напряжение первичной сети, на которой рассчитан трансформатор Г) напряжение сети при к.з. трансформатора
8	Номинальным вторичным напряжением $U_{\rm H2}$ называют напряжение на зажимах вторичной обмотки:	А) при х. х. трансформатора Б) при номинальном первичном напряжении В) при холостом ходе и при номинальном первичном напряжении Г) при к. з. трансформатора
9	Номинальными токами I_{H1} и I_{H2} называют	A) S _H Б) U _{H1} ; U _{H2} . B) S _W : U _W Г) S _W : U _W
10	токи, при: Трансформатор – электромагнитный аппарат	$egin{array}{cccccccccccccccccccccccccccccccccccc$
10	предназначенный для преобразования одной	Б) U _{H1} и U _{H2}
	системы переменного тока в другую систему	B) I _{H1} и I _{H2}
	переменного тока с параметрами:	Γ) (I_{H1} , U_{H1}) и (I_{H2} , U_{H2})

Тест № 3 Принципы действия трансформатора

No	Вопросы	Ответы
1	Принцип действия трансформатора	А) принципе Ленца
	основана:	Б) законе Ампера
		В) законе электромагнитной индукции
		Г) законе Кирхгофа
2	Э.д.с. индуктируемые в первичной и	A) $E_1 = -d\Phi/dt$; $E_2 = -d\Phi/dt$;
	вторичной обмотках трансформатора:	$(E_1 = W_1 * d\Phi/dt; E_2 = W_1 * d\Phi/dt;$
		B) E_1 =- dU/dt ; E_2 = - dU/dt
		Γ) E ₁ =E ₂ = -dU/dt
3	Отношение э.д.с. и число витков обмоток	A) $E_1/E_2 = W_2/W_1$ B) $E_1/E_2 = W_1/W_2$
	трансформатора связанны соотношением:	
		B) $E_2/E_1 = W_1 * W_2$ Γ) $E_2 * E_1 = W_1 * W_2$
4	Отношение напряжений на зажимах	A) $U_1/U_2 = W_2/W_1$
	трансформатора и число витков обмоток	$(B) U_1/U_2 = W_1 * W_2$
	трансформатора связаны соотношением:	B) $U_1/U_2 = W_1/W_2$
		Γ) $U_1*U_2=W_1*W_2$
5	Коэффициент трансформации	А) коротком замыкании
	трансформатора – это отношение	Б) холостом ходе
	напряжений на зажимах первичной	В) максимальной нагрузки
	обмотки трансформатора к напряжению на	Г) минимальной нагрузке
	зажимах вторичной обмотки при:	
6	Коэффициент трансформации	A) $K = W_2 / W_1 = U_1 / U_{20} = I_1 / I_2$
	трансформатора вычисляется по формуле:	
		$(E) K = U_{20}/U_1 = E_1/E_2$
		B) $K = E_2 / E_1 = U_{20} / U_1$
<u> </u>		Γ) K= W ₁ / W ₂ = U ₁ / U ₂₀
7	Отношение напряжений на зажимах	A) $U_1/U_2 = I_1/I_2$
	трансформатора и токи в обмотках	
	трансформатора связанны соотношением:	
		D) II / II — I / I
		B) $U_1/U_2 = I_2/I_1$
		Γ) $U_1 * U_2 = I_2 * I_1$
8	Найдите коэффициент трансформации	A) $K = 0.25$
6	трансформатора, если при холостом ходе:	Б) K= 2,5
	U_1 =10000B; U_{20} =400B:	B) K= 25
	Ο ₁ 10000 D , Ο ₂₀ 400 D .	Γ) K= 250
9	Найдите приближенное значение тока I_2 ,	A) $I_2 = 20A$ B) $I_2 = 10A$
	если U_1 =200B; I_1 =5A; U_2 0=100B	D) 12 1011
	2000, 11 011, 020 1000	B) $I_2 = 2A$
10	Найдите U ₂₀ если: U ₁ = 6000B; K= 0,025	A) 24000,0 Б) 24000,0
10	1141141116 0 20 000111. 01 0000105, 10 0,025	<i>D)</i> 2 1000,0
		B) 240,0 Γ) 2400,0

Тест № 4 Трансформатор, режим холостого хода

No	Вопросы	Ответы
1	Какой режим работы трансформатора	A) $I_1 = 0$
1	называется холостым ходом?	$(B) U_2 = U_H$ $(C) I_2 = 0$
2	Какая часть магнитного потока называется основным?	А) весь магнитный поток Б) часть магнитного потока, которая замыкается по магнитопроводу и сцепляется обеими обмотками В) часть магнитного потока, которая замыкается по магнитопроводу и сцепляется только с первичной обмоткой Г) часть магнитного потока, которая замыкается по магнитопроводу и
		сцепляется только с вторичной обмоткой
3	Какая часть магнитного потока, называется потоком рассеяния?	А) весь магнитный поток Б) часть магнитного потока, которая замыкается по магнитопроводу и сцепляется обеими обмотками В) часть магнитного потока, которая замыкается по магнитопроводу и сцепляется только с первичной обмоткой Г) часть магнитного потока, которая замыкается по магнитопроводу и сцепляется только с вторичной обмоткой
4	Какой магнитный поток индуктирует в первичной обмотке э.д.с. самоиндукции E_1 , а во вторичной обмотке э.д.с. взаимоиндукции E_2 ?	A) Φ_{pc2}
5	По каким формулам вычисляется э.д.с. индуктируемые основным магнитным потоком Ф?	A) $E_1 = f_1 W_1 \Phi_{max}$ B) $E_1 = f_1 W_1 \Phi$ $E_2 = f_2 W_2 \Phi_{max}$ B) $E_1 = 4,44 f_1 W_1 \Phi_{max}$ C) $E_1 = 4,44 f_1 W_1 \Phi_1$ $E_2 = 4,44 f_2 W_2 \Phi_{max}$ E ₂ = 4,44 f ₂ W ₂ Φ_2
6	Ток холостого тока состоит из:	А) индуктивного тока I_{ou} Б) активного тока I_{oa} и реактивного тока I_{op} В) реактивного тока I_{op} и индуктивного тока I_{ou} Г) активного тока I_{oa}
7	Действующее значение тока холостого тока вычисляется по формуле:	A) $I_{oa} = P_o / U_1$ B) $I_{oa} + I_{op}$ B) $I_{oa} / I_o \le 0,1$ F) $I_0 = \sqrt{I_{oa}^2 + I_{op}^2}$
8	Найдите максимальное значение основного магнитного потока, если известно: $E_1 = 444B; E_2 = 222B$ $f = 50\Gamma \mu; \ W_1 = 100; \ W_2 = 50$	A) $\Phi_{\text{Max}} = 0.2 \text{ B}$ 6 B) $\Phi_{\text{Max}} = 0.02 \text{ B}$ 6 F) $\Phi_{\text{Max}} = 0.002 \text{ B}$ 6 F) $\Phi_{\text{Max}} = 2 \text{ B}$ 6

9	Какая характеристика «XX»		
	трансформатора приведено на	A) I _x	Б) cosφ ₀
	графике	B) P _x	Γ) U_0
		D) I x	1)00
	U ₁		
10	Укажите график тока XX, I _x	A).	Б).
		B).	
11	Укажите график мощности XX, P _x	A).	Б).
		B).	
12	Что произойдет, если трансформатор	A) увеличится I _x , у	•
	рассчитанный на 127 В, включить в сеть 220 В:	Б) увеличится I_{x_x} увеличится I_{x_y} В) уменьшится I_{x_y} Г) уменьшится I_{x_y}	уменьшится cosφ _x
13	Определите I _{оа} если в режиме «XX»	A) 0,01 A	Б) 0,1 А
	$P_0 = 5 \text{ BT}, U_1 = 500 \text{ B}$	B) 1,0 A	Γ) 10,0 A
14	В режиме «XX» трансформатора,	А) 3,6 Вт/кг	Б) 1,2 Вт/кг
	Р ₀ = 3,6 Вт, масса стали сердечника	В) 10,8 Вт/кг	Г) 12 Вт/кг
	$M_c = 3$ кг. Определите удельные		ŕ
	потери в стали		

Тест № 5 Трансформатор, режим работы при нагрузке

Этветы
Б) W ₁ I ₀
Γ) $W_1 I_2$
Б) W ₁ I ₀
Γ) $W_1 I_2$
Б) W ₁ I ₀
Γ) W_1I_2
Б) F=F ₂ -F ₁
Γ) $F=F_1\cdot F_2$
Б) не измениться
Г) уменьшится
Б) не измениться
Г) уменьшится
I_1I_1
$_{2}$ I_{2}
$I_2 I_2$
$egin{array}{ll} V_1 I_1 & & & & \\ W_2 I_2 & & & & & \end{array}$
\mathbf{I}_2 \mathbf{I}_2
$V_2 I_2$
V_2I_2
1
V_2
V_1

10	При каких условных допущениях получено уравнение м.д.с. трансформатора?	A) $f_1 U_1 E_1$ - const B) $f_1 J_1 E_1$ - const B) $f_1 E_1 = U_1$ - const Γ) $f_1 U$ - const; $E_1 \approx U_1$	- const
11	Э.д.с. вторичной обмотки E ₂ =100 B, коэффициент трансформации k=0,5. Определите приведенное значение э.д.с.	A) E ₂ ¹ =200 B	Б) E ₂ ¹ =50 В
	вторичной обмотки ${\rm E_2}^1$ -?	B) $E_2^1 = 100 \text{ B}$	Γ) $E_2^1 = 150 \text{ B}$
12	Э.д.с. первичной обмотки E_2 =50 B, определите приведенное значение э.д.с. вторичной обмотки E_2^1 -?	A) E ₂ ¹ =100 B	Б) E ₂ ¹ =50 В
	2	B) $E_2^1 = 150 \text{ B}$	Γ) E ₂ ¹ =200 B
13	Определите приведенное значение тока во вторичной обмотки I_2^1 , если $I_2=10A$, $k=0.5$	A) $I_2^1 = 5$ A	Б) I ₂ ¹ =10 А
		B) $I_2^1 = 15 \text{ A}$	Γ) $I_2^1=20 \text{ A}$
14	Определите приведенное значение	A) $V_2^1 = 250 \text{ Om}$	
	активного сопротивления вторичной	Б) $V_2^1 = 25 \text{ Ом}$	
	обмотки V_2^1 , если $V_2=10$ Ом и $k=0,5$.	B) $V_2^1 = 2.5 \text{ Om}$	
		Γ) $V_2^1 = 0.25 \text{ Om}$	
15	Определите приведенное значение	A) $X_2^1 = 25 \text{ Om}$	
	индуктивного сопротивления вторичной	Б) $X_2^1 = 2,5 \text{ Ом}$	
	обмотки X_2^1 , если $X_1 = 10$ Ом и $k = 0,5$.	B) $X_2^1 = 5.0 \text{ Om}$	
	- , ,	Γ) $X_2^1 = 0.25 \text{ Om}$	
16	Определите приведенное значение	,	
	полного сопротивления вторичной обмотки Z_2^1 , если $Z_2=10$ Ом и $k=0,5$.	A) $Z_2^1 = 25 \text{ Om}$	Б) $Z_2^1 = 2,5$ Ом
		B) $Z_2^1 = 0.25 \text{ Om}$	Γ) $Z_2^1 = 0.5 \text{ Om}$
17	Определите приведенное значение э.д.с.		
	E_2^1 вторичной обмотки трансформатора.	A) $E_2^1 = E_2$	Б) $E_2^1 = k E_2$
		B) $E_2^1 = E_2/k$	$\Gamma) E_2^1 = E_2 + k$
18	Определите приведенное значение тока I_2^1 вторичной обмотки трансформатора.	A) $I_2^1 = k I_2$	$\text{ b) } I_2^{1} = I_2 + k$
		B) $I_2^1 = I_2/k$	Γ) $I_2^1 = I_2$
19	Определите приведенное значение	, , , , , , , , , , , , , , , , , , , ,	, 2 2
	активного сопротивления вторичной обмотки трансформатора R_2^{-1} .	$A) R_2^1 = k^2 \cdot R_2$	Б) $R_2^1 = k^2 \cdot R_2^2$
	1 r-r ·· -r ·· -2 -	B) $R_2^1 = R_2/k^2$	Γ) $R_2^1 = R_2^2 / k^2$
20	Определите приведенное значение индуктивного сопротивления вторичной	A) $X_2^1 = X_2/k^2$	Б) $X_2^1 = k^2 \cdot X_2$
	обмотки трансформатора ${ m X_2}^1$.	B) $X_2^1 = k^2 \cdot X_2^2$	$\Gamma) X_2^1 = X_2^2 / k^2$

Тест № 6 Трансформатор, Режим короткого замыкания

№	Вопросы	Ответы
1	При проведении опыта короткого замыкания трансформатора, напряжение короткого замыкания выбирается из условия:	A) $I_k = 0$
2	На щитке трансформатора обозначены: U_H = 110 кВ; U_K (%)=11%. Какое напряжение надо падать на первичную обмотку, чтобы в режиме «КЗ» обмотках трансформатора протекали номинальные токи?	A) $U_K = 110 \text{ кB}$ Б) $U_K = 11 \text{ кB}$ В) $U_K = 12,1 \text{ кB}$ Г) $U_K = 121 \text{ кB}$
3	Какие приборы и в каком количестве необходимы для опыта короткого замыкания однофазного трансформатора?	A) A-1; W-1; V-2
4	На рисунке изображена: $I_{1}X_{k} \qquad \qquad I_{1}H=I_{2}$ $I_{1}H=I_{2}$ $I_{1}H=I_{2}$	 A) упрошенная векторная диаграмма Трансформатора Б) упрошенная векторная диаграмма трансформатора при нагрузки В) упрошенная векторная диаграмма трансформатора при «ХХ» Д) упрошенная векторная диаграмма трансформатора при «КЗ»
5	При номинальном режиме работы потери в стали сердечника трансформатора составляет 400 Вт. Определите потери в стали при опыте короткого замыкания, если $U_k\% = 5\%$	A) $P_k = 1 \text{ BT}$
6	Что показывает ваттметр в опыте короткого замыкания трансформатора?	А) Потери в стали сердечника Б) Потери в меди первичной обмотки В) Потери в меди вторичной обмотки Г) Потери в стали и в меди обмоток

7	В опыте короткого замыкания трансформатора получено $U_k = 5$ В; $J_k = 1$ А; $P_k = 3$ Вт. Определите Z_k , r_k	A) $Z_k = 5 \text{ Om}; r_k = 3 \text{ Om}$ B) $Z_k = 5 \text{ Om}; r_k = 1 \text{ Om}$ B) $Z_k = 1 \text{ Om}; r_k = 5 \text{ Om}$ Γ) $Z_k = 3 \text{ Om}; r_k = 5 \text{ Om}$
8	В опыте короткого замыкания трансформатора получено $U_k = 5B$; $J_k = 1 \ A$; $P_k = 3 \ BT$. Определите X_k ; $cos\phi_k$	A). $X_k = 3$ Om; $\cos \varphi_k = 0.6$ B). $X_k = 4$ Om; $\cos \varphi_k = 0.6$ B). $X_k = 5$ Om; $\cos \varphi_k = 0.6$ Γ). $X_k = 4$ Om; $\cos \varphi_k = 0.8$
9	В каком случае трансформатор нагревается больше?	А) В опыте «XX» Б) В опыте «КЗ» В) В номинальной нагрузке Г) В опыте «XX» и «КЗ» одинаково
10	Определите характеристики «КЗ» трансформатора:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Тест №7 Трансформатор, изменение вторичного напряжения

№ п/п	Вопросы	Ответы
1.	Трансформатор работает при активной нагрузке. Как изменяется напряжение нагрузки с увеличением тока?	А) не изменяетися Б) увеличивается В) уменьшается Г) равно нулью
2.	Нагрузка трансформатора имеет индуктивный характер. Как изменяется напряжение на нагрузке при увеличении тока?	А) не изменяетися Б) увеличивается В) уменьшается Г) равно нулью
3.	Нагрузка трансформатора имеет емкостной характер. Как изменяется напряжение на нагрузке при увеличении тока?	А) не изменяетися Б) увеличивается В) уменьшается Г) равно нулью
4.	При уменьшении тока от номинального до нуля, напряжение трансформатора увеличивалась от 380 в до 400 в. Определите изменение напряжения трансформатора если $\cos \varphi_2 = \text{const}$	A) Δ U=380 B B) Δ U=400 B B) Δ U=20 B Γ) Δ U= -20 B
5.	Каков характер нагрузки трансформатора, если ∆ U= -20 В при уменьшении тока от номинального до нуля?	А) активный Б) индуктивный В) емкостный Г) смешанный
6.	При номинальной нагрузке напряжение на зажимах вторичной обмотки трансформатора 220 В. Вычислите напряжение при холостом ходе, если Δ U=5%.	A) 209 B Б) 225 B B) 231 B Γ) 220 B
7.	Известно: Ua=3B; Uρ=6B; соsφ2=0,8. Найдите изменение вторичного напряжения Δ U-?	A) 4 B δ) 3 B B) 6 B Γ) 5 B
8.	Изменение напряжения трансформатора при заданном коэффициенте мощности определяется как алгебраическая величина, по формуле:	A) Δ U=Uo-U2 B) Δ U= Uo-U2H B) Δ U= U2H-U2 Γ) Δ U= U2H+U2
9.	Изменение напряжения трансформатора можно вычислить по формуле:	A) Δ U=Ua cosφ2 B) Δ U= Up sinφ2 B) Δ U= Ua cosφ2+Up Γ) Δ U= Ua cosφ2+Up sinφ2

10.	Если известны Sн; соsф2; Uk; Pk то ∆ U% можно вычислить по формулам:	A) $Ua(\%) = (P_k / 10 S_H)$ $Up(\%) = \sqrt{(U_k \%)^2 - (U_a \%)^2}$ $\Delta U\% = Ua\% + Up\%$
		B) Ua(%)= $\sqrt{(U_k\%)^2 - (U_a\%)^2}$ Up(%)= (Uk%)²- (Ua%)² Δ U%= Ua(%)cosφ2+Up(%)sinφ2
		B) $Ua(\%)= P_k / 10 S_H$ $Up(\%)= (Uk\%)^2 - (Ua\%)^2$ $\Delta U\%= (Ua\%) \cdot \cos\varphi_2 + (Up\%) \sin\varphi_2$
		Γ) Ua(%)= $P_k / 10 S_H$ Up(%)= $(Uk\%)^2 + (Ua\%)^2$ Δ U%= $(Ua\%) \cdot cos\phi_2 + (Up\%) sin\phi_2$
11	Определите группу соединения: В с д С	A) Y/Y-O: B) Y/Y-6: B) Y/Δ-11 Γ) Y/Δ-5
12	Определите группу соединения: В b С а	A) Y/¥-0: B) Y/Y-6: B) Y/Δ-11 Γ) Y/Δ-5
13	Определите группу соединения: В с д с р	A) Y/¥-0: B) Y/Y-6: B) Y/Δ-11 Γ) Y/Δ-5
14	Определите группу соединения: В b c A C	A) Y/¥-0: B) Y/Y-6: B) Y/Δ-11 Γ) Y/Δ-5
15	A C a C	A) Y/¥-0: B) Y/Y-6: B) Y/Δ-11 Γ) Y/Δ-5

Тест № 8 Трансформатор, коэффициент полезного действия

№	Вопросы	Ответы
1	Измерены мощности транс форматора: P ₁ =1000 Вт; P ₂ =980 Вт. Вычислите к.п.д. трансфорη (%)	A) 80%
2	Определите к.п.д. трансформатора, если P2=970 Вт; Р _м =15 Вт; Р _{ст} =15 Вт	A) 97%
3	Как зависят от коэффициента нагрузки трансформатора потери в меди – Рм?	А) пропорциональны Кнг Б) не зависят от Кнг В) пропорционал К ² нг Г) пропорционал К ³ нг
4	Как зависят от коэффициента нагрузки трансформатора потери в стали-Рст -?	A) пропорционал. Кнг Б) не зависят от Кнг B) пропорционал K^2 нг Г) пропорционал K^3 нг
5	Чему равен к.п.д. трансформатора при xx-?	A) 1,0

Тест № 9 Трансформатор, магнитопровод

№	Вопросы	Ответы
2	Сердечник трансформатора, изготовленный из специальной стали, по которой замыкается переменный магнитный поток, называется: Магнитопроводы набирают из отдельных листов электротехнической стали с толщиной:	A) стержень Б) каркасом В) магнитопровод Г) электропровод A) 0,35 мм Б) 0,5 мм B) 0,35 и 0,5 мм Г) 0,35 или 0,5 мм
3	Магнитопроводы могут быть:	А) стержневые Б) броневые В) стержневые и броневые Г) стержневые и ярмовые
4	На рис. указана: 1 2	 A) 1 – стержень 2 – стержень Б) 1 - ярмо 2 – ярмо В) 1 - стержень 2 – ярмо Г) 1 - ярмо 2 – стержень
5	На рис. указана: 2 1	A) 1 – BH 2 – BH Б) 1 – HH 2 – BH B) 1 – HH 2 – HH Γ) 1 – BH 2 – HH

Тест №10 Трансформатор, обмотка

No /	Вопросы	Ответы
п/п 1	Проводник, намотанный на магнитопровод специальным образом, для создания магнитного потока	A) катушкой Б) стержнем В) сердечником Г) обмоткой
2	называется: Какую форму имеет поперечное сечение провода обмотки, если площадь сечения: а) 5мм², б) 50мм²?	А) круглую, прямоугольную Б) прямоугольную, круглую В) круглую
3	Из каких материалов изготавливают проводы обмоток?	Г) прямоугольную А) медь Б) алюминий В) сталь Г) медь, алюминий
4	На магнитопроводе размешены обмотки: а) цилиндрическая двухслойная б) многослойная	А) а - HH; б - BH Б) а - BH; б - HH В) а и б - BH Г) а и б - HH
5	Зачем между слоями витков обмотки оставляют вертикальные каналы?	А) для движения магнитных потоков Б) для движения электрических полей В) для осмотра и ремонта Г) для лучшего охлаждения
6	В трансформаторах обмотки, намотанные в магнитопровод специальным образом служат для создания:	А) электрического потока Б) магнитного потока В) электромагнитного потока Г) индукционного потока
7	Обмотки выполняют из проводов изготовленных из:	A) стали Б) латуни В) алюминия Г) меди
8	Изоляцию проводов обмоток изготавливают из материалов:	А) хлопчаторезиновых Б) бумажных В) хлопчатобумажных Г) хлопчатокожанных
9	Если сечение провода $S \le 10 \text{мм}^2$, то выбирают провод сечения:	a) B) r)
10	Если сечение провода $6 \le S \le 60 \text{мм}^2$, то выбирают провод сечения:	a) pr) pr)

Тест №11 Трансформатор, бак

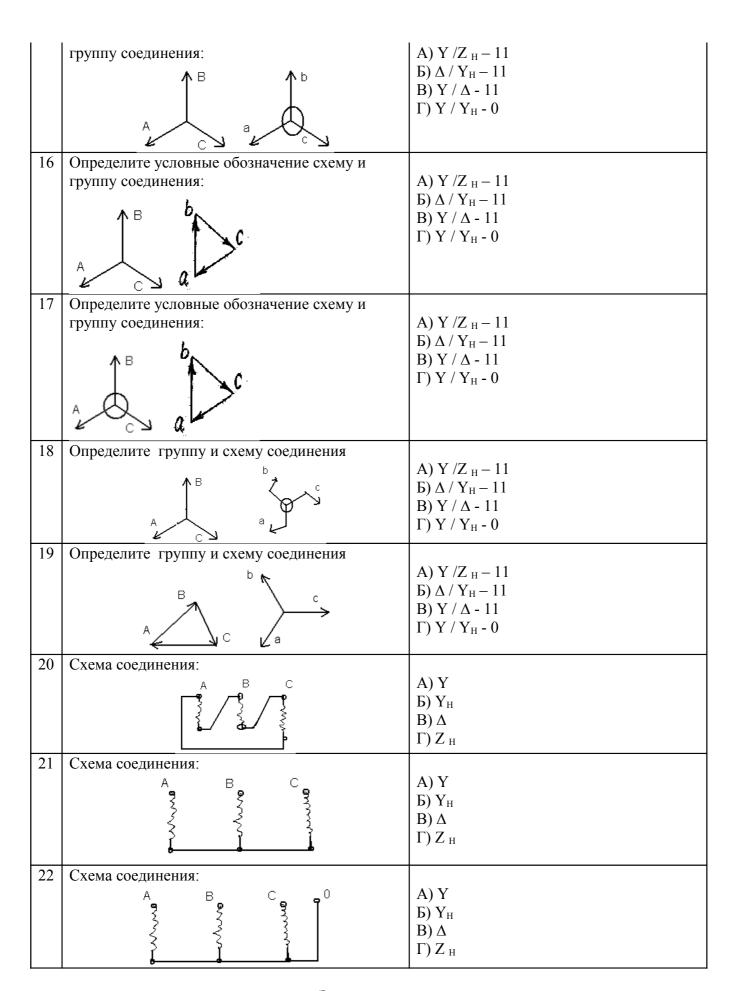
№ п/п	Вопросы	Ответы
1	Специальный герметичный контейнер для размещения магнитопровода с обмотками называется?	A) корпусомБ) кожухомВ) расширителемГ) баком
2	Можно ли прокладку между баком и крышкой изготовить из обычной резины?	A) можноБ) нельзяB) можно, если в 2 слояГ) и в 2слоя нельзя
3	Можно ли расширитель полностью залить маслом?	А) можно Б) можно до половину В) всегда должен быть полным Г) нелзя
4	Каким газом заполняют верхнюю часть бака герметизированного трансформатора?	1) нелзя A) воздухом Б) кислородом В) азотом Г) аргоном
5	Для чего служит газовое поле?	А) для выпуска газаБ) для накачки газаВ) для измерения давленияГ) для сбора выделенных газов
6	Емкость для отвода избытка масла при нагревании называется:	А) бак Б) радиатор В) расширитель Г) охладитель
7	Если мощность трансформатора более 1000 кВа, между баком и расширителем устанавливается:	A) термометрБ) манометрВ) анализатор газаГ) газовое реле
8	Маслоуказатель указывает уровень масла в баке при температуре:	A) +35°; -35°; B) +35°; +15°; B) +15°; -35°; Γ) +15°; -15°;

Тест 12 Трансформатор, переключатели и вводы

№ п/п	Вопросы	Ответы
1	Форфоровые проходные изоляторы с токоведущим стержнем для соединения с сетью называются:	А) включателями Б) шпильками В) изоляторами Г) вводами
2	У каких трансформаторов ввод крепится флянцами, без промазки магнезиальным цементом?	А) наружной установки Б) вертикальной установки В) внутренней установки Г) во всех случаях
3	Где расколожены вводы A и O? О О О О О О О	А) слева вверху и внизуБ) справа вверху и внизуВ) слева вверху и справо внизуГ) слева внизу и справа вверху
4	Устройство для изменения коэффициента трансформации называется:	A) регулятором Б) выключателем В) включателем Г) переключателем
5	За счеть чего осуществляется ступенчатое изменение коэффициента трансформации?	 A) за счеть изменения количество витков обмотки НН Б) за счеть изменения количество витков обмотки ВН В) за счеть отключения обмоток ВН Г) за счеть отключения обмоток НН
6	Почему переключатель устанавливается на обмотке ВН?	А) контакты хорошо работают при ВН Б) контакты установить на НН нельзя В) при ВН токи I= I _{min1} , хорошо работают контакты Г) при ВН токи I= I _{max1} , хорошо работают контакты

7	Указана схема переключателя:	А) прямая схема Б) «нулевая» схема В) смещенная схема Г) обратная схема
8	Переключатель предназначен для изменения:	A) \mathcal{U}_{H1} B) $\cos \varphi_2$ B) η Γ) k
9	При переключении трансформатора необходимо отключит со стороны:	А) ВН Б) НН В) можно не отключат Г) ВН и НН
10	Ступенчатое изменение коэффициента трансформации осуществляется в пределах:	A) + 5% B) 0-5% P) ±5%
11	Для соединения трансформатора со сетю и для вывода концов обмоток трансформатора используются форфоровые проходные изоляторы с токоведущим стержнем, которые называются:	A) выходамиБ) входамиB) клемемамиГ) вводами
12	Токоведущие стержни по конструкции выполняются в виде:	а) медных болтов б) медных винтов в) альюминиевых шпилек г) медных шпилек
13	Вводы ВН маркируются:	A) X; Y; Z δ) C; D; F B) E; N; M Γ) A; B; C
14	Вводы НН маркоруются:	A) x; y; z δ) c; d; f. B) a; d; f Γ) a; b; c
15	Обозначены: Обозначены: Обозначены: Обозначены: Обозначены:	A) 1-0; 2-C,c; 3- D,d; 4-B,b. B) 1-0; 2-A,a; 3- C,c; 4-B, b. B) 1-A; 2- B, b; 3- C,c; 4-B, b. Γ) 1-0; 2-A,a; 3- B, b; 4-C,c.

Тест №13 Трансформатор, вспомогательная аппаратура


№	Вопросы	Отв	etli
п/п	Бопросы	Olb	CIBI
1	Предохранительное устройство в виде трубки со стеклянной крышкой-мембраной называется:	А) осмотровая труба В) труба давления	Б) разрывная труба Γ) выялопная труба
2	Крышка – мембрана изготовлена из стекля томунной:	A) 3,5 MM B) 2 MM	Б) 1 мм Г) 2,5 мм
3	Выхлопная трубка установливается в трансформаторах:	A) Sn > 500 κBA B) Sn > 5000 κBA	Б) Sn > 1000 κBAΓ) Sn > 1500 κBA
4	Термометрический сигнализатор, при достижении низкой допустимой температуры масла, т.е:	А) красная стрелка под Б) красной стрельки от В) желтой стрельки по Г) желтой стрельки по	дается сигнал гключается тр-р дается сигнал
5	Термометрический сигнализатор, при достижении опасной температуры масла т.е:	А) красной стрелки по Б) красной стрелки, от В) желтый стрелки под Г) желтый стрелки отк	дается сигнал ключается тр-р цается сигнал
6	Пробивной предохранитель установливается на обмотку:	A) ВН В) ВН и СН	Б) НН Г) ВН и НН
7	Если: U _{1H} /U _{2H} =600/230: 600/400: 1000/230: 1000/400 [В] то:	A) Sn = 40 κBA B) Sn = 25: 40 κBA	Б) Sn = 63 κBAΓ) Sn = 25: 63 κBA
8	Если: U _{1H} /U _{2H} =6/2,3: 6/0,4: 10/0,23: 10/0,4: 20/0,23: 0/0,4[кВ] mo:	A) Sn = 40 κBA B) Sn = 25: 40 κBA	Sn = 63 κBAΓ) Sn = 25: 63 κBA
9	Если $S_H = 25$: 630 кВА, то принимается:	A) Uκ = 4-7% Io =2-3% B) Uκ = 4,5-6,8% Io = 2-3%	B) Uκ =5-8% Io =2-3,2% Γ) Uκ =5,5-7,5% Io =0,8-1,5%
10	Если S_H = 1000- 6300 KBA, то принимается: (%)	A) U _K = 4-7% Io =2-3% B) U _K = 4,5-6,8% Io = 2-3%	B) Uκ =5-8% Io =2-3,2% Γ) Uκ =5,5-7,5% Io =0,8-1,5%
11	Датчик давления, срабатывающий при увеличении давления за счеть разрушения мембраны изготовленной из стекла определенной толщины называется:	А) предохранительная Б) газовая труба В) вихлонная труба Г) напорная труба	труба
12	Ртутный термометр установливается:	А) соприкасается с маслом бака Б) не соприкасается с маслом бака В) отдален от масла металлической гильзат Г) отдален от масла воздушным зазором	
13	Что случилось, если пробивной предохранитель сработал, т.е пробит?	А) обмотка ВН замкнулась в бак Б) обмотка НН замкнулась в бак В) обмотка ВН разрушилься Г) обмотка НН разрушилься	
14	Что случиться, если стрелка термометрического сигнализатора достигнет красной стрелки?	А) появиться сигнал тр Б) термометр разруши В) включиться реле Г) реле отключить тра	ться

Тест №14 Типы трансформаторов

№ п/п	Вопросы	Ответы	
1	Определите ряд Sн по ГОСТу?	A) 1·10 ⁿ ; 16·10 ⁿ ; 25·10 ⁿ ; 40·10 ⁿ ; 63 ⁿ ; n= 10; 20; B) 10; 16; 25; 40; 63; B) 20; 32; 50; 80; 126; Γ) 1·10 ⁿ ; 16·10 ⁿ ; 25·10 ⁿ ; 40·10 ⁿ ; 63 ⁿ ; n=0; 1;2;3	
2	Обмотка трансформатора рассчитана на 690 В. Какая это обмотка?	А) ВН Б) НН В) переключателя Г) для ответа нужны дополнительные данные	
3	Номинальные напряжения обмоток трансформатора 10 и 0,4 кв. Определите коэффициента трансформации.	A) k = 250 B) k = 25 B) k = 0,25 Γ) k = 0,025	
4	Если U1н / U1н: 6 / 0,23; 6 / 0,4; 10 / 0,23; 10 / 0,4; то:	A) SH = 63 κBA B) SH = 10; 16 κBA B) SH = 25; 40 κBA Γ) SH = 25-630 κBA	
5	Если Sн = 25-630 кВА, то принимает:	A) Uκ=5,5-7,5%; Io=0,8-1:5% B) Uκ=4,5%; Io≤0:8% B) Uκ=4,5-6,8%; Io=2-3,2% Γ) Uκ=6,8-7,5%; Io=1,5-3,2%	

Тест№15 Трехфазный трансформатор. Схемы соединения обмоток.

N₂	Вопросы	Ответы
1	Принцип действия однофазного трансформатора основано на законе	А) Ома Б) Ленца В) Электромагнитной индукции Г) Фарадея
2	Мгновенные значения ЭДС обозначаются	A) I_1 ; I_2 B) U_1 ; U_2 B) e_1 ; e_2 C) E_1 ; E_2
3	Действиющие значения ЭДС обозначаются	A) $I_1;I_2$ B) $e_1;e_2$ B) $E_1;E_2$
4	Переменные токи в обмотках трансформатора обозначаются	A) I_1,I_2 B) e_1,e_2 B) E_1,E_2
5	Напряжения в обмотках трансформатора обозначаются	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	Переменный магнитный поток обозначается	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7	Начало и конец обмотки НН	A) X; x B) a; x; Γ) A; X
8	Векторной диаграмме обозночены	A) A;a
9	Векторной диаграмме обозначены: $\frac{1}{2} \qquad \qquad \bar{\varphi}_A$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	Распределительные сети в энергосистеме являются:	А) Однофазными Б) Трехфазными В) постоянными Г) переменными
11	В трехфазных трансформаторах с общим ярмом через ярму проходит суммарный магнитный поток:	$\begin{array}{ccc} A) \; \Phi_{\Sigma} = \Phi_{A} + \Phi_{C} - \Phi_{B} & B) \; \Phi_{\Sigma} = \Phi_{A} - \Phi_{B} - \Phi_{C} \\ B) \; \Phi_{\Sigma} = \Phi_{A} - \Phi_{C} + \Phi_{B} & \Gamma) \; \Phi_{\Sigma} = \Phi_{A} + \Phi_{B} + \Phi_{C} \end{array}$
12	Если в сети действуют система симметричных напряжений \bar{U}_A , \bar{U}_B и \bar{U}_C то в любой момент времени:	A) Φ_{Σ} =var
13	Конструктивно, трехфазный трехстержневой трансформатор можно выполнить без общей ярмы, исходя из условия:	A) Φ_{Σ} = var B) Φ_{Σ} = const C) Φ_{Σ} = \bar{U}_A + \bar{U}_B + \bar{U}_C C) Φ_{Σ} = \bar{U}_A - \bar{U}_B - \bar{U}_C
14	Определите магнитные потоки трехстерженового, трехфазного трансформатора:	A) $1 - \Phi_A$ $2 - \Phi_C$ $3 - \Phi_B$
	1 1 1 1 1	Б) 1 - $\Phi_{\rm C}$ 2 - $\Phi_{\rm A}$ 3 - $\Phi_{\rm B}$
	3 77777	B) $1 - \Phi_B$ $2 - \Phi_C$ $3 - \Phi_A$ Γ) $1 - \Phi_A$ $2 - \Phi_B$ $3 - \Phi_C$
15	Определите условные обозначение схему и	

Тест №16 Схемы и группы соединений облаток трехфазных трансформаторов

№	Вопросы	Ответы
1	Начало и конец обмотки ВН	А) А и В Б) А и С
2	Начало и конец обмотки НН	B) A и X Γ) A и Y A) а и b Б) а и с B) а и х Γ) а и у
3	Определите направления ЭДС	
4	Определите направления ЭДС	
5	Определите направления ЭДС	
6	Определите направления ЭДС А	
7	Определите направления ЭДС А	
8	Условное изображение взаимных положении векторов ЭДС ВН и НН трансформатора называется:	А) группой Б) группой векторов В) группой ЭДС Г) группой соединения
9	Определите группы соединения I / I-0	
10	Определите группы соединения I / I-6	

Тест №17 Трансформатор, параллельная работа

№	Вопросы	Ответы
1	Параллелной называют работу двух или более трансформаторов, когда их первичные обмотки подключены к общей первичной сети, а вторичные подключены к	А) сети НН Б) сети ВН В) общей вторичной сети Г) общей первичной сети
2	Условия подключения 3-х фазных трансформаторов на параллельную работу:	 A) k₁ = k₁₁ = = k₁ Uk₁ = Uk₁ = = Uk₁ Б) Равны группы соединение k₁ = k₁₁ = = k₁ B) Равны группы соединение Uk₁ = Uk₁₁ I₁ = I₁₁ Γ) k₁ = k₁₁ Uk₁ = Uk₁₁ I₁ = I₁₁
3	Условия фазировки трасформаторов	A) U_{a1b2} =0; U_{a1c2} =0 U_{b1b2} = U_1 ; U_{c1c2} = U_1 B) U_{b1c2} = U_1 ; U_{c1b2} =0 B) U_{b1b2} =0; U_{c1c2} =0 U_{b1c2} = U_1 ; U_{c1b2} = U_1 Γ) U_{b1c2} =0; U_{c1b2} =0
4	Здесь приведено условия: $U_{a1a2} = 0; \ U_{b1b2} = 0; \ U_{c1c2} = 0$ $U_{a1b2} = U_1; \ U_{a1c2} = U_1$ $U_{b1a2} = U_1; \ U_{b1c2} = U_1$ $U_{c1a2} = U_1; \ U_{c1b2} = U_1$	А) фазировки трансформаторов с изолированной нейтролью Б) фазировки трасформаторов В) фазировки трасформаторов без нейтралью Г) фазировки трасформаторов с заземленной Нейтралью
5	При параллельной работе трансформаторов коэффициенты трансформации отличаются не более:	A) $\Delta k(\%) \le \pm 5\%$ B) $\Delta k(\%) \le \pm 50\%$ B) $\Delta k(\%) \le \pm 0.5\%$ Γ) $\Delta k(\%) \le \pm 0.05\%$
6	При параллельной работе трансформаторов напряжения «КЗ» должны отличатся не более:	$\begin{array}{l} A) \; \Delta U_k(\%) \leq 10\% \\ B) \; \Delta U_k(\%) \leq 50\% \\ B) \; \Delta U_k(\%) \leq 5\% \\ \Gamma) \; \Delta U_k(\%) \leq 20\% \end{array}$
7	Если трансформаторы принадлежат к разным группам соединения обмоток, то их параллельная работа	А) возможно Б) необходимо проверить К В) необходимо проверить Г) не возможно

Тест №18Автотрансформаторы

№ п/п	Вопросы	Ответы
1	Трансформаторы у которых обмотки НН	А) выпрямителем
	электрический связана с обмоткой ВН	Б) генератором
	называется:	В) двигателям
		Г) автотрансформатором
2.	A	А) повышающий трансформатор
	~ Wax	Б) автотрансформатор
	- Wax & ~ U1 ZH	В) понижающий автотрансформатор
2	3 X	Г) повышающий автотрансформатор
3.	При «XX» автотрансформатора напряжения на выходе:	A) $U_2 = U_1 * W_{ax} / W_{AX}$
	на выходс.	l '
		$\begin{array}{c} \text{ B) } \text$
		$\Gamma) U_2 = U_1 * W_{AX} / W_{ax}$
4	Мощность, передаваемая из первичной цепи	А) расчетная мощность
	в вторую автотрансформатора, называется:	Б) проходная мощность
	2 210pyto w2101pw.topw.topw, two212w01on.	В) номинальная мощность
		Г) полная мощность
5	Проходная мощность вычисляется по	, ,
	формуле;	$A) S_{np} = S_{pac^{u}} = E_2 \dot{I}_{ax}$
		$(\mathbf{S}) \mathbf{S}_{np} = \mathbf{E}_1 \dot{\mathbf{I}}_{ax}$
		$\mathbf{B}) \mathbf{S}_{np} = \mathbf{E}_1 \mathbf{I}_{AX}$
		Γ) $S_{np} = E_1 \dot{I}_1 = E_2 \dot{I}_2$
		,
6	Расчетная мощность автотрансформатора	$A) S_{pacy} = E_1 \dot{I}_1$
	вычисляется по формуле	\downarrow
		$B) S_{pac4} = E_1 \dot{I}_{ax}$
		Γ) $S_{pacy} = E_2 \dot{I}_{ax}$
7	Для автотрансформатора величина:	А) пользы
	$K_{\rm B} = S_{\rm pac} / S_{\rm np} = 1 - 1/k$	Б) полезности
	Называется коэффициентом	В) выгодности
		Г) передачи мощности
8	В обычном 2-х обмотанном	A) $S_{9\pi} = 0$; $S_{pac4} = S_{np}$;
	трансформаторе:	Б) $S_{3n} = 0$; $S_{pac4} > S_{np}$;
		B) $S_{3n}=0$; $S_{pac4} < S_{np}$
	_	$\Gamma) S_{3n} > 0; S_{pac4} = S_{np};$
9	Потери мощность в автотрансформаторе по	$A) \Delta P_{\text{эл.атр}} = \Delta P_{\text{тр.эл}}$
	сравнении с 2-х обмоточным	$(5) \Delta P_{\text{эл.атр}} > \Delta P_{\text{тр.эл}}$
	трансформатором	$B) \Delta P_{\text{эл.атр}} = 0$
		Γ) $\Delta P_{\text{эл.атр}} < \Delta P_{\text{тр.эл}}$
10	Автотрансформаторы используются при:	

		A) $k > 2.5 - 3$ B) $k = 2.5 - 3$ B) $k < 2.5 - 3$ Γ) $k \le 3$
11	Это автотрансформатор :	А) обычный Б) повыщающий В) понижающий Г) стабилизатор
12	A & W2 U2 U1 W1	А) обычный Б) повыщающий В) понижающий Г) стабилизатор
13	Ulax X Willex	А) обычный Б) повыщающий В) понижающий Г) стабилизатор
14	Ubux X	А) обычный Б) повыщающий В) понижающий Г) стабилизатор

Электромеханика

Тест №19 Сварочные трансформаторы

No	Вопросы	Ответы
1	Трансформатор, однофазный, понижающий ,сухой, предназначенный для сварки имеет вторичное напряжение при «XX»	A) U_{2xx} =100 _B B) U_{2xx} =60-100 _B B) U_{2xx} =36 _B Γ) U_{2xx} =60-75 _B
2	Нормальным эксплуатационным режимом сварочного трансформатора является режим:	А) «XX» Б) «К3» В) номинальный Г) переходный
3	Это схема сварочного трансформатора:	А) с встроенным реактором Б) с реактивной катушкой В) типа СТЭ Г) с дросселем
4	Внешняя характеристика сварочного трансформатора изменяется при изменении:	А) U ₁ ,I ₁ ; Б) U ₂ ; I ₂ В) число витков Г) число пластин
5	Внешней характеристикой сварочного трансформатора называется зависимость;	A) $U_2 = F(I_1)$ B) $U_2 = F(U_1)$ B) $U_2 = F(W_1)$ Γ) $U_2 = F(I_2)$

- **1.** Проектирование электрических машин: Учебник для ВУЗов И.П. Копылов, Б.К. Клоков, В.П. Морозкин, Б.Ф. Токарев Под ред. И. П. Копылова. 4-е издание, перераб. и доп.- М.: Высш. шк.,2005.-767с.
- **2.** Гольдберг О. Д., Гурин Я. С., Свиреденко И. С. Проектирование электрических машин: Под. ред. О. Д. Гольдберга.- М.: Высш. шк., 2001.- 430с.
- **3.** Копылов И. П. Электрические машины. М.: Высш. шк., 2004.- 607с.
- **4.** Справочник по электрическим машинам: В 2 т. Под общей ред. И.П. Копылова, Б.К. Клокова.- М.: Энергоатомиздат, 1988,1989, 1т. 456с.; 2т. 688с.