

ЭВОЛЮЦИЯ УДАРНОЙ ВОЛНЫ В ПАРОЖИДКОСТНОЙ ПУЗЫРЬКОВОЙ СМЕСИ С ПОВЫШЕННЫМ НАЧАЛЬНЫМ СТАТИЧЕСКИМ ДАВЛЕНИЕМ

КУТУШЕВ А.Г., МАМЫТОВ А.М.

Тюменский государственный архитектурно-строительный университет, г.Тюмень izvestiva@ktu.aknet.kg

В рамках модели двухтемпературной, двухдавленной, односкоростной дисперсной смеси жидкости с пузырьками пара численно исследуется динамика нестационарных ударных волн в парожидкостной среде в зависимости от ее начального статического давления. Особое внимание уделяется анализу влияния процесса межфазного тепломассообмена на трансформацию волн давления в пузырьковой парожидкостной смеси.

Закономерности распространения ударных волн в пузырьковых парожидкостных средах при различных начальных статических давлениях изучались в целом ряде экспериментальных и теоретических работ [1÷4 и др.]. Несмотря на это, следует констатировать, что отдельные вопросы волновой динамики пузырьковых парожидкостных сред исследованы не в полной мере. В частности, отсутствует детальное исследование совместного влияния фазовых превращений и начального избыточного давления в парожидкостных пузырьковых средах на закономерности распространения нестационарных ударных волн. В связи с этим, в данной работе предпринята попытка проведения такого исследования средствами численного моделирования.

Основные допущения. Пусть имеется двухфазная однокомпонентная смесь жидкости с пузырьками пара. Для математического описания движения такой смеси привлекаются методы и аппарат механики взаимопроникающих и взаимодействующих континуумов. При этом, следуя [5], принимаются следующие главные предположения динамики сплошных многофазных дисперсных сред: размеры пузырьков многократно превышают молекулярно-кинетические масштабы; расстояния, на которых макроскопические параметры смеси или фаз меняются существенно (вне поверхностей ударных волн), много больше размеров пузырьков.

Дополнительно принимаются следующие предположения [3, 6]: пузырьки сферические и монодисперсные; отсутствуют процессы дробления, столкновения, коагуляции и зарождения пузырьков; скорости макроскопического движения фаз совпадают; несущая фаза представляет собой идеальную несжимаемую жидкость, макроскопическая температура которой остается постоянной величиной во все моменты движения; дисперсная фаза описывается моделью идеального калорически-совершенного газа; эффекты вязкости и теплопроводности существенны лишь в процессах межфазного взаимодействия; теплофизические свойства фаз не зависят от температуры и давления; внешние массовые силы пренебрежимо малы.

Для корректного описания динамического, теплового и массового взаимодействия жидкости с пузырьками пара привлекаются следующие допущения: для радиального движения пузырьков справедливо обобщенное уравнение Рэлея-Ламба; давление, плотность и температура внутри пузырьков однородны и удовлетворяют уравнению Клапейрона-Клаузиса для пара, находящегося на линии насыщения; интенсивность межфазного массообмена (конденсации пара или испарения жидкости) определяется разностью тепловых потоков на поверхности пузырьков со стороны паровой и жидкой фаз; поле температуры вокруг пузырьков, необходимое для нахождения потока тепла к межфазной поверхности со стороны жидкой фазы — сферически-симметричное.

Замкнутая система уравнений движения фаз парожидкостной пузырьковой смеси в Лагранжевых переменных (x,t) имеет вид [3, 4]:

$$\begin{split} \frac{\partial \rho_{i}}{\partial t} + \frac{\rho \rho_{i}}{\rho_{0}} \frac{\partial v}{\partial x} &= 4 \left(-1\right)^{i} \pi R^{2} n j, \qquad \frac{\partial}{\partial t} \left(R^{3} \rho_{2}^{0}\right) = 3 R^{2} j, \qquad \frac{\partial v}{\partial t} + \frac{1}{\rho_{0}} \frac{\partial p}{\partial x} = 0, \\ \rho_{i} &= \alpha_{i} \rho_{i}^{0} \quad (i = 1, 2), \\ \alpha_{1} + \alpha_{2} &= 1, \qquad \rho = \rho_{1} + \rho_{2}, \\ \alpha_{2} &= \frac{4}{3} \pi R^{3} n, \quad p = \alpha_{1} p_{1} + \alpha_{2} \left(p_{2} - \frac{2\sigma}{R}\right), \\ \rho_{1}^{0} &= const, \qquad \frac{dT_{2}}{dp_{2}} = \frac{T_{2}}{\rho_{2}^{0} l} \left(1 - \frac{\rho_{2}^{0}}{\rho_{1}^{0}}\right), \qquad p_{2} &= \rho_{2}^{0} B T_{2}, \end{split}$$

$$\rho_{1}^{0}c_{1}\left(\frac{\partial T_{1}}{\partial t}+w_{1}\frac{\partial T_{1}}{\partial r}\right)=\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(\lambda_{1}r^{2}\frac{\partial T_{1}}{\partial r}\right), \qquad w_{1}=w_{1R}\frac{R^{2}}{r^{2}},$$

$$r=R\alpha_{2}^{-\frac{1}{3}}: T_{1}=T_{0}. \quad r=R: \quad T_{1}=T_{2}, \quad jl=-q_{1R}-q_{2R}, \quad q_{1R}=-\lambda_{1}\frac{\partial T_{1}}{\partial r}\Big|_{r=R}, \quad q_{2R}=\frac{R}{3}\left[\frac{c_{p2}T_{2}}{l}\left(1-\frac{\rho_{2}^{0}}{\rho_{1}^{0}}\right)-1\right]\frac{\partial p_{2}}{\partial t},$$

$$(1-\varphi_{1})R\frac{\partial w_{1R}}{\partial t}+1,5(1-\varphi_{2})w_{1R}^{2}+\frac{4v_{1}}{R}w_{1R}=\frac{1}{\rho_{1}^{0}}\left(p_{2}-p_{1}-\frac{2\sigma}{R}\right), \quad \frac{\partial R}{\partial t}=w_{1R}+\frac{j}{\rho_{1}^{0}},$$

$$\varphi_1 = 1,5 \frac{\alpha_2^{\frac{1}{3}} - \alpha_2}{1 - \alpha_2},$$
 $\varphi_2 = \frac{(2 + \alpha_2)\alpha_2^{\frac{1}{3}} - 3\alpha_2}{1 - \alpha_2}.$ Здесь $\rho_i^0, \rho_i, \alpha_i, p_i$ – истинная и приведенная

плотности, объемное содержание и давление i -ой фазы $(1-жидкости, 2-пузырьков); <math>\rho_0, \rho, p, v$ — средние начальная и текущая плотности, приведенное давление и массовая скорость смеси; n — число пузырьков в единице объема; R, w_{1R} — текущий радиус пузырька и радиальная скорость жидкости на межфазной границе; j — интенсивность фазовых превращений на межфазной поверхности; v_1, σ, c_1, l — кинематическая вязкость, поверхностное натяжение, удельные теплоемкость и теплота парообразования жидкости; B_2 — газовая постоянная; c_{p2} — удельная теплоемкость пара при постоянном давлении; T_2 — температура паровой фазы; r — радиальная Эйлерова координата, отсчитываемая от центра пузырька; $T_1 = T_1(x,r,t)$ — температура жидкости вокруг пузырька; T_0 — температура жидкости вдали от поверхности пузырька; q_{iR} — тепловой поток от i -ой фазы к межфазной границе; ϕ_1 и ϕ_2 — поправочные коэффициенты, учитывающие в уравнении Рэлея-Ламба неодиночность пузырьков.

Постановка задачи и некоторые результаты. Пусть в трубу, заполненную однородной термодинамически-равновесной монодисперсной пузырьковой смесью, вдвигается непроницаемый поршень, на поверхности которого поддерживается не зависящее от времени постоянное давление p_e . Требуется изучить влияние процессов межфазного тепломассообмена и начального статического давления в двухфазной среде на эволюцию в ней проходящей ударной волны.

Начальные и граничные условия для сформулированной задачи имеют вид: t = 0: $p_1 = p_0$,

$$p_2 = p_0 + \frac{2\sigma}{R_0}, R = R_0, \alpha_2 = \alpha_{20},$$

$$T_1 = T_2 = T_0$$
, $w_1 = v = 0$. $x = 0$: $p = p_e = const$, $x = \infty$: $p = p_0$.

Численное интегрирование уравнений движения пузырьковой смеси с упомянутыми выше начальными и граничными условиями осуществлялось по методике [6, 7] посредством вычислительной программы, написанной на алгоритмическом языке «Фортран». Контроль точности осуществлялся путем пересчета на более мелких сетках.

Расчеты выполнялись для пароводяных смесей при T_0 =373 К и p_0 =1 бар, а также при T_0 =424 К и p_0 =5 бар. Значения термодинамических параметров пара и воды при указанных условиях приведены в табл. 1. Начальный радиус пузырька (R_0) полагался равным 1 мм. Исходное объемное содержание пара в смеси (α_{20}) принималось равным 0.05. Давление на поршне, инициирующее ударную волну (p_e), взято равным 1.4 бар.

Таблица 1

Теплофизические свойства воды и водяного пара на линии насыщения						
P·10 ⁻⁵ ,	T_s ,	$\rho_1^{\ 0}$,	$\rho_2^{\ 0}$,	$\sigma \cdot 10^3$,	$\mu_1 \cdot 10^3$,	$\mu_2 \cdot 10^6$,
Па	К	$\kappa\Gamma/M^3$	$\kappa\Gamma/M^3$	Н/м	$H\cdot cek/m^2$	Н·сек/м²
1	373	957.8	0.6	58.9	0.279	12.1
5	424	915.7	2.62	48	0.181	13.9
P·10 ⁻⁵ ,		λ_1 ,	$\lambda_2 \cdot 10^3$,	c ₁ ,	c_2 ,	1,
Па	γ	$BT/(M \cdot K)$	$BT/(M\cdot K)$	кДж/(кг•К)	кДж/(кг•К)	кДж/кг
1	1.28	0.68	24.8	4.216	2.034	2258.2
5	1.24	0.686	30	4.31	2.32	2117.4

TOP Transoning to the Local Market Control of the Local Ma

На рис. 1 представлены некоторые результаты численного счета. В левой колонке графиков показаны расчетные осциллограммы давления и объемного паросодержания за ударной волной, распространяющейся по пузырьковой парожидкостной смеси с «замороженным» межфазным массообменном (j=0) с начальным статическим давлением 1 и 5 бар. Данный пример расчета, при прочих одинаковых условиях, соответствует пузырьковой газожидкостной среде. Из рис. 1 видно, что при отсутствии фазовых превращений с увеличением начального давления (p_0) в смеси наблюдается замедление межфазного теплообмена, приводящее к некоторому увеличению скорости распространения ударной волны. Кроме того, с ростом p_0 усиливается осцилляционный характер структуры ударной волны в пузырьковой смеси.

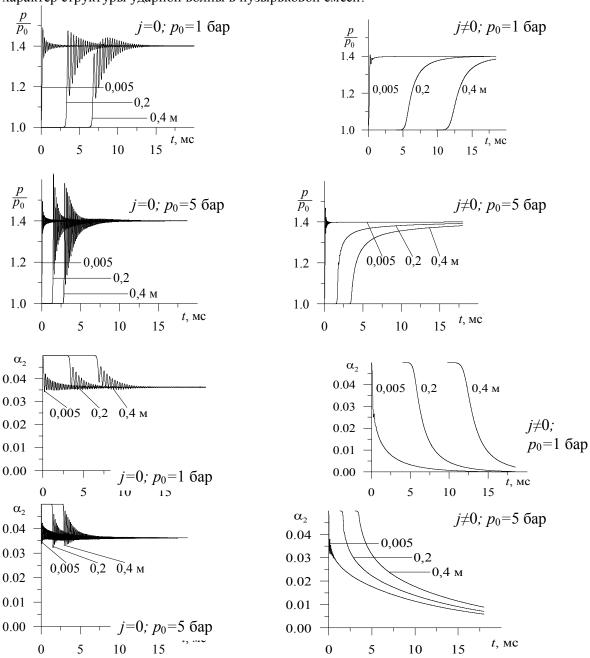


Рис.1. Расчётные «осциллограммы» давления (p/p_0) и объёмного паросодержания в пузырьковой смеси в трёх сечениях ударной трубы (x=0,005; 0,2 и 0,4 м) за нестационарной волной сжатия, генерируемой вдвигаемым поршнем (p_e/p_0 =1,4). Исходная объёмная доля пара α_{20} =5%; начальный диаметр пузырьков 2 мм. Значения j≠0 и j=0 соответствуют случаям наличия и отсутствия в смеси фазовых превращений.

В правой колонке графиков изображены аналогичные результаты, соответствующие распространению ударной волны в парожидкостной пузырьковой смеси с межфазным массообменом $(j\neq 0)$ и начальным давлением 1 и 5 бар. Как видно из приведенных расчетных

данных с ростом p_0 так же, как и в случае смеси с j=0, имеет место увеличение скорости распространения ударной волны. При этом, с ростом p_0 замедляется снижение паросодержания в смеси. Отмеченные особенности поведения ударной волны и возмущенной смеси обусловлены процессом конденсации пара (j<0) в пузырьках.

Как свидетельствуют данные численного исследования интенсивность конденсации пара в пузырьках в смесях с большим давлением (p_0 =5 бар) почти на порядок меньше аналогичной величины в смеси с меньшим давлением (p_0 =1 бар). Данное обстоятельство связано с тем, что согласно [3] интенсивность фазовых превращений в смеси (j) пропорциональна безразмерному параметру ($c_{p1}T_0/l$)·(ρ_1^0/ρ_{20}^0), в котором первый сомножитель зависит от теплофизических свойств несущей жидкой фазы, а второй сомножитель – от относительной плотности фаз. Для ударных волн умеренной интенсивности величина $\rho_1^0/\rho_{20}^0 >> 1$. Для p_0 =1 и 5 бар значение $c_{p1}T_0/l \approx const$, а относительная плотность фаз (ρ_1^0/ρ_{20}^0) зависит от начального давления ($\rho_{20}^0 \sim p_0$, $\rho_1^0 = const$).

В заключение отметим, что в результате проведенного численного исследования показана определяющая роль величины ρ_{20}^0/ρ_1^0 на динамику распространения ударных волн в парожидкостных пузырьковых смесях в зависимости от их начального давления. Влияние других теплофизических параметров пара и жидкости на динамику протекания волновых процессов в пузырьковых средах за волнами умеренной интенсивности является менее существенным, чем относительная плотность фаз.

Литература

- 1. Покусаев Б.Г. Волны давления в пузырьковых газо- и парожидкостных средах. В кн.: Гидродинамика и теплообмен в одно- и двухфазных средах. Новосибирск:ИТФ СО АН СССР, 1979.–С.26-36.
- 2. Накоряков В.Е., Покусаев Б.Г., Прибатурин Н.А., Шрейбер И.Р. Распространение возмущений давления конечной амплитуды в пузырьковой парожидкостной среде // ПМТФ. 1982, №3. С. 84-90.
- 3. Зыонг Нгок Хай, Нигматулин Р.И., Хабеев Н.С. Нестационарные волны в жидкости с пузырьками пара // Изв. АН СССР. МЖГ. 1984, № 5. С. 117-125.
- 4. Кутушев А.Г., Мамытов А.М. Эволюция ударной волны в парожидкостной пузырьковой смеси под воздействием постоянного возмущающего давления поршня // Нефть и газ Западной Сибири: Материалы Всерос. научно-техн. конф. Т.З. Тюмень: Изд-во ТюмГНГУ, 2007. С. 154-157.
- 5. Нигматулин Р.И. Динамика многофазных сред. Ч. 1÷2. М.: Наука, 1987. 464с.
- 6. Nigmatulin R.I., Khabeev N.S., Zuong Ngok Hai. Waves in liquids with vapour bubbles // J. Fluid Mech. 1988. V.186. P. 85-117.
- 7. Губайдуллин А.А., Ивандаев А.И., Нигматулин Р.И. Нестационарные волны в жидкости с пузырьками газа // ДАН СССР. 1976. Т.226, № 6. С. 1299.
- 8. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972.

