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Abstract: This paper deals with controlled presentation of various metrical and
topological spaces which can be implemented by means of computer. The paper contains a
survey of preceding methods and definitions to provide presentation of a part of a space and
proposes a new generalized definition.
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JKAJITIBIIIAHT AH KUHEMATUKAJIBIK MEUKUHIUKTEPJIMH KOMITbIOTEPJIE
KOPCOTYYCY
7Kopaes A.X. - MEXaHHKA-MaTeMATHKAJIBIK (DAKY/JIbTCeTHHHH AOLECHTH
Kbiproi3-O36ex ynnBepcuteTu
DaekTpoHayk moura: zhvI967@mail.ru

Annomayun: Komnvlomep apruliyy diCy3020 AULIPLLLYYYY, ap Mypoyy MempuKkaiblK
HCAHA MONONOSUSIBIK MEUKUHOUKMEPOUH DAWKAPBLIYYYY KOpCOmyycy 0yl mMakaiaoa Kapaiam.
Makanaoa  meluKuHOUKMUH — OONY2yHYH — Mypoazvl  KOPCOMYYCYHYH — VCYIOApblH — HCAHA
AHBLIKMAMANAPLIH KAPOO MHCAHA Y3VH-MYYpacbl 0ap 00beKmmuH KbulUMbLIOOOCYH HcAOOYyUy
AHBIKMAMANAP HCAHA KUHEMAMUKANBIK MEUKUHOUKMEPOe KblUMbLIOOOHYH He2UZUHOE OIUOMOY YU
aHvikmama oap.

Ypynmmyy  ce3z0ep:  mononocusnvix  MeUKUHOUK,  MEMPUKAILIK — MEUKUHOUK,
KUHEeMAMUKANbIK MEeUKUHOUK, KOMNbIOMED, PUMAHObIK Oem, KbILMbLIO00, AUIAHYY, OUOM.

KOMIIBIOTEPHOE ITPEJACTABJIEHUE OBOBILIEHHO-KMHEMATHUYECKUX
ITPOCTPAHCTB
7KopaeB A.X.- 10LEHT MEXaHUKO-MaTeMaTH4eCKOro gakyjabrera
Kbipreizcko-Y30ekcknii yHuBepcuTeT
Ya. Ucanosa 79, 714017 Om, Keipreizcran
JaexkTponHast moura: zhvl967@mail.ru

Annomayua: B cmamve paccmampueaemcs ynpasnsgemoe npeoCmasieHue pasiudHblx
Mempuieckux U MonoI02UYECKUX NPOCMPAHCME, KOMOpoe Modicem Oblmb peanru3068aHo Ha
Komnviomepe. B cmamve codepocumcsi 0030p npeovlOyuux memooos u onpeodeieHuti O
npeocmaeienus yacmel NPOCMpPaHCcmea U npeoiazaemcs Hogoe 0600ujeHHoe onpeoeeHue.

Knrwouesvie cnosa: mononocuueckoe npoCMpaHcmeo, Mempuieckoe npoCcmpaHcmeo,
KUHeMamuyeckoe npoCcmpancmeo, KOMNbomep, pUMaHo8a n08ePXHOCMb, 08UJICEHUe, BpAUyeHUe,
PAa3ZMepHOCb.

1. Introduction
We propose the following: a presentation of a topological space on computer is said to be
topological (natural, continuous) if some points of the space are presented and images of close
points are close.
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We introduce a corresponding definition of space with sets of given lengths which
generalizes the known definition of kinematical spaces.
The second section contains a survey of preceding methods and definitions for computer
presentation of topological spaces.
2. Survey of preceding results on computer presentation
We will use denotations R := (—0,20); Ry 1= [0, o); Q“:=[0; 11X, k = 1, 2, 3,... is a k-
dimen- sional cube (segment, square, cube, ...); ¢ is a small positive parameter. Also, we will
extend func- tions to sets with same denotations.
S.Ulam [6] was the first to propose an active work on computer to present a virtual (four-
dimensional Euclidean) space, but he did not propose any concrete methods of implementation.
The idea of [7] can be demonstrated by the following example. If the figure o is put onto
a common ring band and the user can "look along" the band sufficiently far then the user will see
the sequence of diminishing figures - > o2 2o....

If the user “does” same for a Mobius band then the user will see the sequence of diminishing

In [4] it was proposed to use controlled (interactive) motion in non-Euclidean topological
spaces by means of computer. For example, the Mobius band was implemented as follows. The
user “is standing” on a band and sees the figure > (the horizon is less than half of the length of
the band). The user “goes” and soon see the figure .

In [1] a general conception of a kinematical space and implemented some kinematical
spaces (Riemann surfaces, Mobius band, projective plane, topological torus) with search in them
was introduced.

Definition 1. A computer program is said to be a presentation of a computer kinematical
space if:

P1) there is an (infinite) metrical space X of points and a set X; of program-presentable
points being sufficiently dense in X;

P2) the user can pass from any point x; in X; to any other point X, by a sequence of adjacent
points in X; by their will;

P3) the minimal time to reach x, from x; is (approximately) equal of the minimal time to
reach x, from x;.

The space X is said to be a kinematic space; the space X; is said to be a computer
kinematic space; this minimal time is said to be the kinematical distance px between x; and X;
a sequence of adjacent points is said to be a route. Passing to a limit as X; tends to X we obtain
the following.

There is a set K of routes; each route M, in turn, consists of the positive real number Ty
(time of route) and the function my : [0, Tw] — X (trajectory of route);

(K1) For x1 #x2 X there exists such M eK that my(0) = x; and my(Twm) = X2, and the set of
values of such Ty is bounded with a positive number below;

(K2) If M={Tn, mu(t)} € K then the pair {Ty, mm (Tm —t)} is also a route of K (the reverse
motion with same speed is possible); (cf. P3).

(K3) If M={Tm, mu(t)} € Kand T*e (0, Tw) then the pair: T* and function m*(t)=mpy(t)
(0 <t <T*) is also a route of K (one can stop at any desired moment);

(K4) concatenation of routes for three distinct points Xy, Xz, Xs.

Methods of constructing such spaces and marking to facilitate motion in them were
proposed in [2] and applied in [5].

A similar definition was proposed in [3].

Denote the set of connected subsets of R as In. A path is a continuous map y :In - X (a
topological space).
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Definition 2. The following definition is composed of some definitions in [3] (briefly) redu-
ced to a "a priori” bounded, path-connected space X; denotations are slightly unified.
A length structure in X consists of a class A of admissible paths together with a function (length)
L: A—> Rs.

The class A has to satisfy the following assumptions:

(A1) The class A is closed under restrictions: if ye A, y: [a, b]— X and [u, v] < [a, b] then the
restriction y |y, v € A and the function L is continuous with respect to u,v;

(A2) The class A is closed under concatenations of paths and the function L is additive
correspond- dingly. Namely, if a path »: [a, b] — X is such that its restrictions y 1, 7, to [a, c]
and [c, b] belong to A, then so is 7.

(A3) The class A is closed under (at least) linear reparameterizations and the function L is
invariant correspondingly: for a path y< 4, »: [a, b]— X and a homeomorphism ¢ : [¢, d] — [a,
b] of the form ¢(t) = ot + S, the composition 1{¢(t)) is also a path.

(A4) (similar to (KI)).

The metric in X is defined as
oL(zo, z1) ;= Inf{L(») |y: [a, b] = X; y € A; y(a) = 205 y(b) = 71}.

Kinematical investigation of unknown spaces defined by differential and algebraic equa-
tions was proposed in [8].

Definition 3. Dim-dimension (or "cover"- or Lebesque one): it is defined to be the mini-
mum value of n, such that every open cover (set of open sets) C of X has an open refinement with
number of overlappings being (n + 1) or below.

Ind-dimension: by induction Ind(&) = — 1; Ind(X) is the smallest n such that, for every
closed subset F of every open subset U of X, there is an open set V in "between F and U " such
that Ind(Boundary(U)) < (n — 1).

Minkovski (Min)-dimension. Min(X) := lim{ (- log N./log &)| — 0} where N, is the mini-
mal cardinality of &-sets in X. If lim does not exist then lim inf (Min_) and lim sup (Min.) to be
con- sidered.

Remark 3. For metrical spaces Dim-dimension and Ind-dimension coincide. Obviously,
Min(Q") = k.

New types of dimensions based on motion were announced in [9] and [10].

Definition 1 is not sufficient for motion of point sets. One of possible extensions of Defi-
nition 1 is the demand of isometric of all shifts of a set during motion but it is too binding. We
proposed [11]

Definition 4. Given a set S — K. A set of routes with functions {M(p) : p < S} with a same
time T is said to be a motion of S with bounded deformation if there are such constants 0 <a_ <
1 <a, that
(M1)(p €5)(M(p)(0)=p);

(M2) (vp1=p2 € S)( vt & [0,T])(ox(M(p2)(t),M(p2)(1)) € [a-,a+] px(P1.,P2))-

Definition 5. If additionally

(R1) there exists such set ("axis™) C € S that M|c is the identity operator;

(R2) (¥p € S{M(S)(0) = M(S)(T)) (initial and final sets coincide);

(R3) (V1 = t; € (0,T))(M(S)(t))HM(S)(t) = C) (the set S is "thin" and does not pass by itself
excluding the axis);

then such motion is said to be a "proper rotation” (with "bounded deformation™ correspondingly)
around C.

Remark 4. To define "rotation” of a general (spacious) objects in a space without geo-
metry is very complicated. For our purposes such "proper rotation™ is sufficient.

We proposed
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Definition 6. A set B of a kinematical space X is said to be "fully observable" if there
exists a route including all this set.

Definition 7. A kinematical space X is said to be "locally observable™ if each its point has
a "fully observable™ neighborhood.

Definition 8. A locally observable kinematical space X is said to be "observable™ if each
its bounded set is "fully observable™.

As usually, we will call a bijective continuous image of a segment [0,T] a "segment in ki-
nematical space"”. Also, we will call the trace of bijective motion of a segment with one of end-
points fixed "triangle™ etc.

Definition 9. "Orientation dimension™ Ori- is 1 for observable spaces. If there exists such
"segment" with endpoints z; and z; and an inner point z, and such rotation with bounded deforma-
tion around z, that z; passes to z, and vice versa then Ori(K) > 2; if there exists a "triangle” with
vertices z;, z; and zz and a point zo within the "segment" z;— z, which can be rotated around the
seg- ment zo —z3 with bounded deformation such that z; passes to z, and vice versa then Ori(K) >
3 etc.

Obviously, Ori(Q¥) = DIm(Q"),k =1, 2,3,....

Remark 5. "Motion" of such lengthy sets into themselves is not sufficient for such defi-
nition because a triangle z;—z,—z3 can be transformed continuously into triangle z,—z;-z3 by
motion along the Mobius band but its dimension is 2.

The next definition also begins with observable spaces.

Definition 10. (For bounded spaces only). Kinematical (Kin-) dimension is 1 for obser-
vable spaces. By induction: If not( Kin(X)<n), n >1 and there exists function My(as, ay, ..., an, t):
R."xR:+ — X defined for a;<a, <...<a,, being a route for fixed ay, a, ..., an, such that
1) My(ay, @, ..., an, 0) = X (a fixed element in K);

2) Mp(ay, ay, ..., an, t) does not depend on a; being greater than t;

3) ox(Mn(ar’, az’, ..., an’, t), My(a1”, a2”, ..., an”, )< | ar’—a1”| tlaz'—ap”’|+... Hlan’'—an”|;
4) Trajectories of Mp(as, @z, ..., an, t) for all a;cover the set X

then Kin(X)=n+1.

It is obvious that Kin(Q') = 1.

4. Definition of generalized kinematical spaces

Definition 11. There is a family K of subsets of the set X called lengthies; each lengthy has
the length >0.

The space X is said to be a generalized kinematic space.

(G1) For each x; # X, eX there exists such lengthy M eK that x;, X, eM and the set of lengths
of such M is bounded with a positive number below; this infinum is said to be the generalized
kinematical distance px between x; and x,.

(G2) If x1,%2 eM; and X2, X3 €M, then there exists such lengthy M3 eK that X3, X2, X3 eM3
and length(Ms) <length(M;)+ length(M).

If

(G3) For each x; # x, X there exists such lengthy My, eK that length(M12) =px (X1, X2)
then the generalized kinematical space X is said to be flat (with respect to K).
If a lengthy is presented as a route then Definition 11 generalizes Definition 1.
In this paper we expound this approach and give definitions new types of dimensions:
successful observation and "almost observation™ from observable domains.
Definition 12. If X as a set is a lengthy then the generalized kinematic space X is said to
be 1-dimensional with respect to K.
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Definition 13. A bounded generalized kinematical space X is said to be "almost
observable™ if

(Ve > 0)(M eK)( Hausdorff distance between X and M < &).

Denote the lower bound of length of such M for fixed &as W/(X).

The notion of a compact space can be expressed by "almost observability”: if a
generalized kinematical space is almost observable and complete then it is compact.
As N, ~W(X)/swe obtain "Minkovski-kinematical™ Min-kin-dimension:

Definition 14. Min-kin(X) := 1 — lim{ logWX)/log & | & —0}. If this lim does not exist
then lim inf (Min-kin_) and lim sup (Min-kin.) to be considered.

5. Conclusion
We hope that the new definitions in this paper would provide more effective computer
presentations for various types of topological and metric spaces.
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