
УДК 004.415.2:338.486.61

ABOUT DEVELOPMENT OF THE PROJECT “PERSONAL
MEDICAL TELEMONITORING”

Rena Sultangazieva, PhD docent, K S T U nam ed after I.Razzakov, 720044, Kyrgyz Republic, Bishkek
city, Ch.Aitmatov Avenue, 66, E-mail: renasultansazieva(d),mail.ru
Miklos Kozlovszky, PhD, John von Neumann Faculty o f Informatics, Obuda University, H-1034,
Budapest, Becsi str. 96/b., Hungary, E-mail: kozlovszky. miklos(a),nik. uni-obuda. hu

Abstract. This work presents the next steps for the development of a mobile service for
personal ECG monitoring, which was started with the financial support of the CAREN-EYR
(Enlighten Your Research) program with the technical support of the CAREN network and Obuda
University (Hungary). The purpose of this project is to develop the service "Personal ECG
Monitoring", which allows to register patients ECG data using mobile medical sensors, then to send
data by the Android application via a cellular network to the server for providing operational
information to the doctors from National Center of Cardiology. Different ECG sensors from different
vendors use different data formats: JPG, PDF, SCP, DICOM, MFER, HL7, binary. To develop a
unified database of patients, it is necessary to resolve how to integrate ECG data of different formats.
To protect medical data, we use the HTTPS protocol of CRENA, as well as Base64 coding and OAuth
based secure authentication.

Keywords: ECG monitoring, telemedicine, mHealth, Savvy ECG, mySignals, Olimex

Introduction
This work presents the next steps for the development of a mobile service for personal

remote ECG monitoring, which was started with the financial support of the CAREN-EYR
(Enlighten Your Research) program with the technical support of the CAREN network and Obuda
University (Hungary). The purpose of this project is to develop the service "Personal ECG
Monitoring", which allows to register patients ECG data using mobile medical sensors, then to send
data by the Android application via a cellular network to the server for providing operational
information to the doctors from National Center of Cardiology in Bishkek (Kyrgyzstan).

To implement the ECG monitoring service, it is necessary to solve the questions: what mobile
ECG sensors can be used and what is the price of these sensors to form the cost of the service.

Currently, the Institute of Cardiology uses mobile PC-based ED AN ECG (Китай) for Holter
Daily Monitoring. ECG data is transferred to the computer of the medical professional with cable.
Wired communication requires the physical presence of the patient and they have to repeatedly come
to the hospital premise (Bishkek). Russian company Shvabe presented a mobile ECG to the National
Center of Cardiology. The mobile ECG allows you to measure the ECG data of patients in rural area
and send data via the Internet to the cardioserver for analysis and to the ECG Automatic Interpretation
Server, that is a cloud Internet service of Russia company. But this system is not commercialized yet
and fully owned by the Russian company.

186 ГУМАНИТАРНЫЕ HA УКИ

Our project extensively relying on the OpenEMR software solution [5]. OpenEMR is an Open
Source electronic medical record and medical practice management software. Crucial part of our
project is to identify available market ready low-cost, portable, medical ECG devices. We are
integrating these sensor devices into OpenEMR and furthermore our aim is to develop an integrate
server solution to enable interoperability between the various ECG sensor devices using different
ECG data formats.

The market of portable ECG sensors is not yet developed in Kyrgyzstan, while a wide
number of wearable devices with heart rate measurement capabilities are now available, both stand
alone devices and integrated with Internet-of-Things infrastructures. In the last decades, many
standardization efforts have been made with ECG data. Most of the ECG devices are using
proprietary data protocols and the vast amounts of available standards makes true interoperability a
difficult task..

To develop a unified common measurement database for the patients, it is necessary to resolve
the existing interoperability issues between major standards and realize integrated, automatic ECG
data format conversion. ECG signals can be stored in SCP-ECG, DICOM-ECG, HL7 aECG or HL7
FHIR formats just to name the most important ECG standards formats. In addition to the many ECG
standards, we can still observe today's (mostly binary) format used by many equipment
manufacturers. The existing many formats prevent the patient's ECG data from being simply unified
(eg.: resting ECG, outbound ECG, ECG for clinical trials, ECG format for remote/mobile patient
monitoring devices). The most commonly used ECG standards nowadays support a 12-channel ECG
data, where the channels are from 30 seconds up to a one-minute length of data recording. Most of
the wearable equipments used for remote patient monitoring use a single channel and can take hours,
or a week-long recording.

Table 1. HL7 aECG vs. SCP-ECG vs. DICOM ECG standard formats - comparison

HL7 aECG SCP-ECG DICOM
ECG

Small file size Big Small Medium

Human readable Yes No No

Simple schema No No No
Several modalities in a single

format No No Yes

XML vs. Binary XML Binary Binary

Easy to use Yes No No
Continuous ECG streaming

data storage No No No

The result is large set of proprietary and standard ECG file formats based on XML, JSON,
JPEG, PDF or other solutions. The number of wearable ECG devices for remote patient monitoring
is currently still limited, but tendencies are increasing. Some devices are sold as standalone portable
ECG devices (eg.: Meditech CardioBlue, Savvy Pcard) and other wearable devices have additional
features (eg.: Apple iWatch4 or v5, Sanatmetal WIWE, Beurer BM 95). The variety of available
formats can cause problems, when trying to collect patient data for ECG reports, since we do not
know at the server side, which ECG device the patient is using for the measurement in advance.
To collect and store ECG data (and patient data), we examined the following ECG sensors:

1) Savvy ECG (Ljubljana, Slovenija) is a single-channel ECG with long-term recording
capability that communicates via Low Power Bluetooth with the mobile phone. This sensor was
kindly provided by the Biotech Research Center at Obuda University for the implementation of our
project. The Savvy ECG has a mobile application, which is capable to store and forward ECG
measurements as pdf files to a pre-defined email address or archive it locally at the smartphone. At
the first stage of the project, we developed the architecture shown in the figure 1. [1]

ECG data from the Savvy sensors were sent to FTP server installed in the information center
at KRENA. The official site SAVVY provides the exe-file of VisECG program, which makes it
inconvenient to use on Linux systems. VisECG is an analysis and visualization program for ECG
measurements recorded by a SAVVY device via MobECG Android application. Doctors cannot view
detailed data via the server’s web interface; they have to copy the patient’s s2 - file to their computer
for more detailed analysis.

Figure 1. Architecture of the mHealth network

At the second stage, we developed mobile application, which found ECG files saved in the
Android’s internal memory, converts to json format and sends to the server (fig.2)

Figure 2. Mobile app for Savvy

2) MySignals, eHealth and Medical Development Platform for Arduino is an
advancement stage for therapeutic gadgets and eHealth applications [2]. Data from MySignals is
scrambled and sent to the Primary Health cloud database through WiFi or Bluetooth. Developers may
send the information coming from MySignals to a third party Cloud server using directly the WiFi.
(fig.3)

Figire 3. MySignals

3) AliveCor Kardia is a hand-held single-lead Electrocardiography (ECG) device that utilizes
a smartphone to detect and monitor Atrial Fibrillation (AF).

^ AliveCor

Kardia app

7%

c22)
Save in internal memory

/data/data

Figure 4. AliveCor Kardia

Our department has this ECG sensor, but the mobile application Kardia is not yet operational
in Kyrgyzstan. The results of research work [3] demonstrate that smartphone applications that interact
with medical devices provide an avenue for obtaining digital evidence from these devices. The
recovered medical data (pdf, mp4) could be sent to our server.

3) Olimex ECG/EMG shield which allows Arduino like boards to capture
Electrocardiography Electromiography signals [4]. The shield opens new possibilities to experiment
with bio feedback. Our Android app saves the data received from the shield in the internal memory
of the smartphone as a txt file, converts it to json format and sends it to the server.

http://en.wikipedia.org/wiki/Biofeedback

Figure 5. Olimex ECG/EMG shield

Figure 6. Architecture of the service

Communication
To receive and store data from the medical sensors, the RestFull server architecture is

implemented on the server of Caren. The proposed service is realize RESTful architecture and is
developed within Ruby on Rails Framework using Ruby language. The Database Management
System is based on PostgreSQL and is responsible for data persistence. For the storage of the data,
due to the dynamic and heterogeneity of medical data, we used the PostgreSQL databases. These
databases are focused on dealing with high data volumes, with a good grade of scalability/flexibility
and solving the traditional performances issues of relational databases with heterogeneous data.
Patient medical files are stored in folder Public of our application, patient database contains a link to
medical files.

The RESTful API implements the endpoint that allows Creating, Reading, Updating and
Deleting remote resources and their relationships. It exposes APIs to help Android app communicate
with the PostgreSQL database. RESTful is not dependent on any protocol and it makes use of existing
well-known standards, such as HTTP, URI, JSON and XML.

Secure data exchange
To protect medical data, we used the following solutions to support secure and reliable

communication between the clients and server:

1) HTTPS protocol. HTTP is the standard protocol for client-server communication in
the context of mobile apps and offers no security features. To ensure confidentiality and integrity
of data sent through an untrusted medium, the Transport Layer Security (TLS) protocol with the
protocol are used. TLS-secured HTTP connections are called HTTP Secure (HTTPS) connections.
The KRENA association has a certified HTTPS protocol. Ruby on Rails Framework uses the
force_ssl method in the controller to force the use of the HTTPS protocol. The SSL certificate and
key are not handled by Rails but above it on a load balancer.

2) Basic Authentication - Rest client indicates its login and password to access the Rest
service. The login and password are transmitted over the network as Base64 encoded text and can be
easily decoded by any user. When using this method, it is advisable to use the HTTPs protocol.

In the application library «devise» deals with authentications. Devise is a flexible
authentication solution for Rails. It is composed of 10 modules. For example, Database
Authenticable — provides an opportunity to enter the system based on the encrypted and stored
password in the database. Authentication is done by a POST request or using HTTP Basic
Authentication. Devise uses «Bcrypt» to hash the password. «Bcrypt» library is used to encrypt and
store passwords, «Bcrypt»-adaptive cryptographic hash function for key generation. Hash password
is stored in the database instead of a valid password. During authentication, the hash of the user's
password is compared with its hash in the database.

3) Token Based Authentication - after successful authentication , the server creates token
with a secret and sends the it to the client. The client stores includes token in the header with every
request. The server would then validate the token with every request from the client and sends
response.

setRequestProperty ("Token"; token);

Figure 7. Token-based authentication

Token-based authentication is stateless - it does not store anything on the server but creates a
unique encoded token that gets checked every time a request is made JSON Web Tokens carry
information via JSON, is comprised of plain strings, so they can be easily exchanged in a URL or a
HTTP header. Devise Token Auth- simple, multi-client and secure token-based authentication for
Rails.

Аuthentication of a mobile application requires tokens, not cookies. Devise Token Auth gem
updates tokens on every request and expires after a short time, so the application is protected. In
addition, it maintains a session for each client / device.

https://github.com/lynndylanhurley/devise_token_auth
https://github.com/lynndylanhurley/devise_token_auth

Илья Светличный (2019-06-10 18:31:40 UTC)

Figure 8. Web interface of the application

A web application has been developed, designed to provide real-time counseling and
treatment assistance.

Conclusion
The tasks of integrating different ECG data formats into the server database were solved.

Ready low-cost, portable, medical ECG devices available on the market have been reviewed. To
receive and store data from the medical sensors, the RestFull server architecture is implemented on
the server of Caren. Certified HTTPS protocol of the KRENA association was used for the
interaction between server and mobile applications. Token-based cryptographic authentication and
authorization systems are used.

REFERENCES
1. User’s Manual Savvy, http://bodvcontrolmt.cz/doc/UM-l. 19.3-EN.pdf
2. MySignals cHealth and Medical loT Development Platform Technical Guide
3. Grispos, George, William Bradley Glisson and Peter Cooper. "A Bleeding Digital

Heart: Identifying Residual Data Generation from Smartphone Applications Interacting with Medical
Devices." Proceedings of the 52nd Hawaii International Conference on System Sciences. 2019.

4. SHIELD-EKG-EMG bio-feedback shield USER’S MANUAL
5. OpenEMR https://www.open-emr.org/

http://bodvcontrolmt.cz/doc/UM-l._19.3-EN.pdf
https://www.open-emr.org/

