УДК 574.9 (575.2)

Ибраева К.Б., Калдыбаев Б.К.

ИГУ им. К. Тыныстанова

ЭКОЛОГО-БИОГЕОХИМИЧЕСКАЯ ОЦЕНКА БАССЕЙНА РЕКИ КАРАКОЛ

В статье представлены результаты эколого-биогеохимических исследований почвы, растений, воды и донных отложений реки Каракол, элементный состав сточных вод очистных сооружений канализации г. Каракол

Город Каракол - административный и культурный центр Иссык-Кульской области. В настоящее время город с населением более 67500 человек сталкивается с рядом экологических проблем. Основными источниками загрязнения окружающей среды города являются: выбросы автомобильного транспорта, тепловой электростанции и котельных. Особую проблему для бассейна реки Каракол создаёт полигон с твердыми бытовыми отходами и очистные сооружения сточных вод города. Исходя из выше изложенного, нами была поставлена цель изучения химического состава воды и донных отложений реки Каракол, почвенно-растительного покрова г. Каракол.

В течение года расход воды в реке Каракол подвержен значительным изменениям, наибольшая его величина приходится на июль (18 м³/с), наименьшая — март (1,66 м³/с). Отбор проб воды соответственно был произведен в период межени (5 марта 2014 г.) и в период максимального поверхностного стока (5 июля 2014 г.) [10]. Всего было выбрано 3 пунктов отбора проб воды: 1) р. Каракол, устье р. Кашка-Суу; 2) в черте г. Каракол; 3) устье реки Каракол. Также были отобраны пробы сточных вод очистных канализационных сооружений г. Каракол на разных стадиях очистки (механическая: решетки, песколовки; отстойниках № 1, № 2 и биопрудах).

Были отобраны разовые пробы воды согласно требований ГОСТов [4, 5]. В местах отбора проб воды был произведен отбор проб илисто-глинистых фракций донных осадков реки Каракол и пробы илистых осадков сточных вод очистных сооружений с иловых площадок.

Для определения уровней содержания химических элементов в почвенно-растительном покрове г. Каракол был произведен отбор проб почв, укосы дикорастущих растений, хвоя сосны обыкновенной (*Pinussylvestris*) и листья тополя черного (*Populusnigra*) [4, 5, 12, 13]. В качестве контроля была выбрана территория Каракольского национального парка, удаленная от города на расстоянии 4-5 км.

Гидрохимический и элементный анализ проб воды, почвы и растений был произведен в центральной лаборатории Государственного агентства геологии и минеральным ресурсам КР.

Результаты исследований

Результаты исследований по определению содержаний микроэлементов в почвах г. Каракол представлены в табл. 1. Их условно можно разделить на две группы:

- 1. Микроэлементы содержания, которых в почве на уровне кларков земной коры, почвы и почв населенных пунктов–Ag,Bi,Sn, Mo, W, Ni, Mn, Ti, V, Cr, Ga, Ge,Li, Sr.
- 2. Микроэлементы содержания, которых выше кларка земной коры, почв и почв населенных пунктов—Сu, Zn, Pb,As, Ba, Co.

<u>Медь.</u> Среднее содержание в почвах населенных пунктов меди равно 39 мг/кг, оно почти два раза больше кларка для почв Земли (20 мг/кг) и мало отличается от кларка земной коры 47 мг/кг. Среднее содержание меди в почвах городов с численностью населения менее 100 тыс. человек составляет 28,1 мг/кг [1,3,9]. В Кыргызстане ориентировочно допустимая концентрация (ОДК) меди варьирует в зависимости от типа почвы(33-132 мг/кг). Содержание меди в почвах г. Каракол варьирует в пределах 40-50 меди

мг/кг, повышенные концентрации меди наблюдаются в районе автозаправочной станции «Газпром» 50 мг/кг и в окрестностях полигона ТБО 40-50 мг/кг.

<u>Пинк.</u> В среднем валовое содержание цинка в поверхностном горизонте каштановых почв составляет 31 мг/кг, а для черноземов 45 мг/кг. Кларк цинка в земной коре составляет 83 мг/кг, в почве (50 мг/кг). Кларк почв населенных пунктов 39 мг/кг. Среднее содержание цинка в почвах городов с численностью населения менее 100 тыс. человек составляет 92,4 мг/кг [1, 3, 9]. ОДК цинка в почве варьирует в пределе 55-220 мг/кг. Содержание цинка в почвах г. Каракол варьирует в пределах 100-300. Повышенные концентрации наблюдаются в районе торгового дома «Иссык-Куль» 300 мг/кг и в окрестностях полигона ТБО 150-200 мг/кг.

Таблица 1. Содержание микроэлементов в почвах г.Каракол (мг/кг,абс. сухой вес).

тиолици т. содер	JICCO IIII	Minimp	0001011	CIII OD D	110 100		ipuno	(1111710	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 0 / 11011	BCC).									
Место отбора	Cu	Zn	Pb	Ag	Bi	As	Sn	Mo	W	Ba	Co	Ni	Mn	Ti	V	Cr	Ga	Ge	Li	Sr
Центр города	50	100	30	0,4	1,5	30	6	3	5	500	20	50	600	4000	100	100	15	2	50	300
Автовокзал	40	150	40	0,08	1	20	5	2	3	1500	20	50	800	5000	100	80	15	1,5	50	400
Автозаправ. станция «Газпром»	50	100	80	0,08	1	20	5	2	4	800	20	50	800	4000	100	80	20	2	50	300
Торговый дом «Иссык-Куль»	40	300	40	0,1	0,8	20	5	2	3	2000	20	50	100	5000	100	100	15	1,5	50	500
Полигон ТБО т.1	40	150	50	0,4	-		2	-	-	400	12	20	400	5000	50	40	9	-	-	300
Полигон ТБО т.2	50	200	70	0,3	-		7	-	-	500	12	30	400	5000	50	50	12	-	-	300

Таблица 2. Содержание микроэлементов в растениях г. Каракол (мг/кг, на золу)

Место отбора	Cu	Zn	Pb	Ag	Bi	As	Sn	Мо	W	Ba	Co	Ni	Mn	Ti	V	Cr	Ga	Ge	Li	Sr
	Cu	211	10	11g	Di	113	SII	IVIO	**	Da		111	14111	11	V	CI	Ga	Ge	LI	SI
Центр города 1.Укос	30	450	25	1,2	1	-	2	3	-	400	-	10	400	300	10	10	4	-	15	1500
2. Листья тополя	30	600	20	0,2	2	10	3	2	1,5	600	6	10	1000	500	6	6	6	2	20	2000
3. Хвоя сосны	500	400	15	1,5	-	-	-	7	-	500	-	30	900	1200	15	20	5	-	-	4000
Автовокзал 1. Укос	40	250	15	0,8	1	-	3	5	-	350	-	10	500	400	8	10	5	-	15	500
2. Листья тополя	60	2000	50	0,2	2	10	4	6	1,5	500	6	10	1000	600	10	10	10	2	20	1000
3. Хвоя сосны	300	400	15	0,3	-	-	-	7	-	500	-	20	900	3000	15	40	5	-	-	400
АЗС «Газпром» 1. Укос	30	300	30	1,5	1	-	2	3	-	400	-	20	500	600	10	10	3	-	15	1000
2. Листья тополя	40	600	15	1,5	2	10	3	2	1,5	600	10	50	1000	300	5	10	5	2	20	2000
3. Хвоя сосны	300	400	15	9	-	-	-	12	-	400	-	40	900	2000	15	30	5	-	-	1500
Торговый дом «Иссык-Куль» 1. Укос	30	100	20	0,3	1	-	2	2	-	600	-	20	600	850	5	10	3	-	20	1000
2. Листья тополя	40	400	20	0,1	2	10	3	3	1	1000	20	50	1500	500	6	10	5	2	30	2000

Свинец. Содержание свинца в почвах селитебных ландшафтов составляет 54,5 мг/кг, что в 5,4 раз выше кларка почв Земли, определенного А.П. Виноградовым (10 мг/кг) и в 3,4 раза больше кларка земной коры (16 мг/кг) [1, 3, 9]. Среднее содержание свинца в почвах городов с численностью населения менее 100 тыс. человек составляет 39,5 мг/кг. ОДК свинца в почве варьирует в пределе 32-130 мг/кг. Содержание свинца в почвах г. Каракол варьирует в пределе 30-80 мг/кг, повышенные концентрации наблюдаются в районе автозаправочной станции «Газпром» 80 мг/кг и в окрестностях полигона ТБО 50-70 мг/кг.

Серебро. Содержание в почвах населенных пунктов серебра равно 0,4 мг/кг. Его содержание в почвах Земли определено не точно (около 0,1 мг/кг). Высокие содержания серебра в почвах, вероятно, определяются процессами техногенеза. Так среднее содержание Ад в почвах городов с населением менее 100 тыс. человек составляет 0,37 мг/кг. Содержание серебра в почвах г. Каракол варьирует в пределе 0,08-0,4 мг/кг, повышенные концентрации наблюдаются в районе автозаправочной станции «Газпром» 80 мг/кг и в окрестностях полигона ТБО 0,3-0,4 мг/кг.

<u>Висмут</u>. Среднее содержание висмута в почвах населенных пунктов равно 1,1 мг/кг. Кларк висмута в земной коре составляет 0,01 мг/кг, для почв не определен. Среднее содержание висмута в почвах городов с населением менее 100 тыс. человек составляет 0,96 мг/кг.Содержание висмута в почвах г. Каракол составило 0,8-1,5 мг/кг, повышенные концентрации наблюдаются в районе центра города 1,5 мг/кг

<u>Мышьяк.</u> Кларк мышьяка в земной коре составляет 1,7 мг/кг, для почвы 5 мг/кг. По данным разных авторов среднее содержание мышьяка для почв Земли варьирует в пределе 6-10 мг/кг [1,3,9]. Кларк почв для населенных пунктов составляет 15 мг/кг. ОДК мышьяка в почве варьирует в пределе 2-10 мг/кг. Содержание мышьяка в почвах г. Каракол составило 20-30 мг/кг, повышенные концентрации наблюдаются в районе центра города 30 мг/кг.

<u>Олово.</u> Кларк олова в земной коре составляет 2,5 мг/кг, в почве 10 мг/кг. Для почв населенных пунктов 15 мг/кг. Содержание олова в почвах г. Каракол составило 5-6 мг/кг, повышенные концентрации наблюдаются в районе полигона ТБО 7 мг/кг.

Молибден. Среднее содержание в почвах населенных пунктов молибдена (2,4 мг/кг), очень близко к кларку почв Земли (2 мг/кг); выше кларка земной коры (1,1 мг/кг). Содержание молибдена в почвах г. Каракол составило 2-3 мг/кг.

Вольфрам. Среднее содержание вольфрама в почвах населенных пунктов равно 2,9 мг/кг. Оно в два раза больше кларка земной коры и больше кларков важнейших типов горных пород. А.П. Виноградовым кларкW в почвах Земли не был определен. По Г. Боуэну, среднее содержание металла в почвах 1,5-83 мг/кг. Среднее содержание вольфрама в почвах городов с численностью населения менее 100 тыс. человек составляет 3,5 мг/кг.Содержание вольфрама в почвах г. Каракол составило 3-5 мг/кг.

<u>Барий.</u> Среднее содержание бария в почвах населенных пунктов равно 853 мг/кг. Оно в 1,7 раз выше среднего содержания этого химического элемента в почвах Земли (500 мг/кг). Кларк для земной коры составляет 650 мг/кг. Среднее содержание бария в почвах городов с численностью населения менее 100 тыс. человек составляет 980 мг/кг [1, 3, 9]. Содержание бария в почвах г. Каракол варьирует в пределе 500-2000 мг/кг, повышенные концентрации наблюдаются в районе автовокзала (1500 мг/кг) и торгового дома «Иссык-Куль» (2000 мг/кг).

<u>Кобальт</u>. Среднее содержание кобальта в почвах населенных пунктов, установленное для начала XXI века (14,1 мг/кг), в 1,8 раза выше кларка для почв Земли установленного А.П. Виноградовым (8 мг/кг). Среднее содержание кобальта в почвах городов с численностью населения менее 100 тыс. человек составляет 14,6 мг/кг [1, 3, 9].

ПДК кобальта в почве составляет 5 мг/кг. Содержание кобальта в почвах г. Каракол повышено и варьирует в пределе 12-20 мг/кг.

<u>Никель.</u> Кларк никеля в земной коре составляет 58 мг/кг, в почве 40 мг/кг. Кларк почв населенных пунктов 32,9 мг/кг. Среднее содержание никеля в почвах городов с населением менее 100 тыс. человек составляет 18,4 мг/кг. ОДК никеля в почве варьирует от 20 до 80 мг/кг. Содержание никеля в почвах г. Каракол составило 20-50 мг/кг.

Марганец. Установленное для почв населенных пунктов среднее содержание марганца (729 мг/кг) меньше его кларка для почв Земли (850 мг/кг). Оно также меньше кларка земной коры (1000 мг/кг) и кларков наиболее распространенных типов горных пород. Содержание марганца в почвах г. Каракол составило 100-800 мг/кг.

<u>Титан.</u> Среднее содержание титана в почвах населенных пунктов равно 4760 мг/кг. Оно не значительно больше кларка металла для почв Земли (4600 мг/кг) и кларка земной коры (4500 мг/кг). Содержание титана в почвах г. Каракол составило 4000-5000 мг/кг.

Ванадий. Среднее содержание ванадия в почвах населенных пунктов составляет 104,9 мг/кг. Установленный кларк почв населенных пунктов незначительно превышает средние содержания ванадия в земной коре (90 мг/кг) и кларк почв Земли (100 мг/кг). ПДК ванадия в почве составляет 150 мг/кг. Содержание ванадия в почвах г. Каракол варьирует в пределе 50-100 мг/кг.

<u>Хром.</u> Кларк хрома в земной коре составляет 83 мг/кг, в почве 200 мг/кг. Кларк почв для населенных пунктов 80 мг/кг. Среднее содержание хрома в почвах городов с численностью населения менее 100 тыс. человек составляет 81,5 мг/кг. Содержание хрома в почвах г. Каракол варьирует в пределе 40-100 мг/кг, повышенные концентрации наблюдаются в районе центра города и торгового дома «Иссык-Куль» - 100 мг/кг.

<u>Галлий.</u> Среднее содержание галлия в почвах населенных пунктов составляет 16 мг/кг, что в 1,85 раза ниже кларка этого элемента для почв Земли (30 мг/кг). Галлий относится к редким химическим элементам, который пока еще не значительно используется людьми, следовательно существенного загрязнения почв населенных пунктов галлием пока не произошло. Содержание галлия в почвах г. Каракол варьирует в пределе 9-20 мг/кг.

<u>Германий.</u> Кларк германия в земной коре составляет 1,4 мг/кг, в почве 5 мг/кг. Кларк почв для населенных пунктов - 1,8 мг/кг. Содержание германия в почвах г. Каракол варьирует в пределе 1,5-2 мг/кг.

<u>Литий.</u> Среднее содержание лития в почвах населенных пунктов 49,5 мг/кг, хотя и в 1,6 раза больше его кларка для почв (30 мг/кг), сравнительно не на много выше кларка земной коры (32 мг/кг) и кларков многих горных пород. Среднее содержание лития в почвах г. Каракол составляет 50 мг/кг.

<u>Стронций</u>. Среднее содержание стронция в почвах населенных пунктов составляет 457,8 мг/кг, что в 1,3 больше кларка земной коры (340 мг/кг) и в 1,5 раза больше среднего содержания в почвах Земли (300 мг/кг). Содержание стронция в почвах г. Каракол варьирует в пределе300-500 мг/кг.

Содержание химических элементов в растениях. Результаты исследований по определению содержаний микроэлементов в растениях г. Каракол представлены в табл. 2. В пределах кларковых значений для золы растений содержатся следующие микроэлементы: Cu, Bi, As, Mo, W, Ba, Co, Ni, V, Cr, Ga, Ge. Выше кларка: Zn, Pb, Ag, Mn Ti Li, Sr

<u>Цинк.</u> Кларк цинка в золе растений варьирует в пределе 100-900 мг/кг [1, 2, 11, 15]. Цинк относится к элементам сильного накопления коэффициент биологического поглощения (КБП) которого варьирует в пределе $(n - n \times 10)$. Содержание цинка в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 120-400 мг/кг, т.е. в пределах кларка (КБП 2,6-4), в листьях тополя черного 400-2000 мг/кг, $K_{\kappa} - 2$,2

(КБП 1,3-13,1), в укосах травянистых растений 100-450 мг/кг, в пределах кларка. Наиболее высокие КБП (13,1) характерны для золы листьев тополя черного произрастающих в районе автовокзала.

Свинец. Кларк свинца в золе растений варьирует в пределе 1-10 мг/кг [1, 2, 11, 15]. Свинец относится к элементам слабого захвата коэффициент биологического поглощения (КБП) которого варьирует в пределе (0,n - 0,0n). Содержание свинца в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 12-15 мг/кг (КБП 0,19-0,5), в листьях тополя черного 15-50 мг/кг, (КБП 0,19-1,25), в укосах травянистых растений 15-30 мг/кг. Наиболее высокие КБП (1,25) характерны для золы листьев тополя черного произрастающих в районе автовокзала.

Серебро. Кларк серебра в золе растений составляет примерно 1 мг/кг [1, 2, 11, 15]. Серебро относится к элементам сильного накопления коэффициент биологического поглощения (КБП) которого варьирует в пределе ($n - n \times 10$). Содержание серебра в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 0,3-9 мг/кг, (КБП 1,5-112,5), в листьях тополя черного 0,1-1,5 мг/кг (КБП 0,2-18,7), в укосах травянистых растений 0,3-1,5 мг/кг, т.е. на уровне кларка. Наиболее высокие КБП характерны для золы хвои сосны обыкновенной (112,5) и листьев тополя черного (18,7) произрастающих в районе автозаправочной станции «Газпром».

Олово. Обычный интервал содержаний Sn в золе растений составляет 15-30 мг/кг [1, 2, 11, 15]. Содержание олова в листьях тополя черного отобранного в различных зонах г.Каракол составило 20-60 мг/кг, (КБП 0,5-0,8). Наиболее высокие содержания олова обнаружены у деревьев произрастающих в районе центра города 60 мг/кг.

Марганец. Кларк марганца в золе растений варьирует в пределе 100-750 мг/кг [1, 2, 11, 15]. Марганец относится к группе элементов слабого накопления коэффициент биологического поглощения (КБП) которого варьирует в пределе (0,n - n). Содержание марганца в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 700-900 мг/кг (КБП 1,1-1,5), в листьях тополя черного 1000-1500 мг/кг (КБП 1,25-1,7), в укосах травянистых растений 300-600 мг/кг.

<u>Титан</u>. Кларк титана в золе растений составляет до 1000 мг/кг [1, 2, 11, 15]. Титан относится к группе элементов слабого захвата коэффициент биологического поглощения (КБП) которого варьирует в пределе (0,n-0,0n). Содержание титана в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 400-3000 мг/кг (КБП 0,3-0,6), в листьях тополя черного 500-1000 мг/кг (КБП 0,075-0,12), в укосах травянистых растений 300-850 мг/кг.

<u>Литий.</u> Кларк лития в золе растений составляет 1-10 мг/кг [1, 2, 11, 15]. Литий относится к группе элементов слабого захвата коэффициент биологического поглощения (КБП) которого составляет (0,n). Содержание лития в листьях тополя черного отобранного в различных зонах г. Каракол варьирует в пределе 20-30 мг/кг (КБП 0,4-0,6).

Стронций. Кларк стронция в золе растений составляет 300 мг/кг [1, 2, 11, 15]. Стронций относится к группе элементов сильного накопления коэффициент биологического поглощения (КБП) которого варьирует в пределе (n - $n\times10$). Содержание стронция в хвое сосны обыкновенной отобранной в различных зонах г.Каракол составило 900-4000 мг/кг, (КБП 5-13,3) в листьях тополя черного 1000-2000 мг/кг (КБП 2,5-6,6).

Содержание химических элементов в воде и донных отложениях реки Каракол. По химическому составу вода реки Каракол слабо минерализована, гидрокарбонатно-сульфатного типа, с преобладанием кальция. Минерализация воды в период межени выше (188,1 мг/л), чем в период максимального поверхностного стока (129,5 мг/л). В целом минерализация воды увеличивается от верхних участков реки к устью (табл. 3, 4).

Элементный состав. Содержание химических элементов в воде реки Каракол находится в пределах естественных уровней, превышение ПДК хозяйственного питьевого и культурно-бытового пользования не установлено (табл 3). Содержание химических элементов в воде реки Каракол в период межени заметно отличается от периода половодья (табл. 5, 6). В период половодья заметно уменьшается содержание Мп, Сu, Pb, Sr. Не обнаруживаются в воде Мо, Zn, Ga, P, Ba, Li.

Таблица 3 – Ионный состав воды реки Каракол в период минимального весеннего стока (5 марта 2014 г.)

Место отбора			` 1	Ионы, мг/л			
проб	Ca ²⁺	Mg^{2+}	Na++K	HCO ₃ -+	SO ₄ ²⁻	Cl-	Сумма
			+	CO ₃			ионов
1. р. Каракол,	26,1	2,4	15,5	98,8	16,6	4,3	165,7
устье р.							
Кашка-Суу							
2. р. Каракол, в	29,3	4,2	17,3	103,0	19,2	5,3	178,3
черте г.							
Каракол							
3. р. Каракол	32,5	5,6	18,6	105,3	20,5	5,6	188,1
(устье)							

Таблица 4 – Ионный состав воды реки Каракол в период максимального поверхностного стока (5 июля 2014 г.)

Место отбора				Ионы, мг/л			
проб	Ca ²⁺	Mg^{2+}	Na++K	HCO ₃ -+	SO ₄ ² -	Cl-	Сумма
			+	CO_3			ионов
1. р. Каракол,	20,8	5,0	3,0	75,0	10,8	4,9	119,5
устье р.							
Кашка-Суу							
2. р. Каракол, в	23,7	3,8	4,2	76,8	8,8	8,6	126,0
черте г.							
Каракол							
3. р. Каракол	24,3	4,4	4,8	77,3	9,5	9,2	129,5
(устье)							

Информативным показателем присутствия ряда химических элементов в поверхностных водах являются илисто-глинистые фракции донных осадков. Фоновые содержания химических элементов в них близки к содержаниям этих элементов в глинах и почвах. В илисто-глинистых фракциях донных осадков реки Каракол содержание Со (1,1-1,5), Cu (2-2,5), Pb (1,5-2), Sr (1,3-1,6) выше кларковых значений. Содержание других химических элементов находится в пределах естественных уровней (табл. 7).

Таблица 5 – Элементный состав воды реки Каракол в период минимального весеннего стока (5 марта 2014 г.)

Место отбора							Кон	нцентраг	ция (мг/л	()						
проб	Mn	Ni	Ti	Cr	Mo	Zr	Cu	Pb	Ag	Zn	Sn	Ga	P	Sr	Ba	Li
1. р. Каракол,	0,009	0,002	0,003	-	0,000	0,000	0,002	0,001	0,000	0,008	0,0001	0,000	0,006	0,0	0,01	0,001
устье р.					5	4			2			1		2		
Кашка-Суу																
2. р. Каракол,	0,01	0,001	0,001	0,001	0,001	0,002	0,003	0,001	0,000	0,01	0,0004	-	0,008	0,0	0,02	0,002
в черте г.					0				1					6		
Каракол																
3. р. Каракол	0,008	0,001	0,002	_	0,001	0,001	0,003	0,000	0,000	0,012	0,0003	0,000	0,01	0,0	0,01	0,001
(устье)		3			7			7	2			1		5		
Кларк [8]	0,01	0,002	0,004	0,001	0,000	0,002	0,007	0,001	0,000	0,02	0,0005	0,000	0,02	0,0	0,02	0,002
		5			9	5			2			1		8	5	2
ПДК [14]	0,1	0,1	0,1	0,05	0,25	-	1	0,03	0,05	1	-	-	0,02	7	0,1	0,01

Таблица 6 – Элементный состав воды реки Каракол в период максимального летнего стока (5 июля 2014 г.)

Место отбора			•	•	•		Коні	центраци	ия (мг/л)							
проб	Mn	Ni	Ti	Cr	Mo	Zr	Cu	Pb	Ag	Zn	Sn	Ga	P	Sr	Ba	Li
1. р. Каракол,	0,003	-	0,003	-	-	-	0,001	0,000	0,0000	0,01	0,000	-	-	0,01	-	-
устье р.								4	5		2					
Кашка-Суу																
2. р. Каракол,	0,004	0,017	0,003	0,001	-	-	0,001	-	-	0,01	0,000	-	-	0,02	-	-
в черте г.							3				6					
Каракол																
3. р. Каракол	0,005	0,000	0,003	-	-	-	0,001	0,000	-	-	0,000	-	-	0,03	-	-
(устье)		5						5			2					
Кларк [8]	0,01	0,002	0,004	0,001	0,0009	0,002	0,007	0,001	0,0002	0,02	0,000	0,000	0,02	0,08	0,02	0,002
		5				5					5	1			5	2
ПДК [14]	0,1	0,1	0,1	0,05	0,25	-	1	0,03	0,05	1	-	-	0,02	7	0,1	0,01

Таблица 7 – Элементный состав илисто-глинистых фракций донных осадков реки Каракол в период минимального весеннего стока (5 марта 2014 г.)

Место отбора									К	онцен	нтраці	ия (мі	7)								
проб	Mn	Ni	Co	Ti	V	Cr	Mo	Zr	Nb	Cu	Pb	Zn	Sn	Ga	Yb	Y	P	Be	Sr	Ba	Li
1. р. Каракол,	500	40	12	4000	70	70	-	30	-	40	15	30	3	15	4	40	-	4	40	40	40
устье р.								0											0	0	
Кашка-Суу																					
2. р. Каракол,	500	30	9	4000	50	70	-	12	-	50	20	30	2	15	3	30	-	4	40	30	-
в черте г.								0											0	0	
Каракол																					
3. р. Каракол	700	30	9	4000	50	70	-	30	12	50	15	40	3	12	4	40	-	4	50	40	-
(устье)								0											0	0	
Кларк [3]	850	40	8	4600	10	20	2	30	20	20	10	50	10	30	2,2	50	800	6	30	50	30
					0	0		0											0	0	

Таблица 8 – Элементный состав сточных вод очистных канализационных сооружений г. Каракол (5 июля 2014 г.)

Место отбора							Ко	нцентра	ция (мг/л)		Í				
проб	Mn	Ni	Ti	Cr	Mo	Zr	Cu	Pb	Ag	Zn	Sn	Ga	P	Sr	Ba	Li
1.	0,009	0,001	0,00	0,01	0,001	-	0,004	0,001	-	-	0,000	-	0,9	0,12	-	-
Механическая			3								2					
очистка																
(решётки,																
песколовки)																
2. Отстойник	0,015	0,002	0,00	0,003	-	-	0,006	0,002	-	-	0,000	-	1,5	0,2	-	-
№ 1			5								3					
3. Отстойник	0,07	0,001	0,00	-	-	-	0,005	-	-	-	0,000	-	1,75	0,175	-	-
№ 2			3								2					
4. Биопруд №1	0,016	0,001	-	-	-		0,006	-					2	0,12		
5. Биопруд №2	0,054	0,001	-	-	-		0,005	-					2,52	0,144		

Кларк [8]	0,01	0,002	0,00	0,001	0,000	0,002	0,007	0,001	0,0002	0,02	0,000	0,000	0,02	0,08	0,02	0,002
		5	4		9	5					5	1			5	2
ПДК [14]	0,1	0,1	0,1	0,05	0,25	-	1	0,03	0,05	1	-	-	0,02	7	0,1	0,01

Таблица 9 – Элементный состав илистых осадков сточных вод очистных канализационных сооружений г. Каракол (5 июля 2014 г.)

Место отбора										Конг	центра	ция (мг/)									
проб	Mn	Ni	Co	Ti	V	Cr	Mo	Zr	Nb	Cu	Pb	Ag	Zn	Sn	Ga	Yb	Y	P	Be	Sr	Ba	Li
1. Отстойник	300	40	12	5000	70	15	5	12	15	90	7	1,5	50	5	15	4	40	3000	4	20	30	30
№ 1						0		0												0	0	
2. Отстойник	500	30	9	4000	50	50	-	20	12	40	5		30	2	15	3	30	2000	4	40	40	-
N <u>o</u> 2								0												0	0	
Кларк [6]	850	40	8	4600	10	20	2	30	20	20	10	0,9	50	10	30	2,2	50	800	6	30	50	30
					0	0		0												0	0	

В настоящее время нижняя зона бассейна реки Каракол подвержена антропогенной нагрузке, увеличивается вероятность загрязнения сточными водами, так как очистные сооружения сточных вод в г. Каракол построенные в 60-х годах XX-века пришли в обветшалое состояние и представляют собой серьезный риск химического загрязнения озера Иссык-Куль.

В сточных водах очистных канализационных сооружений г. Каракол на разных стадиях очистки (решетки, песколовки, отстойник, биопруды) повышенные концентрации установлены для Мп (1,5-7), Сг (3-10), Рb (1-2), Sr (1,5-2,5) особенно для Р (45-126). Превышение ПДК для хозяйственного питьевого и культурно-бытового пользования установлено только по фосфору. Содержание других химических элементов находится в пределах естественных уровней (табл. 8).

В илистых осадках сточных вод отобранных с иловых площадок отстойника № 1 и № 2 повышенные концентрации установлены для Со (1,1-1,5), Мо (2,5), Си (2-4,5), Sr (1,3), Р (2,5-3,7). Содержание других химических элементов находится в пределах естественных уровней (табл. 9).

Заключение

Проведенные нами исследования позволяют сделать следующие выводы:

- 1. Микроэлементы содержания, которых в почвах г. Каракол на уровне кларка земной коры, почв и почв населенных пунктов: Ag, Bi, Sn, Mo, W, Ni, Mn, Ti, V, Cr, Ga, Ge,Li, Sr. В центральных районах г. Каракол, в окрестностях A3C, автовокзала и полигона ТБО характерно накопление в почве следующих микроэлементов: Cu, Zn, Pb, As, Ba, Co.
- 2. Содержание микроэлементов: Cu, Bi, As, Mo, W, Ba, Co, Ni, V, Cr, Ga, Ge в растениях отобранных в различных участках г.Каракол находятся в пределах кларковых значений характерных для золы растений.
- 3. Коэффициенты биологического поглощения (КБП>1; Pb, Zn, Ag, Mn, Ti, Li, Sr) характерны для растений (особенно тополя черного) произрастающих в районе центра города, автовокзала, автозаправочной станции «Газпром», что свидетельствует о техногенных источниках поступления их в окружающую среду. По химическому составу вода реки Каракол слабо минерализована, гидрокарбонатно-сульфатного типа, с преобладанием кальция. Общая минерализация воды реки Каракол в период минимального весеннего стока выше, чем в период максимального летнего стока.
- 4. Минерализация воды увеличивается от верхних участков реки к устью. Содержание химических элементов в воде варьирует в пределах естественных уровней. Превышение ПДК в воде для химических элементов по хозяйственно питьевому и культурно-бытовому пользованию не установлено. В илисто-глинистых фракциях донных осадков реки Каракол содержание Со, Сu, Pb, Sr выше кларка содержаний этих элементов в глинах и почвах.
- 5. В сточных водах очистных сооружений г. Каракол повышенные концентрации установлены для Мп, Сг, Рb, Sr, Р. Превышение ПДК для хозяйственного питьевого и культурно-бытового пользования установлено только по фосфору. В илистых осадках сточных вод повышенные концентрации характерны для Со, Мо, Сu, Sr, Р, что свидетельствует об их поглощении органическими веществами сточных вод.

Литература:

- 1. Алексеенко В.А. Химические элементы в геохимических системах. Ростов н/Д: Южный федеральный университет, 2013. 388 с.
- 2. Беус А.А., Грабовская Л.И., Тихонова Н.В. Геохимия окружающей среды. М.: Недра, 1976. 248 с.

- 3. Виноградов А.П. Геохимия редких и рассеянных химических элементов в почвах. М.: АН СССР, 1957. 219 с.
- 4. ГОСТ 17.1.5.05-85. Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков. М.: Изд-во стандартов, 1985. 10 с.
- 5. ГОСТ 53123-2008 (ИСО 10381-5:2005). Качество почвы. Отбор проб. Часть 5. Руководство по изучению городских и промышленных участков на предмет загрязнения почвы. М.: Стандартинформ, 2009.-60 с.
- 6. ГОСТ Р 51592-2000. Вода. Общие требования к отбору проб. М.: Госстандарт России, 2001. 36 с.
- 7. Дженбаев Б.М., Мурсалиев А.М. Биогеохимия природных и техногенных экосистем Кыргызстана. Бишкек: Илим, 2012.-404 с.
- 8. Добровольский В.В. Содержание растворимых форм химических элементов в речных водах и интенсивность их вовлечения в водную миграцию. М.: МГУ, 1998. 86 с.
- 9. Кабата-Пендиас А., Пендиас X. Микроэлементы в почвах и растениях. М.: Мир, 1989. 439 с.
- 10. Кадыров В.К. Гидрохимия озера Иссык-Куль и его бассейна. Фрунзе: Илим, 1986. 209 с.
- 11. Малюга Д.П. Биогеохимический метод поисков рудных месторождений. М.: Изд-во «АН СССР», 1963. 264 с.
- 12. Методические указания. Порядок отбора проб для выявления и идентификации наноматериалов в растениях. МУ 1.2. 27.42-10. М., 2010. 50 с.
- 13. Руководство по методам и критериям согласованного отбора проб, оценки, мониторинга и анализа влияния загрязнения воздуха на леса. Часть IV. Отбор проб и анализ хвои и листвы. М.: Международная совместная программа по оценке и мониторингу влияния загрязнения воздуха на леса, 2000. 50 с.
- 14. Справочник предельно допустимых концентраций, ориентировочных безопасных уровней воздействия, допустимых уровней, допустимых концентраций, методов контроля и других характеристик вредных веществ в объектах окружающей среды. Бишкек, 1997. 347 с.
- 15. Ткалич С.М. Фитогеохимический метод поисков месторождений полезных ископаемых. Л.: Недра, 1970. 176 с.