DOI: 10.35803/1694-5298.2021.1.98-104

БОЛОТБЕК Т., ТЕМИРКАНОВА Ж.Т., К.Б.БЕКБОСУНОВ К.Б., МУСАЕВ, А.С. ЖОЛДОШ УУЛУА1 Кыргызский государственный университет строительства, транспорта и архитектуры им.

Н.Исанова (КГУСТА), Бишкек, Кыргызская Республика

BOLOTBEK T., TEMIRKANOVA ZH.T., K.B.BEKBOSUNOV K.B. , MUSAEV A.S., JOLDOSH UULU A.

¹Kyrgyz State University of Construction, Transport and Architecture n.a. N.Isanov. Bishkek, Kyrgyz Republic temir.b.amir@gmail.com, jazi nja@mail.ru

ИСПОЛЬЗОВАНИЕ РЕЗИНОМЕТАЛЛИЧЕСКИХ СЛОИСТЫХ ВИБРОИЗОЛЯТОРОВ В ЗДАНИЯХ И СООРУЖЕНИЯХ

USE OF RUBBER-METAL LAYERED VIBRATION INSULATORS IN BUILDINGS AND STRUCTURES

Макалада термелүү изоляторлорунун динамикалык параметрлерин эсептөө жана имараттардын жана курулмалардын конструкцияларында катмардуу резина-металлдан жасалган вибрация изоляторлорун колдонуу ыкмасы талкууланат.

Өзөк сөздөр: титирөө изолятору, резина, сейсмикалык каршылык.

В статье рассматривается метод расчёта динамических параметров выброизоляторов и использование слоистых резинометаллических виброизоляторов в конструкциях зданий и сооружений.

Ключевые слова: виброизолятор, резина, сейсмостойкость.

The article discusses a method for calculating the dynamic parameters of vibration isolators and the use of laminated rubber-metal vibration isolators in the structures of buildings and structures.

Key words: vibration isolator, rubber, seismic resistance.

Проблема резистентности зданий и сооружений к сейсмическим силам является наиболее актуальной, что подтверждается высокой сейсмической эмиссией в Кыргызской Республике. Гражданские здания имеют склонность к повышению своей абсолютной высоты ввиду высокой стоимости застраиваемой территории, что особенно актуально в мегаполисах, к чему стремиться г. Бишкек. В этой связи строительство сейсмостойких гражданских зданий следует вести с учётом сейсмостойкого строительства. Гистерезисное демпфирование сейсмических усилий или применение резинометаллических опорных устройств во многом решит эту задачу.

Ниже излагается расчёт сплошных цилиндрических виброизоляторов в которых плоские слои резины чередуются с плоскими слоями металла и резина привулканизирована к металлу по всей поверхности соприкосновения. Будем называть такие виброизоляторы слоистыми, включая в это понятие и простейший частный случай — виброизолятор с одним слоем свинцовой пластины. Виброизоляторы резинометаллические слоистые (ВРМС) с малым число слоев давно и широко применяется в различных областях техники как в качества собственно виброизоляторов, так и в качестве силовых деталей различных конструкций. Они просты в изготовлении, надёжны и долговечны в эксплуатации. В последнее время получает все большее распространение слоистые виброизоляторы большим числом слоёв. Такие элементы обладают специфическими анизотропными свойствами: жёсткости нас сдвиг и на сжатие могут различаться на несколько порядков. Их

использования очень выгодно для виброизоляции некоторых тяжёлых машин, а также для защиты зданий и сооружений, находящихся в сейсмоопасных районах.

В результате расчёта слоистого резинометаллического виброизолятора должны быть найдены его геометрические размеры: диаметр резиновая слоя Д, толщина резинового слоя h_p , толщина слоя металла h_m , количество слоёв резины 5.

При этом имеется ввиду что диаметр металлического слоя практически равен или превосходит Д, а количество слоёв металла равно η+I. Крайние, нижний и верхний слои металла обычно выполняются утолщёнными и имеют форму, удобное для крепления виброизолятора. При расчёте последнее обстоятельство, естественно, не будет учитываться.

Исходными данными ДЛЯ расчёта является грузонесущие, жесткостные и деформационные характеристики, которыми должен обладать рассчитываемый виброизолятор, а также упругие характеристики резины. В качестве исходных данных можно выбрать следующее шесть величин: грузонесущая способность Q, вертикальную деформацию под нагрузкой, вертикальную жёсткость или жёсткость на сжатия Св, горизонтальную жёсткость или жёсткость на сдвиг C , Модули сдвига резины $C_{\rm r}$ и коэффициент Пуассона V. В ряде случаев место жёсткостей Св удобно использовать условные собственные частоты вертикальных и горизонтальных колебаний соответственно:

$$\omega_{\rm B} = \sqrt{\frac{{\rm gC}_{\rm B}}{Q}}, \qquad \omega = \sqrt{\frac{{\rm gC}}{Q}},$$

где g=9.81, Q – вертикальная сила (вес груза), действующая на виброизолятор.

Коэффицент Пуассона V для резины близок к I/2, поэтому вместо него удобно применять так называемый модуль одностороннего сжатия В

$$B = 2G \frac{1 - V}{1 - 2V}$$

Основные соотношения, определяющее жёсткость виброизолятора, имеют вид:

$$C_{\rm B} = E_{\rm k} \frac{\mathbb{Z} \mu^2}{4\eta h_{\rm p}},\tag{1}$$

$$C = C_{\text{Tk}} \frac{\mathbb{Z}_{\text{d}}^2}{4\eta h_{\text{p}}}, \qquad (2)$$

где E_{κ} и $C_{\ r\kappa}$ отличаются от истинных модулей растяжения и сдвига соответственно.

Величины E_{κ} и $C_{\tau\kappa}$ отличаются от истинных модулей растяжения E и модуля сдвига C_{τ} и являются функциями упругих характеристик резины и размеров резинового слоя

$$E_{K} = E_{K}(C_{T}, B, \mathcal{A}, h_{p}), \quad C_{TK} = C_{TK}(C_{T}, B, \mathcal{A}, h_{p}).$$

Значения этих функций позволяют на основании формул (1) и (2) произвести расчёт всех необходимых величин.

Примем деформацию сжатия и сдвига независимыми и достаточно малыми, чтобы выполнялся закон Гука. Пренебрежём также динамическими эффектами в резине, т.е. рассмотрим статистическую задачу. При этих условиях можно использовать фундаментальные методы теории упругости и вычислить E_{κ} и $C_{\text{гк.}}$

Полученные решения в виде таблиц аппроксимируются следующим образом. Опишем сначала кажущиеся модули E_{κ} и $C_{- r \kappa}$ в предположении незначительной сжимаемости резины, т.е. в случае , когда можно положить $B=\infty$. При этом введём обозначения:

$$E_{\kappa\infty} = E_{\kappa} |_{B=\infty}$$
, $C_{T\kappa\infty} = C_{T\kappa} |_{B=\infty}$,

Модули $E_{\kappa\infty}$ и $C_{\tau\kappa\infty}$ аппроксимируются следующим выражениям:

$$E_{K\infty} = 3 \left(1,05 + \frac{1}{8} \frac{\pi^2}{h_p^2} \right) C_T$$
 (3)

$$C_{\text{\tiny TK}\infty} = (1 - \frac{\text{hp}}{4 \text{J}}) C_{\text{\tiny T}} \tag{4}$$

Эти выражения справедливы с точностью не ниже 15% при Д ≥ h_p.

В общем случае, когда сжимаемость пренебречь нельзя, справедливы следующие аппроксимации:

$$\frac{1}{E_{\kappa}} = \frac{1}{E_{\kappa\infty}} + \frac{1}{B},\tag{5}$$

$$C_{TK} C_{TK_{\infty}}$$
 (6)

Полученные формулы (1-6) позволяют найти зависимость отношения жёсткостей C_B/C от соотношения размеров резинового слоя \mathcal{I}/h_p .

Из формулы (5) можно получить условие, при котором вклад сдвиговой деформации резины сопоставим со вкладом деформации объёмного сжатия : $E_{\kappa\infty} \sim B$. Из этого соотношения получаются следующие оценки: если Д«100 h_p , то объемной сжимаемостью можно пренебречь и положить $E_{\kappa} = E_{\kappa\infty}$; если Д \gg 100 h_p , то можно пренебречь сдвиговой деформацией и считать $E_{\kappa} = B$; если же Д \sim 100 h_p , то следует пользоваться формулой (5).

Деформация сжатья определяется выражением

$$S = \frac{Q}{C_{Byhp}}, \tag{7}$$

а условное давления Р в резине – равенством

$$P = \frac{4Q}{\pi A^2} \tag{8}$$

На линейном участке зависимости сила сжатия, осадка и связи и P выражается законом Γ ука:

$$P = C_{TK} \left(\frac{\omega_B}{\omega}\right)^2 s, \tag{9}$$

Формулы (1-9) позволяют по шести заданным величинам — нагрузке Q, частотам ω в и ω , давления P, модулям $C_{\scriptscriptstyle T}$ и B — определить четыре геометрических пареметра виброизолятара: диаметр Д, толщины $h_{\scriptscriptstyle p}$ и $h_{\scriptscriptstyle M}$, число слоев η .

Перед расчётом необходимо убедиться в непротиворечивости шести исходных данных. Условие непротиворечивости вытекает из условия устойчивости выброизолятора:

$$H \leq \alpha Д$$
,

нде $H = \mathbb{I}h_p + (\mathbb{I} + 1)h_M - полная высота виброизолятара, <math>\alpha$ — коэффициент устойчивости ($\alpha \ge 1$).

Поскольку толщина металлического слоя $h_{\scriptscriptstyle M}$ не влияет на жесткостные характеристики виброизолятара (пренебрегаем жёсткостью металлических слоёв), то ее нужно находить из этого условия. Для того, чтобы полученное значение $h_{\scriptscriptstyle M}$ было больше нуля, необходимо выполнение следующих соотношении между исходными данными:

$$\omega > \frac{1}{2} \sqrt{\frac{\pi g C_T \mathcal{A}}{\alpha Q}}$$
 или $C > \frac{C_T}{2\alpha} \sqrt{\frac{\pi Q}{P}}$

Если эти условия не выполняются, то исходные данные противоречивы и должны быть изменены.

Если данные непротиворечивы, то расчёт значений Д, h_p , 5 и $h_{\scriptscriptstyle M}$ производится по формулам:

$$\begin{split} & \mathcal{I}_{L} = 2\sqrt{\frac{Q}{mP}}, \\ & h_{p} = \frac{\mathcal{I}_{L}}{2}\sqrt{\frac{3}{2}}\frac{\omega^{2}-\frac{G}{b}-\omega^{2}}{\frac{B}{B}-\frac{B}{B}}, \\ & \eta = \frac{gC_{T}}{Ph_{p}\omega^{2}}, \\ & h_{M} = \frac{\alpha\mathcal{I}_{L}-\eta h_{p}}{\eta+1} \end{split} \tag{10}$$

При выводе равенства (10) выражение (4) для $C_{\text{тк}_{\infty}}$ было заменено на равенство

 $C_{\text{тк}_{\infty}} = C_{\text{т}}$, поскольку при использовании (4) расчётные формулы оказывались весьма громоздкими. Такое упрощение приводит как видно из (4), к ошибке значения $C_{\text{тк}_{\infty}}$, равной 25% $h_p = J$; 12.5%- при $h_p = J/2$; 8.5% - при $h_p = J/3$ и меньше 5% при

 $h_p < \mathcal{A}/5$. Если при $\mathcal{A} \ge h_p \ge \mathcal{A}/5$ требуются большая точность, то необходимо воспользоваться выражениями (1-4) для проверки и подбора более точных значений (учитывать сжимаемость резины в данном случае нет необходимости).

Упругие характеристики резин, используемые при расчете: модули $C_{\scriptscriptstyle T}$ и B – определяются экспериментально с использованием специальных образцов. Наиболее простым образцом для определения $C_{\scriptscriptstyle T}$ является сам слоистый резинометаллический виброизолятор. По его жесткости на сдвиг C расчет $C_{\scriptscriptstyle T}$ производится с использованием выражений (2) и (4).

Определение модуля односторенного сжатия B осуществляется в специальной устоновке, в которой резиновый образец находиться в условиях односторенного сжатия. Давление P_Z , создаваемое в резине, и деформация резинового образца s_Z связаны на линейном участке соотношением: P_Z = Bs_Z из которого вычесляется B.

Для наиболее распространённой амортизационной средне наполненной резины марки 2959 найденные таким образом значения модулей примерно равны:

$$C_{T} = 1.1 \text{ M}\Pi\text{A, B} = 3 \Gamma\Pi\text{a}$$

Для установления достоверности описанного метода расчёта необходимы экспериментальные данные о жёсткостях на сдвиг и сжатия BPMC с различным

соотношением Д и h_p для разных марок резин. В настоящее время такие экспериментальные данные отсутствуют, поэтому сравним изложенный метод с расчётом других авторов и приведём два практических примера.

Выполнены расчёты отношения кажущегося модуля $E_{\kappa\infty}$ к истинному модулю Юнга резины Е различными методами. Полученные зависимости имеют вид:

$$\frac{E_{K\infty}}{E}$$
 = a + в(Д/ h_p)²,

где $\alpha = 0.7 \dots 1$, $B = 0.1 \dots 0.125$.

Эта формула согласуется с (3)в предложении, что Е=3Ст.

В качестве первого примера рассмотрим расчёт необходимых параметров виброизолирующей системы конусной инерционной дробилки. Для обеспечение требуемого колебательного режима с учётом переходных процессов собственные частоты должны иметь значения: $\omega_{\text{в}} = 2.5$... 3 Гц, $\omega = 0.7$ Гц . Будем считать, что виброизолирующая система состоит из восьми ВРМС. Тогда $Q \approx 194$ кН. Давление Р примем равным 1.5 Мпа. Используя (10), получим следующие параметры виброизолятора из резины 2959: Д=406мм, $h_{\text{p}} = 64$ 80мм, $\eta = 5$... 6. Реально были изготовлены и установлены виброизоляторы с параметрами Д=400мм, $h_{\text{p}} = 70$ мм, , $\eta = 6$. Испытания потвердели расчетные характеристики силы осадки при сжатии до =0,2. Эксплуатация этих виброизоляторов в течение длительного времени в экспериментальных условиях дала хорошие результаты.

В качестве второго примера рассмотрим задачу защиты зданий и сооружений от землетрясений. Эта проблема становится все более актуальной и по ней у авторов имеются некоторое число работ, в частности [1, 2]. В работе [3] приводится теоретическое обоснование применения сейсмоизоляции малоэтажных зданий.

Хотя колебания грунтов основания при землетрясении носят случайный характер, из опубликованных данных, следует, что основной диапазон частот колебаний простирается от 0 до 25 Γ ц, а частоты наиболее опасных колебаний лежат в пределах 1.6.....6.0 Γ ц.

Рассчитаем параметрический ряд сейсмоизоляторов, которые должны устанавливаться под заданиями и сооружениями и обеспечивать защиту от опасных сдвиговых (горизонтальных) колебаний. Для этого необходимо, во-первых, потребовать, чтобы $\omega=1.6$ Гц: $3\approx0.55$ Гц. Во-вторых, для предотвращения резонансных явлений при вертикальных колебаниях зданий необходимо положить $\omega_{\rm B}=6$ Гц * 3=18 Гц. При давлении P=5 Мпа для резины марки 2959 получаем геометрическую характеристики, приведённые в таблице. Толщина металла $h_{\rm M}=1...5$ мм.

Геометрические характеристики параметрического ряда слоистых резинометаллических сейсмоизоляторов приведены в таблице 1. Предложенное конструктивное решение сейсмоизолятора показаны на рис. 1, 2.

Таблица 1 - Геометрические характеристики параметрического ряда слоистых резинометаллических сейсмоизоляторов

Q, кH	Д, мм	h _p , мм	η	
250	252	3,68	49	
500	357	5,21	35	
750	437	6,38	28	
1000	505	7,37	25	
2000	714	10,40	17	
3000	874	12,80	14	

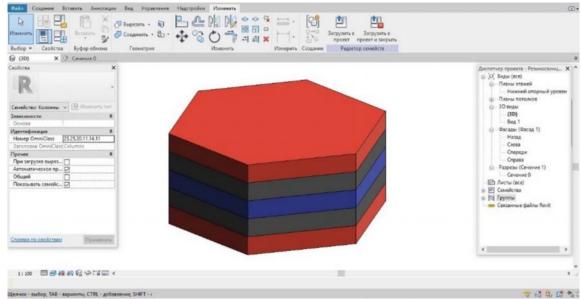


Рис. 1. Конструкция резинометаллического изолятора со свинцовой пластиной, 3D вид

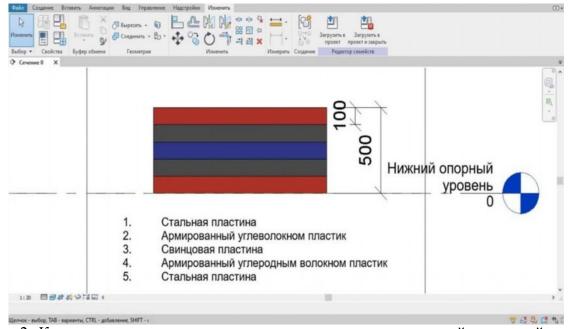


Рис. 2. Конструкция резинометаллического изолятора со свинцовой пластиной, сечение

Полученные результаты имеют практически важное значение при создании виброизолирующих систем тяжёлых технологических машин и самоизоляции зданий и сооружений. Разработано новое техническое решение гистерезисного демпфера — резинометаллического изолятора со свинцовой пластиной толщиной 100 мм. Структурный анализ информационной модели здания в среде программного обеспечения Autodesk Robot Structural Analysis показал, что деформации и напряжения от базовых 8 нагрузок в пределах нормальных показателей. Опасные напряжения и деформации в структуре здания не развиваются. Внедрённый в информационную модель здания резинометаллический изолятор со свинцовыми пластинами показал, что резистентность здания к сейсмическим силам вырос в сравнении с классическими конструктивными схемами зданий на 18 %, что соответствует диапазону от 1 до 2 баллов.

Список литературы

- 1. Т.Болотбек. Инерционное демпфирование сейсмических сил зданий и сооружений со скользящим поясом [Текст] / Т.Болотбек, К.У.Насырынбекова и др. / Вестник КГУСТА. Бишкек: 2019. №1(63). С. 127-131.
- 2. Болотбек Т., Темирканова Ж.Т. и соавторы. Применение результатов метода сосредоточенных деформаций к результатам численных экспериментов на основе метода конечных элементов [Текст] / Болотбек Т., Ж.Т.Темирканова и др. / Вестник КГУСТА. Бишкек: 2020. № 1 (67). С. 140-146.
- 3. Апсеметов М.Ч. Колебания модели малоэтажных зданий с сейсмоизолирующим поясом при сейсмических воздействиях [Текст] / М.Ч.Апсеметов, А.Ж.Андашев и др. / Вестник международного института управления. Архангельск: МИУ. 2018. Вып. 1(146). С.68-73.