УСТАНОВЛЕНИЕ СТЕПЕНИ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ РАЗЛИЧНЫХ ТИПОВ РУД МЕСТОРОЖДЕНИЯ «ИШТАМБЕРДЫ»

Казатов Урмат Талантбекович, ст. преподаватель ИГД и ГТ им. У. Асаналиева, Кыргызстан, г.Бишкек, пр. Чуй 164, e-mail: Urmat.kz@mail.ru

Умаров Талантбек Самиевич – старший преподаватель ИГД и ГТ им. У. Асаналиева,

Кыргызстан, г.Бишкек, пр. Чуй 164 e-mail: umarov talantbek@mail.ru.

Кошалиев Сулайман Ибраимбекович, горный инженер OcOO "FULLGOLDMINING, **Кенжекулова Айгуль Куатбековна -** преподаватель ИГД и ГТ им. акад. У. Асаналиева г. Бишкек. @-mail.ru «kenzhekulova aigulya»

Аннотация: Определена целесообразность выщелачивание золота из руд месторождения «Иштамберды» методом прямого цианирование с применением цианистого натрия и его заменителя реагента «Цзинь Чан».

Ключевые слова: выщелачивание, цианирования, флотация, окисленная руда, сульфидная руда, извлечение.

DETERMINE THE EXTENT OF GOLD RESOVERED FROM VARIOUS TYPES OF ORES «ISHTAMBERDY»

Kazatov Urmat Talantbekovich, Art. Lecturer Institute of Mining and Mining Technology.U.Asanalieva, Kyrgyzstan, Bishkek, Chui Avenue 164, e-mail:<u>Urmat.kz@mail.ru</u>

Umarov Talantbek Samievich, Art. Lecturer Institute of Mining and Mining Technology. U.Asanalieva, Kyrgyzstan, Bishkek, Chui Avenue 164, e-mail: <u>umarov talantbek@mail.ru</u>.

Koshaliev Sulaiman Ibraimbekovich, a mining engineer LLC "FULL GOLD MINING»

Kenzhekulova Aigulya Kuatbekovna- Lecturer of Mining and GT them. acad U. Asanalieva Kyrgyzstan, Bishkek, Chui Avenue 164, e-mail: «kenzhekulova aigulya»

Abstract: To determine the feasibility of leaching of gold from the deposit "Ishtamberdy" ore direct cyanidation method using sodium cyanide and its substitute reagent "Jin Chang."

Keywords: leaching, flotation, oxidized ore, sulfide ore extraction.

"ИШТАМБЕРДЫ" КЕҢ ЖАТАГЫНДАГЫ ТҮРДҮҮ РУДАЛАРДАН АЛТЫНДЫ БӨЛҮП АЛУУНУН ДАРАЖАСЫН АНЫКТОО

Данная работа проводилась с целью определения выщелачивание золота из представленных золотосодержащих руд месторождения «Иштамберды» методом цианирования, с применением цианистого натрия и его заменителя реагента «Цзинь Чан» следующим по типам руд: 1) окисленный; 2) сульфидный и 3) смешанный.

Целью данной работы является определение степени извлечения золота из этих руд методом прямого цианирования, а так же по комбинированному методу (проведением флотации исходной руды и до извлечением золота цианированием из полученных хвостов флотации). Флотационные опыты проводились по схеме и режиму, применяемые на обогатительной фабрике.

Лабораторный шифр пробы ИШ-1 - сульфидная, ИШ-2 - окисленная и ИШ-3 - смешанная. Пробы Иш-1 и ИШ-2 доставлены в лабораторию в истертом виде, а проба ИШ-3 доставлена с рудника Иштамберды в недробленном состоянии. Максимальная крупность кусков смешанной руды составляла 50 - 70 мм.

Основной промышленно-ценный компонент всех трех проб золото. По результатам пробирного анализа ГП Центральной лаборатории при Госагентстве по геологии и минеральным ресурсам и по балансу металла по продуктам флотации содержание золото в исходной руде составило: на руде ИШ-1 - 3,6 г/т; на руде ИШ-2 - 2,6 г/т и на руде ИШ-3 - 4,2 г/т. Проведенными атомно-абсорбционным анализами определено содержание серебра в пробах: на руде ИШ-1 - 0,5 г/т; на руде ИШ-2 - 0,3 г/т и на руде ИШ-3 - 0,4 г/т.

Исследуемая проба ИШ-3 (смешанная) подготовлена к технологическим испытаниям путем додрабивания исходного материала до 100% -1,0 мм, а затем методом усреднения и

сокращения материала по общепринятой методике.

Метод прямого цианирования руд с применением цианистого натрия и его заменителя - цзинь чан.

По результатам пробирного анализа установлено, что в исходных предоставленных проб содержание золота составило: в пробе ИШ-1 - 3,6 г/т; в пробе ИШ-2 - 2,6 г/т и в пробе ИШ-3 - 4,2 г/т.

Тесты по прямому цианированию исходной руды всех проб проводились на крупности 80-82% класса -0,074 мм с применением традиционного реагента для выщелачивания - цианида натрия (NaCN) и его заменителя китайского производства цзинь чан:

Цианирование исходных проб проводили: а) при концентрации раствора цианида NaCN = 0.05; 0.1; и 1.0 г/л; б) при концентрации цзинь чан точно такой же как и с цианидом натрия в режиме Ж : T = 3 : 1. Цианирование велось 48 часов, при этом в промежутках времени снималась кинетика цианирования золота.

Для создания pH равным 10,5 - 11,5 применяли известь в количестве 500 - 600 г/т. После процесса аэрации добавляли цианид натрия и цзинь чан в необходимом количестве и активированный уголь 15 грамм на 1 литр пульпы. Выщелачивание проводилось путем агитации пульпы в 1 л бутылках со свободным доступом воздуха при комнатной температуре 18 - 20° C 48 часов.

Концентрация цианистого натрия, цзинь чан и pH пульпы на заданных уровнях поддерживались на протяжении всего времени выщелачивания.

Продукт после выщелачивания обезвреживался и промывался от цианида и щелочи до нейтральной среды через фильтр и сушился. Сухой остаток растирался до исчезновения комочков, упаковывался в маркированные пакеты, а затем анализировался на содержание золота.

Полученные результаты выщелачивание сульфидной руды с помощью реагента «Цзинь Чан» показано в рисунке 1.

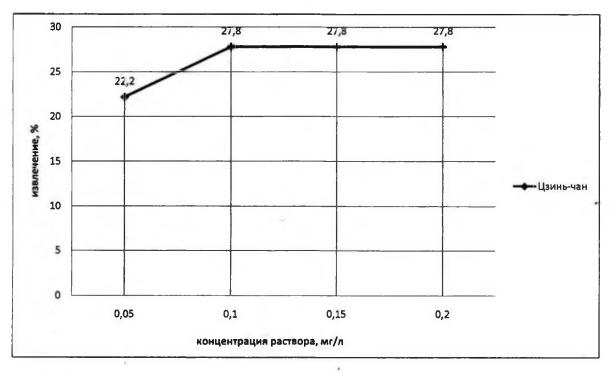


Рис.1. Выщелачивание сульфидной руды

На сульфидной и смешанной руде прямое выщелачивание не дает положительных результатов, о чем свидетельствуют результаты по выщелачиванию золота рисунок 1.

При этом, сопоставляя полученные результаты выщелачивания руд с помощью применения цианида натрия и нового реагента - цзинь чан, можно отметить, что на исследуемые

рудах выщелачивание золота происходит практически одинаково.

Так применение цзинь чан позволило получить кеки цианирования по содержанию золота: на сульфидной руде 2,8, 2,6 и 2,6 г/т; на окисленной руде 0,8, 0,3 и 0,3 г/т; на смешанной руде 1,8, 1,4 и 1,4 г/т. Хвосты цианирования с применением цианида* натрия составили: на руде ИШ-1 - 2,8, 2,6 и 2,6 г/т; на руде ИШ-2 - 0,8, 0,3 и 0,3г/т; на руде ИШ-3 -1,8,1,5 и 1,4 г/т, в зависимости от концентрации растворов.

Потери золота с кеками (хвостами) цианирования с применением цианида натрия составили: на руде ИШ-1 - 77,8%; 72,2% 72,2%; на руде ИШ-2 - 30,7%; 10,6%; 10,6%; на руде ИШ-3 - 42,8%; 38,0%; 33,3%, соответственно от концентрации цианида натрия в растворе: 0,05 г/л; 0,1 г/л и 1,0 г/л, в течение 48 часов. Точно в таком же режиме в такой же концентрации с применением цзинь чан потери золота с кеками (хвостами) цианирования оказались ниже и составили: на руде ИШ-1 -77,8%; 72,2%; 72,2%; на руде ИШ-2 - 30,7%; 10,6%; 10,6%; на руде ИШ-3 - 42,8%; 33,3%; 33,3% соответственно.

Содержание золота в растворах цианирования при снятии кинетики выщелачивания, так же свидетельствуют о том, что цианирование на окисленной пробе, дает положительные результаты по выщелачиванию золота. Показательно, что при маленькой концентрации окислителей, цианирование идет сначала медленно, но с увеличением времени цианирования, растворы по содержанию золота становятся богаче. При большой концентрации цианида и его заменителя - цзинь чан, растворение золота в раствор идет довольно интенсивно, а к концу времени выщелачивания оно замедляется

Максимальное извлечение золота (89,4%) в раствор получилось на окисленной руде (ИШ-2) при 0.5 г/л и 1.0 г/л концентрации цианида натрия и цзинь чан. При этом потери золота с хвостами цианирования составили 10.6%, при содержании в них 0.3 г/т золота.

При такой же концентрации цианида натрия и цзинь чан извлечения золота на сульфидной руде - ИШ-1 составили всего 27,8%, а кеки цианирования содержат по 2,6 г/т золота, и потери золота с ними составили 72,2%.

Максимальные извлечения золота при прямом цианировании смешанной руды ИШ-3 получились так же при концентрации окислителей 1,0 г/л и составили они 66,7% (на цианиде натрия и цзинь чан). Потери золота при этом составили по 33,3% с содержанием в них золота 1,4 г/т в каждом кеке.

Технология обогащения руд с применением цианистого натрия и его заменителя реагента «Цзинь Чан»

Выводы: Общие металлургические результаты по прямому выщелачиванию золота из руд месторождения Иштамберды крупностью 80,0 - 82,0% -0,074 мм растворами цианистого натрия и реагента цзинь чан (таблица 1) показывают эффективность их применения на окисленной руде ИШ-2 (минимальные содержания золота в кеках цианирования), и не эффективным применением на сульфидных и смешанных рудах (высокие содержания золота в кеках цианирования).

Литература:

- 1. Авдохин В.М., Абрамов А.А. Окисление сульфидных минералов в процессах обогащения: М.: Недра, 1989г
- 2. Барченков В.В.. Основы сорбционной технологии извлечения золота и серебра из руд. «Металлургия», 1982.
 - 3. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.-1991.
- 4. Зеленов В.И. Методика исследований золото и серебросодержащих руд. М.: Недра, 1982.
- 5. Лигай А.И. Отчет ЦЛ при Госгеолагентстве по геологии и минеральным ресурсам по проведению металлургического теста по извлечению золота из руд месторождения Иштамберды Бишкек 2016г.