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XUMUAJBIK PEAKIIUAHBIH MACEJIECUMHUH YEYHNMHWHUH
CTAIIMOHAPIBIK ABAJIT'A )KETUIHIMHUH ACUMIITOTUKACHI

Annomauusa :MoiHOa XUMUAIBIK PEAKYUAHbIH MACEIECUHUH YEeYUMUHUH CMAyUOHapoblk abaned
AHCEMUULYYCYHYH ACUMMOMUKACHL U3UI0eHem. YeuuMOUuH 9Ku 30HATYY ACUMMOMUKACHL MYPeY3Va0Y.

Auxwtu ce300p: Mooenoux menoeme, Kowu macenecu, 032046 uekum, acumMnmomuxa.

ACHUMIITOTHUKA PEINEHUA 3AJIAYA XUMHUYECKOM PEAKITUHA CO
CTAIIMOHAPHOM JOCTUXKUMOCTBIO

AHHomamm 30ecw cmpoumscs acumMnmomuxka peuenus XUMUHECKOU peaxkyuu co cmauuozmpuoﬁ
00CMUNCUMOCTIDBIO 8 KOHYe peakyuu. HOCWlpO@HCl @6)/ 30HHAA acCumnmomuKka peulerus 3a0auil.

Knroueswie cnosa. Mooenvroe ypasnenue, 3a0aua Kowu, ocobas mouxa , acummomuxa.

1. Introduction

The chemical problem is described [1] by the following Cauchy problem for the differential
equation

T-1
Z—I:%(ﬂﬁ—T)eW (1)
T(0)=1. ()

Its exact solution is given by the formula


mailto:Keldibay@mail.ru
mailto:Kudaiberdi.kozhobekov@mail.ru

B : ape 1 1 _
t(T)= EI(Tsj e EI(sT 8(1+B)}

1 1,1
Ble sEi(lj—e gl o1
€ € e ¢(1+P)

here is the sign of P.V. means the integral is understood in the main meaning of Cauchy.

Obtaining the asymptotic behavior of the solution to problem (1) - (2) from the exact
solution is a difficult task. In [1], the zero asymptotic of the solution of this problem in three steps
was obtained.

2. Construction an external solution

This solution we will seek in the form
T=1+€T,+&T,+..4e"T+..., (3
here T =T.(t)(i=12,...)is while unknown functions.

Substituting series (3) in (1), after the usual procedures, we obtain the following asymptotics
for determining unknown functions:

1 1 e )
T=1l+eln—+¢° ——a, +. a,+..r,e—>0, 4
1-t 1—t{° 1- tal (1—tj ! } “

here @ = const.

Series (4) is asymptotic only on the interval [0,1—&“], (O<a <1). Atthe pointt=1
the asymptotic property is lost.

Therefore, in a neighborhood of the point t = 1, we introduce the extended variable c by
follow formula

1-t=e°",0<0<1

Then problem (1) reduce to the form:

du(o) 1 o)
i _B(1+[3 u(o))e (5)

here U(G)=T(1—e 7).
3. Construction an external solution(second way)

Definition 2. The variable o is called an internal variable. The solution of the equation (5) is
named internal solution of the problem (1)-(2).



In order to get a limited solution, we require

! =O(8),8—)0C>U(G)~%,S—)O

1-6-——
u(o)
Therefore, we are looking for solution (5) in the form:

U(G)=%+8U1(G)+82U2(G)+---+8nun(5)+"'- (6)

Substituting (6) into (5), to determine unknown functions, we obtain the following

equations:
1 1 1 o)
== 14B——— ", 7
o, =t (1+[3—ije(”’z“1 (1-0)"(u, —u? +u’s)—ue™ ™ |, ()
1 B 1—6 2 1 1 1
The solution of equation (7) is representable in the form
1 B 1 ( 1+Bj
u, = =In =— ~In(1-0)|1-—0 |=
o (R o)) @y T
1 1+ 1 B B
=— ~In 1-o)- Al -0 |, 0<o<—,
(1-c) B (1-0) (1-0) (1+B Gj °“1+p
From here we have
ul(c)~—(s+1)2|n(%—cj.
It is we have follow equation for U,(G):
u', =(u, —u +u’c) - = ,
(1-0)((1+B)(1-0)-1)
From here we have got
: u ) 1-2f
u,=u'+ L +Uu; (1-0), u,(0)=——-,
Co@mE—1 ) ;

he following estimate is true:
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u, ~(B+1) 5 _Gln(1+B—cj,o-—>y_ﬁl+ﬂ.
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Analogously we have

2
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u, ~u; =| (B+1) B_Gln(lﬂi_cj ,a—)y—ﬂ1+ﬂ.
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Substituting the found asymptotic in (5) we have:

1 1 N (1+B)e’ N
u(G)—l_G 8(1—6)2|n(y G) (1_6)3(y_6)|n(y o)
—lsf(l—cs)2 (1+B)22 In*(y—c)+¢0 [SMJ , 9)
2 (vy-o) Y—0
_ B
Mmy—l+B.

Thus, we have proved the following theorem

Theorem 1. Solutions to problem (1) exist on the interval c € [0,y —€*], (0<A <1)
and the asymptotic (9) holds for it.

To find the asymptotic of U(c) foro — y, we put in (13)
c=6=v-r(g),(0<r(e),r(0)=0).

Then we have:

1 1 oy (1+p)e oy
u(cs)—l_c~7 8(1_6)2|n(y G) (1—6)3(y—6)|n(y G)
—383(1—6)_2 (1+§)22 In*(y—)6+¢0 (S—In(y—fs)] ,

2 (v-5) Y—G

Thus, we have proved the following theorem

Theorem 1. Solutions to problem (1) exist on the interval

ce[0,y—¢"], (0<Xi<1)and the asymptotic (9) holds for it.



To find the asymptoticU(o), for c—y, we put in (13)
c=6=7y-r(e),(0<r(e),r(0)=0)

Then we have:

-y 1 1 . (1+PB)e? B
U8) =175 s ey " =8y, —ay M —©)
o0 ][50

Hence, equating the middle terms to zero, we have
2
€
r2(<c,)+(1+[3)gr(s)+3(1+[3)2 Inr(e)=0.

Solving this as a quadratic equation for r( 8) we have::

r(e)z—#s—l—\/(l_‘_B) (1+B) |nﬁ

or

f(e)0 2P et € (14 pyn—t r(e)>0.
2 r(e)

2

Since

L1 r(e)) _ B
(1-0) —1_y(1+1_yj (L+B)L+ (LB, (1 = 7 )

Therefore
U(c)=1+p—(1+B) (%(1+B)Inslj,s—>0.

Since 1—t =e ¢, 0 < & <1, the variable t cannot be greater than 1.

4. Construction an internal solution

To construct the asymptotic solution for t> 1, we introduce another new variable s.

If we make a substitution



S :(t—l)EeB’(”B)E =(t=1-¢"")

t—1= E e—B/(lJrB)sS - e
€ — _Ee(y—c)/s
e
Let

S, :—ge“s)’g,u(a)=1+B—(1+B)2 (%(1+B)Ins‘lj,s—>0.

We introduce the notation T (t) =1)(s) then equation (1) in the new variables takes the
form:

y—(1+B)

(?j—\'sl =(1+B-y)e™™ . @

Definition 1. The variable s is called an internal variable. The solution of the equation (11)
is named internal solution.

Note that at the point S

\p(so):1+B—O[s(ln31]::k.

The asymptotic solution of equation (10) we seek in the form:

\|!(S)=1+B+8(1+B)2\V1(8)+82(1+B)2\|]2(S)+..., (11)

Substituting (14) into (13) for unknown functions, we obtain the following problems

vL(s)=—y,(s)e"™ v, (s,)=k , (121
\|J'2(S)=—\|12(S)e“’1(s)—\|11(S)(\|12(S)—\|11(S)(1+B))e"’1(s),\|12(SO):O, (12.2)
W'(8) = —y,(8)e" ) =y, (8)(w,(8) —wi(s)(1+B))e" -

Ly, (5)e (‘lfs( $)—2(1+B)w,(s)w,(s)+wi(s)+ %wi(s) (12.3)

+(1+B)2+—(1+B)\|f2(S)wf(8)+%(1+ﬁ)2wf(S)j,wg(So)=0

The solution of equation (15.1) has the form



j__ku%dr:—s+so, (u=vy,) (13)

The solution of equation (15.1) has the form

uwe -1
j dt+In(-u)—Inu,=-s+s,
g

or

I_u e_T_1dr+O(u)+In(—u)—Inu0 =—S+s5,.
o

From here, we get:

U=y, =—e"°+0(e™*), s>ow,(t>1).

In this way,

y,(s)=—€""+0(e™),s >oo(t >1).

Now we solve the problem (15.2)

My, (s) =y, (8)+(1-w,(8))e" y,(s) =—yi(s)e"™™, w,(u,) =0 (14)
Homogeneous equation (14) has a solution
V(s)=yy"(s)=wy;(s)=e""2+0(e*™),t>1

Given this, from (17) we have:

v,(s)= _LZV(S)V‘l(p)uz(p)e“(s)ds =Uu?(s),s —>+oo,t >1
etc.

v, (s)=U"(s), s —>+o.

Therefore, we got that

y(s)=1+B+e(1+P) e +(g(1+p)e )2 +..+0(e(1+B)e*) +.., s—>x,e—>0
Comment. Thus, the solution to this problem begins a jump at a singular point

2
t=1-e""*, c, Zi—8|n1+0(8|n1j ,
1+ € €

and



e €

T(f):1+[3—8|n}+0(8|n1j,8—)0.

Then it will quickly exponentially move to the equilibrium point T=1+8.

o
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