UDK 681.516

BUILDING FAULT-TOLERANT DECENTRALIZED SYSTEMS

E.K. Mailybaev - PhD doctoral student, Kazakh university ways and communications, Almaty,
RepublicofKazakhstan,050063,e-mail: ersind@,mail.ru

U.U. Umbetov-Dr.Sci.Tech., professor, Vice-Rectorfor Academic Affairs Kh.A. Yasavi International
Kazakh-Turkish University, Turkestan, Republic o fKazakhstan, e-mail: uumbetov@mail.ru
Zh.1.Batyrkanov, professor, Kyrgyz State Technical University after I. Razzakov,Bishkek, Republic
ofKyrgyzstan

Kossyakov Igor Olegovich, PhD student Kazakh University Ways of Communications, Republic of
Kazakhstan, Almaty, microdistrict Zhetysu-1, 32A, e-mail: heimmdal@mail.ru

A.B. Shynykulova - PhD doctoral student, Kazakh university ways and communications, Almaty,
Republic ofKazakhstan, 050063, sh.anell4@mail.ru

Annotation. The safety oftechnological processes, communication systems, onboard systems
and other control objects is largely determined by the reliability, fault tolerance and survivability of
the control computing systems, especially in the event of emergency situations, accidents, sabotage
that impede and sometimes exclude repairs. Technical failures, as well as the unreliable functioning
of information and telecommunication system in the field of information security are noted as one
of the main threats to information security. The development of methods and means of adaptation at
the same time to the flow of failures and requests in control systems, computing nodes of which are
implemented on the basis of industrial computers and controllers, equipped with a set of functional
modules, which determine the multifunctionality of the nodes, help in addressing fault tolerance.
Fault tolerance property of a technical system to maintain its operability after the failure of one or
more composite components. Fault tolerance is determined by the number of any consecutive single
component failures, after which the health ofthe system as a whole is maintained. The advantages of
fault-tolerant decentralized systems are given. The basic principles of building systems with fault-
tolerant characteristics are listed. Various technologies for system stability are considered.

Keywords:fault tolerance, automation, decentralization, processes, shutdowns, monitoring.

100 NH®OPMALIMOHHBIE TEXHOJ/TIOI A, CETU I CUCTEMBbI

http://energetika.in.ua/ru/books/book-5/part-4/section-1
http://www.justicemaker.ru/view-article.php?id=25&art=1691
https://finlit.online/bankovskoe-delo-knigi/istochniki-
https://cyberleninka.ru/article/n/problemy-informatsionnoy-bezopasnosti-v-sotsialnyh-
https://www.alienvault.com/blogs/security-essentials/intrusion-detection-techniques-methods-best-practices
mailto:ersind@mail.ru
mailto:uumbetov@mail.ru
mailto:heimmdal@mail.ru
mailto:sh.anel14@mail.ru

N3Bectna KI'TY nm. N Passakosa 50/2019
MOCTPOEHUME OTKA30YCTOMUNMBbLIX OJEUEHTPANN3OBAHHbBIX CUCTEM

E.K. Mainbi6aes - gokTopaHT PhD, Kaszaxckuil yHueepcuTeT nyTeil coobuieHus, r.AamaThl,
Pecnybnnka KasaxcTaH, e-mail: ersind@,mail.ru.

Y.Y. ¥YM6eTO0B, A4.T.H., npodheccop, MNpopekTop no y4ebHon paboTe Me>KayHapoaHOro Kasaxcko-
Typeukoro yHuBepcuTeTa wuMeHn X.A.Acasu, TypkecTaH, Pecnybnnka KasaxcTaH,
uumbetov@mail.ru

X.N. baTblpkaHos, npodeccop, Kbiprbi3ckuii MocyfapCTBEHHbI TeXHUYECKUA YHUBEPCUTET
um. V. Pas3akoBa, buwkek, Pecnybnnka Kblprbl3cTaH

KocsikoB Vropb Onerosuy, gokTopaHT PhD Kasaxckoro YHusepcuTeTa lMyTeir CoobLieHus,
Pecny6nnka KasaxcTaH, r. AnmMaTbl, MuKpopainoH XeTbicy-1, 32A, e-mail: heimmdal@mail.ru
A.B. LWbiHbIKynoBa - gokTopaHT PhD, Kaszaxckuilt yHueepcuTeT nyTen coobLieHuns, r.ANMaThl,
Pecnybnnka KasaxcTaH, e-mail: sh.anell4@mail.ru.

AHHOTauma. be3onacHoCTb TEXHOMOrMYECKMX NPOLLECCOB, CUCTEM CBA3UN, HOPTOBbLIX CUCTEM
M WHbIX 0OGBEKTOB YMNpaB/ieHUs BO MHOIOM OMpeaenseTcs HaLeXXHOCTbHO, 0TKa30yCTOMUYMBOCTLIO U
XXMBYYECTbIO YNPABNALNX BbIYNCINTENIbHBIX CUCTEM, OCOBEHHO MPU BO3HUKHOBEHUW HELUTaTHbIX
CUTyauuid, aBapuu, AMBEPCUMN 3aTPYLHAOLLMX, a MOPOV UCKOYaOLWMX PEMOHTHbIE paboTbl. OTKa3sbl
TexHuyeckmx! cpefcts, dl Takxke! HeHagexHoe! (YyHKUMOHMPOBaHME! WMHMOPMALUOHHBLIX! ©
TeNIEKOMMYHUKALMOHHBIX CUCTEM B chepe MHPOPMaLMOHHOW 6e30MacHOCT OTMEeUeHbl Kak OfHUN U3
OCHOBHbIX Yrpo3 WMH(OpMaLMOHHON 6e3onacHOCTU. Pa3paboTka METOAOB W CPefcTB ajanTauuu
O[lHOBPEMEHHO K MOTOKaM OTKa30B 1 3arMpOoCOB B YNPaBAsAOLWMX CUCTEMAX, BbIYUCUTENbHbIE Y3/bl
KoTopbix! peanusytotcal Hal ocHoBe! npoMmebilWIeHHbIX! KoMMbioTepoB! Kn! KOHTPONEpOs,
YKOMM/IEKTOBaHHbIX! Habopom! (hYHKLMOHaNbHbIX! moaynei,! 00yC/10BNNBAOLLNX
MHOrohyHKLMOHanbHOCTbO! y3noB! nomoratoT! B! peweHun! BonpocoB! 0TKa30yCTONYMBOCTM.
OTKa30yCTOWYMBOCTb CBOMNCTBO TEXHUYECKON CUCTEMbI COXPaHATL CBOKO paboTOCNOCOB6HOCTL Moc/e
0TKa3a OAHOI0 WM HEeCKO/IbKMX COCTaBHbIX KOMMOHEHTOB. OTKa30yCTOMYMBOCTbL OMnpefensiercs
KonuyectsoM! no6bIX! nocnegoBatenibHbIX! eAUHNYHBIX OTKA30B KOMMOHEHTOB, Mocne! KOTOporo
coxpaHseTcsa! pabotocnocobHocTe! cuctembl B! uenom.! TlpuBefeHbl NpenmyLlecTsa
OTKa3oycTonumBbIX! feueHTpann3oBaHHbIX! cuctem.! [lepeumcneHbl! OCHOBHble! MPUHLMMBI
nocTpoeHuna! cuctem! c! oTkasoycTolumBbiMM! XapakTepucTukamu.! PaccMOTpeHbl! pasnnyHble
TEXHONIOTUN 11 YCTOWYMBOCTUN CUCTEMBI.

KnoueBble CMOBa: OTKA30yCTOMYMBOCTb, aBTOMAaTW3aLMs, AELEHTPann3aLms, MpPOLECCHI,
OCTaHOBbI, MOHUTOPWHT.

Introduction

Fail-safe decentralized systems- are one ofthe promising areas for the development of optimal
control of equipment shutdowns of technological processes.IFail-safe decentralized are able to
continuously operate in the event of failure of individual nodes and communication channels without
the need for remedial repair due to the presence in their architecture of special hardware and
algorithmic tools that automatically detect failures, isolate them and replace them with backup
resources ensuring restoration of the logical integrity of the communication environment. Due to
these properties, fail-safe decentralized can be successfully used as a basis for creating critical,
important facilities of a hazardous production and process management system. Failures of the
modules and bonds of the fail-safe decentralized systems lead to the appearance of heterogeneityin
its physical structure.

As a result, the number of possible data transfer routes decreases, while their average length
increases, which complicates the routing of data between healthy modules after system
reconfiguration. As a result, the average time for the exchange of information flow increases and the
actual system performance decreases [1].

NH®OPMALMOHHBLIE TEXHOJTIOT MW, CETU W CUCTEMBbI 101

mailto:ersind@mail.ru
mailto:uumbetov@mail.ru
mailto:heimmdal@mail.ru
mailto:sh.anel14@mail.ru

M3Bectna KI'TY um. M.Pa33akosa 50/2019

The base of the article description was the scientific and production work of scientists in the
field of the theory of the fault-tolerant organization of decentralized systems. In particular, the
following works were studied:S.E. Baranov, V.V. Voevodin, Y.Y. Gromov, E.A. Kalyaev, E.E.
Levin, V.G. Khoroshevsky, 1.V. Zotov, Borisenko Y.V etc

THE MAIN PART

There are two fundamentally different approaches that can be independently combined when
building a fail-safe decentralized systems. Figure 1 shows an example of a multi-level decentralized
control system. The first approach is implemented using disaster recovery, when a complete copy of
the entire system can be restored in another data center. This method is relevant in almost any
situation, however, it can have a very long period of inactivity. The second way: it is the software
implementation of fault tolerance for each ofthe components and their interaction. Below we consider
various technologies for system stability. [2,3].

Level management

Planing

Data network

Figure 1-is an example of a multi-level decentralized control system.

Low level fault tolerance services. These systems should consists of more or less independent
of each other subsystems, and each ofthem must be fault tolerant. Single point of failure. Architecture
should be avoided in which the entire system collapses when one of the components is stopped. This
can be achieved either by using the principle of redundancy, or by making the components as
independent as possible so that if one of the components fails, only part of the functionality stops
working, and the rest of the system continues to work. This solution is not suitable for the main

102 NHO®OPMALIMOHHBLIE TEXHONOTI A, CETUW CUCTEMBbI

N3Bectna KI'TY mm. M Pa33zakoBa 50/2019

functionality of the system, but in case of problems of secondary elements of the system that provide
auxiliary functions, the specified shutdown can completelydisable the system. Redundancy system
with the presence of an excess amount of necessary components. Redundancy can be seen on the
example of a mirrored RAID array as well as two network adapters connected to two different
switches also represent a redundancy model. And when one of these redundant components is
stopped, all other components should continue to work.

With this design approach, two strategies can be distinguished: active-active and active-
passive.

In an active-active strategy, you can work simultaneously with two identical components at
the same time. For example, in a system where an operator simultaneously receives data from a
workshop using two different components from two different places. 1f one ofthese components fails,
the operator will not notice that there was a problem in the system, which is an undoubted advantage
of this approach. As minuses it is possible to allocate doubling the amount of traffic and time for its
processing, as well as additional server infrastructure, which is constantly in operation and consumes
resources. The active-passive strategy is only one constantly working component, in the case ofwhich
it stops, the second component automatically turns onl which restores the state and takes over all the
work. But with this strategy, problems may arise with the bandwidth of the component. It is also
important to understand the complexity of implementing an active-passive strategy compared to an
active-active strategy, since you need areliable way to verify that the active component is functioning
and you need to be able to restore the state at the time of the shutdown or constantly synchronize it.

Also, this solution will always have some delay in the operation when the component is
stopped, while the passive component will consume a lot less resources and you can get a fault-
tolerant solution on a weaker hardware resource.

Load balancing is used when building heavily loaded systems.

However, for the fail-safe decentralized systems this principle also applies. Load balancing
evenly distributes the entire load among identical components.

Unlike the above-described active-active strategyl here only one component performs each
task. For example, in the case of web servers, making session replication is difficult without load
balancing. In this solution, it is very important to have at least N+1 redundancy; if peak loads require
N components operating at full capacity, then N+1 such components should be present in the system,
otherwise, when one of the elements stops, then all other loads increase and the whole system will
crash.

Defensive coding. To achieve maximum resiliency, you need to pay attention to resiliency
during the design and programming stage of the system. The code of the processing program must be
able to work with continuous cycles, mechanisms to protect the processor from thermal damage when
the system overheats, access points, null division.

When an error occurs during processing, the system should not enter into an infinite loop,
which constantly tries to perform this operation, especially if the message comes from outside, and
there is no guarantee that it is correct. Sending an error message to the monitoring system and
proceeding to the processing of the next task will provide an opportunity to interrupt such a cycle.
When you receive a message from outside, you need to consider the situation with the number of
messages that exceed the processor's processing ability. The system from time to time must maintain
its state, so that in case of big problems there will always be an opportunity to roll back into the last
consistent state.

To avoid problematic situations with division by null, the program code should be created
with the rule to never pass a null between components in the system.

Monitoring. Increase the resiliency of the system as possible through monitoring. Very often,
having learned about upcoming problems in advance, you can take certain actions to avoid their
occurrence. For example, seeing that the free disk space is running out, you can start the process of
clearing old event logs. For monitoring there are many ready-made solutions, both paid and with
open-source license, such as Triton, Nagious. Standard monitoring functions are monitoring disk,

NH®OPMALMOHHBLIE TEXHOJTIOT MW, CETU W CUCTEMBbI 103

M3BecTna KIF'TY um. .Pas3akosa 50/2019
processors and traffic. There are also various plugins that allow you to monitor log files and send a
message to the monitoring system when errors occur. [4].

Another type of monitoring is the health monitor, when the application sends special heartbeat
periodic signals generated by hardware or software to indicate normal operation or to synchronize
other parts, and if there was no return from the application for a certain period of time, a message
pops up in the tracking system about malfunction.

Findings

It is necessary to think through all the phases of system resiliency as early as possible, at the
design stage, adhering to bring the system to the possibility of their components to resist unplanned
failures or violations, and also to recover in a certain temporary period in the event of such an event.
It is very important to investigate every problem that has occurred in the system, find the true cause
of the errors and make an analysis of the event.

LIST OF SOURCES:

1 Borisenko Yu.V. Method, algorithms and hardware for online program relocation in fault-
tolerant multicomputer systems: Abstract dis. can.tech.science. Kursk, 2014.

2. Chernyshev! N.N.IDistributedl automatic control! system for a hydrogen sulphide! gas
combustion! unit.! -Lugansk.:! Mpaw! nyraHcekoro! suwaweHHd! MikHapogHoi! Akagemn
wdopmatmsayn Nel(23), 2011. 14c

3. Kruchinin S.V. Types of decentralized networks and the option of building a decentralized
network of a full protocol stack. -Volgograd.: Proceedings ofthe VVolgograd state technical university
Ne11(190), 2016. 161c

4. Javaspecialist.! Building! a fault-tolerant! system! (fault! tolerant)! [electronic! resource]
https://habr.com/ru/post/118496/

https://habr.com/ru/post/118496/
mailto:bobrovma92@mail.ru
mailto:tutaevgm@mail.ru
mailto:kulaevna.ee@gmail.com

