УДК 550.372 + 550.837.2

СЕРВИСНЫЙ ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ ПОДГОТОВКИ И ПРОВЕДЕНИЯ КОЛИЧЕСТВЕННОЙ ИНТЕРПРЕТАЦИИ МАГНИТОТЕЛЛУРИЧЕСКИХ ДАННЫХ

О.Б. Забинякова, А.Н. Мансуров, В.Е. Матюков

Разработано сервисное программное обеспечение для подготовки данных и проведения количественной интерпретации материалов полевых магнитотеллурических зондирований с помощью программы двумерной инверсии Rodi-Mackie. Реализованы средства визуализации входных и выходных инвертируемых данных.

Ключевые слова: обратная задача магнитотеллурического зондирования; количественная интерпретация; входные данные; визуализация.

SERVICE PROGRAM COMPLEX FOR PREPARING AND CONDUCTING THE QUANTITATIVE INTERPRETATION OF MAGNETOTELLURICAL DATA

O.B. Zabinyakova, A.N. Mansurov, V.E. Matyukov

The service software for preparing of data and quantitative interpretation of field magnetotelluric soundings materials by the two-dimensional inversion program Rodi-Mackie is developed. Visualization of input and output inverted data is realized.

Keywords: inverse problem of magnetotellurical sounding; quantitative interpretation; input data; output data; visualization.

Введение. Как известно, задачи, связанные с использованием классического метода глубинной геофизики – магнитотеллурического зондирования (МТЗ), можно условно разделить на две большие группы: прямые задачи МТЗ и обратные задачи МТЗ [1]. При этом более значимый прикладной результат имеют обратные задачи МТЗ (или инверсия данных МТЗ), которые в свою очередь подразделяются на одномерные (1D), двумерные (2D) и трехмерные (3D). В рамках статьи под количественной интерпретацией магнитотеллурических данных понимается решение обратной задачи с использованием полевых материалов регистрации 5-ти компонент электромагнитного поля.

Ввиду того, что магнитотеллурические наблюдения, проводимые Научной станцией РАН в г. Бишкеке (НС РАН), осуществляются в сложных геоэлектрических условиях Тянь-Шаня, обусловленных резко неоднородным геологическим строением, и требуют дополнительных нестандартных действий по подготовке данных к анализу [2, 3], адекватность результатов, полученных при одномерной интерпретации полевых данных, является весьма сомнительной. Трехмерная инверсия, напротив, позволила бы в наиболее полном объеме оценить геологическое строение изучаемой территории, но, к сожалению, в настоящее время в мире не существует программы трехмерной инверсии, которая применительно к геоэлектрическим условиям Тянь-Шаня могла бы дать адекватный практический результат. Поэтому для решения обратной задачи магнитотеллурического зондирования, т. е. построения геоэлектрических моделей Тянь-Шаня, в Научной станции используется программа 2D инверсии *Rodi-Mackie* [4], которая в настоящее время достаточно известна и распространена в мировом геофизическом сообществе.

Подготовка МТ-данных к решению обратной задачи. При освоении программного комплекса Rodi-Mackie возникла необходимость в создании интерактивного сервисного инструмента, который бы позволил оптимизировать входные данные: из набора стандартных edi-файлов (.edi – международный формат хранения геофизических данных), соответствующих профильному магнитотеллурическому зондированию (рисунок 1), оперативно

Рисунок 1 – Пример работы программы: загружены профильные МТ-данные по 22-м пунктам зондирований

# Model for 2	D inve	rze								
# Period(s) C	lode 60	Lat GG_L	on X(m) Y(p) Z	(m) Compo	onent Real Ing	g Erro	r			
> TE_Impedance		1 1				\sim		~		
> exp(+ixt)		1 1	()	\sim	. ``		~			
> [V/8]/[T]	ι I	4				~		\sim		
> 0.00	1	1	1			· ·	\sim			
> 0 0	1 I	<u>ا</u>	\mathbf{i}	``		\mathbf{i}				
> 21 22	•	÷.	÷.	7	\mathbf{Y}	<u> </u>			· ·	
1.00000E-02	01	0.0000	0.0000	0.000	213600.000	0.000	TE	1.161000E+05	4.316000E+05	5.995146E+04
1.584786E-02	01	0.0000	0.0000	0.000	213600.000	0.000 1	IE	3.304000E+05	3.477000E+05	4.796451E+04
2.511932E-02	01	0.0000	0.0000	0.000	213600.000	0.000 3	TE	2.559000E+05	2.816000E+05	3.805041E+04
3.980892E-02	01	0.0000	0.0000	0.000	213600.000	0.000	TE	1.923000E+05	2.248000E+05	2.9582828+04
6.309148E-02	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	1.426000E+05	1.745000E+05	2.253553E+04
1.000000E-01	01	0.0000	0.0000	0.000	213600.000	0.000 :	TE	1.072000E+05	1.319000E+05	1.699690E+04
1.584786E-01	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	8.332000E+04	9.866000E+04	1.291357E+04
2.511932E-01	01	0.0000	0.0000	0.000	213600.000	0.000 1	IE	6.678000E+04	7.447000E+04	1.000267E+04
3.980892E-01	01	0.0000	0.0000	0.000	213600.000	0.000	IE	5.434000E+04	5.759000E+04	7.917982E+03
6.309148E-01	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	4.405000E+04	4.561000E+04	6.340879E+03
1.000000E+00	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	3.528000E+04	3.675000E+04	5.094351E+03
1.584786E+00	01	0.0000	0.0000	0.000	213600.000	0.000 :	TE	2.779000E+04	3.005000E+04	4.093027E+03
2.511932E+00	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	2.124000E+04	2.482000E+04	3.266757E+03
3.980892E+00	01	0.0000	0.0000	0.000	213600.000	0.000 1	IE	1.539000E+04	2.049000E+04	2.562601E+03
6.309148E+00	01	0.0000	0.0000	0.000	213600.000	0.000	IE	1.043000E+04	1.655000E+04	1,956240E+03
1.000000E+01	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	6.637000E+03	1.270000E+04	1.432968E+03
1.584786E+01	01	0.0000	0.0000	0.000	213600.000	0.000 1	TE	4.105000E+03	9.225000E+03	1.009711E+03
2.511932E+01	01	0.0000	0.0000	0.000	213600.000	0.000 :	TE	2.582000E+03	6.537000E+03	7.028449E+02

Рисунок 2 – Результат работы программы: dat-файл, содержащий выборочные магнитотеллурические данные из исходных 22-х edi-файлов

получать соответствующий требованиям программы *Rodi-Mackie* один dat-файл фиксированной структуры, содержащий все необходимые для инверсии данные (рисунок 2). Разработка этого инструмента осуществлялась в среде Microsoft Visual Studio 2010 на объектно-ориентированном языке программирования С#. При разработке графического интерфейса программы использовались стандартные элементы управления, предлагаемые Microsoft Visual Studio 2010.

Программа-конвертер также снабжена некоторыми расчетными функциями, необходимыми для подготовки МТ-данных к качественной интерпретации. Пользователю предоставлена удобная возможность выбора частотного диапазона; проведения расчета кажущихся сопротивлений и фаз по всем значениям компонент тензора импеданса; выполнения пересчета компонент тензора импеданса; вы в зависимости от угла поворота системы координат относительно первоначальной ориентации; схематичного отображения пунктов профиля наблюдений в географической системе координат. Реализована дополнительная возможность графического отображения расчетных данных, представленных в табличном виде.

После того, как МТ-данные готовы к количественной интерпретации, сгенерированный datфайл подается на вход программному комплексу

Rodi-Mackie и решается обратная двумерная задача МТЗ.

Математическая постановка обратной заоачи МТЗ. Обратная задача магнитотеллурического зондирования состоит в определении геоэлектрической структуры Земли по найденной зависимости магнитотеллурических функций отклика от местоположения на земной поверхности точек наблюдений (х, у) и частоты наблюдаемого МТ-поля ω [1, 5], инверсия сводится к решению следующего операторного уравнения:

$$\left[Z\left\{x, y, z = 0, \omega, \sigma(x, y, z)\right\}\right] = \left[\tilde{Z}(x, y, \omega)\right], \quad (1)$$

где [Z] – обратный оператор прямой задачи, зависящий параметрически от x, y, ω , который точно определяет тензор импеданса по заданной электропроводности $\sigma(x, y, z)$; $[\tilde{Z}]$ – тензор импеданса, измеренный с погрешностью δ_z на множестве точек (x, y) и множестве частот (ω) [1].

Электропроводность $\sigma(x, y, z)$ определяется из следующего условия:

$$\left\| \left[\tilde{Z} \right] (x, y, \omega) - \left[Z \left\{ x, y, z = 0, \omega, \sigma \left(x, y, z \right) \right\} \right] \right\| \le \delta_{Z}.$$
(2)

Норма, находящаяся в правой части неравенства (2), называется невязкой.

Обратная задача (1) решается в классе кусочно-однородных и кусочно-непрерывных по электропроводности моделей, которые возбуждаются плоской волной, вертикально падающей на земную поверхность (z = 0).

По результатам инверсии получается множество распределений для $\tilde{\sigma}(x, y, z)$, удовлетворяющих (1), при этом выполняется и условие (2). Данное множество распределений $\tilde{\sigma}(x, y, z)$ является множеством Σ_{δ} подобных решений обратной задачи (1).

Тихоновская регуляризация. Ввиду того, что обратная задача МТЗ является некорректной задачей, применение регуляризации позволяет сузить область допустимых для задачи (1) решений вокруг точного модельного решения [1, 6]. При этом регуляризация позволяет учитывать также и априорную геоэлектрическую и геологическую информацию об исследуемой модели.

Тихоновская регуляризация сводится к минимизации тихоновского регуляризирующего функционала $\Phi_{\alpha}(\sigma)$ [1, 5]:

$$\inf \Phi_{\alpha} \left\{ \sigma[x, y, z] \right\}, \tag{3}$$

где

 $\Phi_{\alpha} \{\sigma[x, y, z]\} = I\{\sigma[x, y, z]\} + \tau \Omega\{\sigma[x, y, z]\}, (4)$ где I(σ) – функционал невязки; $\Omega(\sigma)$ – стабилизирующий функционал.

Функционал магнитотеллурической невязки $I(\sigma)$ определяет невязку между модельными и экс-

периментальными значениями импеданса и типпера [1]:

$$\mathbf{I}\{\sigma(x,y,z)\} = \left\| \left[\tilde{Z} \right] - \left[Z\{x,y,z=0,\omega,\sigma(x,y,z)\} \right] \right\|^2.$$
(5)

Несмотря на некорректность обратной задачи (1), а, следовательно, и неустойчивость получаемого решения, решение задачи (1), (3) является устойчивым к малым изменениям $\begin{bmatrix} \tilde{Z} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$.

Стабилизация задачи происходит за счет того, что функционал $\Omega(\sigma)$ задает критерий отбора допустимых решений, тем самым сужая класс возможных решений. При этом структура стабилизирующего функционала $\Omega(\sigma)$ зависит от требований, предъявляемых к решению обратной задачи, например [1]:

требование плавности изменения итоговой электропроводности σ(x, y, z), которое выполняется при минимизации следующего функционала:

$$\Omega(\sigma) = \int_{V} \left\{ \left(\frac{\partial \sigma}{\partial x} \right)^{2} + \left(\frac{\partial \sigma}{\partial y} \right)^{2} + \left(\frac{\partial \sigma}{\partial z} \right)^{2} \right\} dx dy dz; \quad (6')$$

требование близости результирующей электропроводности $\sigma(x, y, z)$ к гипотетической модели $\sigma_0(x, y, z)$:

$$\Omega(\sigma) = \int_{V} \left\{ \sigma(x, y, z) - \sigma_0(x, y, z) \right\}^2 dx dy dz \quad (6'')$$

Из (4) видно, что параметр регуляризации τ задает вес стабилизирующего функционала: при больших значениях параметра регуляризации происходит минимизация функционала $\Omega(\sigma)$ и результирующая модель удерживается вблизи стартовой; при малых значениях параметра регуляризации осуществляется минимизация функционала I(σ), подавляется стабилизирующий эффект и результирующая модель может быть далека от точного модельного решения [1]. Поэтому возникает дополнительная задача поиска оптимального значения τ , при котором достигается достаточно малая невязка решения.

Невязка решения RMS определяется по формуле:

$$RMS = \sqrt{\sum_{\kappa} \frac{1}{n_{\kappa}} \cdot \sum_{\kappa} \left(\frac{1}{\left(\Delta_{\kappa}\right)^{2}} \cdot \sum_{i=1}^{n_{\kappa}} \left[d_{i}^{\kappa, na \delta \pi} - d_{i}^{\kappa, pac_{4}} \right]^{2} \right)}, \quad (7)$$

где k – индекс инвертируемой компоненты данных из массива ($\rho_{TE}, \phi_{TE}, \rho_{TM}, \phi_{TM}$), где ρ_{TE}, φ_{TE} – кажущееся сопротивление и фаза импеданса для Е-поляризованного МТполя, а ρ_{TM}, φ_{TM} – кажущееся сопротивление и фаза импеданса для Н-поляризованного МТполя; $d_i^{\kappa, \mu a \delta \pi}$ и $d_i^{\kappa, \rho a c q}$ – наблюденные и рассчитанные МТ-данные; і – индекс периода (частоты) из всего диапазона используемых периодов; $n_{\rm c}$ – количество данных для k-той компоненты (количество периодов, количество пунктов наблюдения); Δ_k – погрешность определения k-той компоненты.

Параметр τ должен быть согласован с погрешностью исходных данных. Оптимальное значение τ ищется на основе итерационного перебора решений с соответствующими значениями невязок. Оптимальным будет значение τ , при котором невязка решения RMS приблизится к погрешности исходных данных.

Программа 2D инверсии *Rodi-Mackie* основывается на описанном выше подходе [4]. Для эффективного использования этой программы необходима также дополнительная визуализация входных и выходных данных.

Визуализация исходных данных и результатов работы программного комплекса Rodi-Mackie. Для 2D-инверсии Rodi-Mackie:

Входными данными являются:

- априорная ячеистая модель распределения сопротивлений;
- значения импеданса по модам ТЕ и ТМ для определенного набора периодов электромагнитных волн в каждой измеренной точке профиля;
- координаты всех измеренных точек (станций) профиля.

Выходными данными является итоговая ячеистая модель распределения сопротивлений.

Программные средства по визуализации входных и выходных данных были реализованы с помощью вычислительной системы Matlab.

При визуализации данных мод импеданса нужно создавать отдельные графические построения для ТЕ-моды и для ТМ-моды. Каждое из таких построений, в свою очередь, состоит из двух традиционно располагаемых друг над другом частей – карт распределения амплитуды (кажущегося сопротивления) и фазы моды импеданса в зависимости от периода и от положения соответствующей точки на профиле. По горизонтальной оси откладывается расстояние вдоль профиля, по вертикальной – период в логарифмическом масштабе. Значения амплитуды (в логарифмическом масштабе) и фазы моды импеданса показываются цветом заливки.

Импорт данных в Matlab. Программный комплекс *Rodi-Mackie* позволяет экспортировать данные, поданные ему на вход вместе с результатами моделирования. В частности, в файл с именем <название_профиля>.*stn* выводятся координаты всех станций по оси у, направленной горизонтально вдоль профиля. Этот файл имеет следующий формат:

первая строка содержит название профиля;

- вторая строка у-координата левой границы матрицы ячеек профиля в метрах;
- каждая из последующих строк описывает положение одной станции – название и у-координата проекции этой станции на плоскость профиля в километрах.

Для считывания данных из этого файла была написана Matlab-функция *read_modeling_stn*. Она принимает имя файла и возвращает следующие параметры:

- profile_bgn_y вещественное число у-координата левой границы матрицы ячеек профиля в метрах;
- ➤ STN структура, содержащая поля:
- NAMES сеll-массив-столбец символьных строк – имен станций;
- *Y2Dkm* массив-столбец у-координат станций в километрах.

Значения импеданса по модам ТЕ и ТМ хранятся в файле <название_инверсной_модели>.out. В этом файле присутствуют как исходные значения импеданса, так и их аппроксимации и полученные в результате построения модели сопротивлений. Данные в файле представлены в следующем формате:

- первая строка содержит дату запуска инверсии;
- вторая строка название профиля;
- третья строка название инверсной модели;
- далее следуют блоки строк, описывающие значения импеданса на каждой станции, перед каждым таким блоком есть одна пустая строка. В каждом блоке содержится название станции, значение RMS для нее и таблица вещественных чисел, в которой столбцы соответствуют компонентам физических величин (импеданс, типпер, период), а строки – последовательным значениям периода.

В большинстве случаев набор значений периодов одинаков для всех станций профиля, что позволяет хранить значения каждой физической величины по всем станциям и периодам в двумерном массиве, где номер строки соответствует периоду, а номер столбца – станции. Так эти значения намного удобнее визуализировать в Matlab.

Для считывания данных из этого файла была написана Matlab-функция *read_modeling_output*. Она принимает имя файла и возвращает структуру RESP, в полях которой хранятся одномерные массивы имен станций и периодов, и двумерные массивы комплексных значений импеданса и типпера.

Ячеистая модель распределения сопротивлений сохраняется в файл с именем <название_профиля>.mod. Этот файл имеет следующий формат:

 строка, содержащая количество ячеек вдоль профиля (ny) и количество ячеек в глубину (nz);

Рисунок 3 – Диаграмма потоков данных Matlab-функций визуализации результатов моделирования

- расположенные на нескольких строках *ny* значений, показывающие размеры ячеек по оси Y в метрах;
- расположенные на нескольких строках nz значений, показывающие размеры ячеек по оси Z в метрах;
- строка, содержащая значение 0;
- nz групп строк, каждая группа описывает один горизонтальны ряд ячеек, ряды приведены в порядке от меньших значений координаты Z к большим, каждый ряд содержит ny значений, показывающих сопротивления ячеек этого ряда, ячейки в ряду следуют в порядке от меньших значений координаты Y к большим.

Для чтения файла такого формата использовалась поставляемая с программным комплексом *3DmodEM* Matlab-функция *read_mackie2d_model*, принимающая имя файла, содержащего модель, и возвращающая набор значений:

- у одномерный массив размеров ячеек по оси Y;
- z одномерный массив размеров ячеек по оси Z;
- rho двумерный массив значений сопротивлений ячеек;

Визуализация мод импеданса. Визуализация мод импеданса заключается в построении двумерных изображений, в которых изменение значения модуля и фазы импеданса в зависимости от у-координаты стации (откладывается по горизонтали) и квадратного корня периода (откладывается по вертикали) показывается изменением цвета согласно некоторой цветовой шкале. Для построения таких изображений была написана Matlab-функция *plot_imped_resp*. Эта функция принимает следующие аргументы:

- STN структура, полученная в результате запуска функции read modeling stn;
- *RESP* структура, полученная в результате запуска функции read_modeling_output;
- OPTIONS структура, поля которой описывают настройки визуализации.
- COLORMAP двумерный массив из нескольких строк и трех столбцов, показывающий, как должны меняться значения красной, зеленой и синей компонент цвета в зависимости от значения модуля или фазы импеданса.

В результате функция *plot_imped_resp* создает два объекта *figure*, содержащие графические построения наблюденного импеданса для мод *TE* и *TM*. В каждом из этих объектов располагается два цветовых изображения, верхнее – для модуля, нижнее – для фазы импеданса. В верхней части каждого изображения отображается расположение станций и их имена, справа от каждого изображения показывается соответствие значений цветам в виде цветовой шкалы.

Необходимо, чтобы изображения удовлетворяли общепринятым стандартам соответствия распределения значений цветам, как в полноцветном виде, так и в виде оттенков серого. Для этого были разработаны 6 отдельных Matlab-функций, которые возвращают массивы, используемые в качестве параметра *COLORMAP*.

Визуализация ячеистой модели сопротивлений. Визуализация ячеистой модели сопротивлений заключается в построении двумерного изображения, в котором изменение значения сопротивления в зависимости от у-координаты (откладывается по горизонтали) глубины (откладывается по вертикали) показывается изменением цвета согласно некоторой цветовой шкале. Для построения таких изображений была написана Matlabфункция *plot_rho_model*. Эта функция принимает следующие аргументы:

- MODEL структура, содержащая в виде полей выходные параметры функции read_ mackie2d model;
- profile_bgn_y вещественное число у-координата левой границы матрицы ячеек профиля в метрах;
- profile_top_z вещественное число высота верхней границы матрицы ячеек профиля в метрах над уровнем моря;
- STN структура, полученная в результате запуска функции read modeling stn;
- OPTIONS структура, поля которой описывают настройки визуализации;

COLORMAP – двумерный массив, задающий цветовую шкалу.

В итоге функция создает объект figure, содержащий описанное выше графическое построение модели сопротивлений. В верхней части изображения отображается расположение станций и их имена, справа от изображения показывается соответствие значений сопротивления цветам в виде цветовой шкалы.

Взаимодействие функций. Процесс работы представленных выше matlab-функций можно описать в виде следующей диаграммы потоков данных (DFD) (рисунок 3):

Примеры результатов работы функций визуализации показаны на рисунках 4 и 5:

Рисунок 4 – Пример визуализации входных данных: распределение значений импеданса по ТЕ моде с интерполяцией (профиль "Кентор Восточный", данные 2014 г.)

Рисунок 5 – Пример визуализации выходных данных: модель распределения сопротивления по данным профильного магнитотеллурического зондирования (профиль "Кентор Восточный", данные 2014 г.)

Таким образом, разработано сервисное программное обеспечение, позволяющее оптимизировать процесс подготовки МТ-данных к количественной интерпретации программным комплексом *Rodi-Mackie*, а также предложены средства визуализации как исходных полевых данных магнитотеллурического зондирования, так

Науки о земле

и получаемых в результате инверсии геоэлектрических моделей.

Представленные результаты получены в Научной станции РАН в рамках выполнения проекта Программы I.5П Президиума РАН по теме "Развитие распределенной системы приложений для хранения, обработки и анализа данных комплексного геодинамического мониторинга Тяньшанского региона".

Литература

- Бердичевский М.Н. Модели и методы магнитотеллурики / М.Н. Бердичевский, В.И. Дмитриев. М.: Научный мир, 2009. 680 с.
- Баталева Е.А. Разработка программного обеспечения для мониторинга электромагнитных параметров Бишкекского геодинамического про-

гностического полигона / Е.А. Баталева, О.Б. Забинякова, В.Ю. Баталев // Вестник КРСУ. 2017. Том 17. № 8. С. 144–149.

- Баталева Е.А. Разработка программного обеспечения для профильного магнитотеллурического мониторинга миниполигона Кентор / Е.А. Баталева, О.Б. Забинякова, В.Ю. Баталев // Вестник КРСУ. 2017. Том 17. № 8. С. 150–153.
- Rodi W.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion / W.L. Rodi, R.L. Mackie // Geophysics. 2001. V. 66. P. 174–187.
- Матюков В.Е. Глубинное строение зоны сочленения Памира и Тянь-Шаня по данным магнитотеллурических зондирований: дис... канд. физ.мат. наук / В.Е. Матюков. Бишкек, 2013. 139 с.
- Тихонов А.Н. Методы решения некорректных задач / А.Н. Тихонов, В.Я. Арсенин. М.: Наука, 1974. 222 с.