Сингулярно возмущенные обыкновенные дифференциальные уравнения с аналитическими функциями

Аналитикалык функциялуу сингулярдуу дүүлүккөн кадимки дифференциалдык теңдемелер

Singularly perturbed ordinary differential equations with analytic functions

Алыбаев К.С., Тампагаров К.Б., Мурзабаева А.б. e.mail: alybaevkurmanbek@rambler.ru, tampagarovkak@mail.ru, aytbu.murzabaeva@mail.ru

Аннотация. В данной работе изложены основные результаты полученные авторами при исследовании сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями.

Ключевые слова. Сингулярное возмущение, аналитическая функция, гармонические функции, линии уровня, асимптотика, погранслойные области, регулярные, сингулярные области.

Аннотация. Жумуш аналитикалык функциялуу сингулярдуу дүүлүккөн кадимки дифференциалдык теңдемелерди изилдөөдө авторлор тарабынан алынган айрым жыйынтыктарды өз ичине камтыйт.

Түйүндүү сөздөр. Аналитикалык функция, сингулярдык дүүлүгүү, гармоникалык функциялар, деңгээл сызыктар, асимптотика, чектик катмар областтар, регулярдык сингулярдык областтар.

Annotation. In this paper, we present the main results obtained by the authors in the study of singularly perturbed ordinary differential equations with analytic functions.

Keywords. Singular perturbation, analytic function, harmonic functions, level lines, asymptotics, boundary layered regions, regular, singular domains.

1. Обозначения и понятия

- N, R,C соответственно множество натуральных, действительных комплексных чисел:
- $R_{+} = 0, +\infty$ мнежество неотрицательных действительных чисел;
- ε малый положительный вещественный параметр;
- Выражение "по ε " будет обозначать, как принято в теории возмущений, "при $\varepsilon \to 0$ ".
- $t = t_1 + it_2$, где i = -1 мнимая единица, t_1, t_2 действительные переменные;
- $F \ t = ReF \ t + iJmF \ t$ комплекзначная функция комплексной переменной, где $ReF \ t$, JmF(t) вещественнозначные функции двух вещественных переменных;
- $\Omega \subset C$ некоторая односвязная область в том смысле, что две любые ее точки можно соединить спрямляемой кривой;
- $Q(\Omega)$ пространство аналитических комплекснозначных функций в Ω ;
- СВОДУ R C сингулярно возмущенное уравнение с вещественным или комплексным аргументом.

- СВДЧП(R) сингулярно возмущенные дифференциальные уравнения в частных производных с вещественными аргументами
- $\forall t$ для любого t ; например, $\forall t \in \Omega$ F t (R) означает: для любого t из Ω функция F(t) обладает свойством R ;
- ∈ знак пренадлежности; ∉ знак не принадлежности

2. Введение

В 70-х годах прошлого столетия Л.С. Потрягин для СВОДУ (R) обноружил явление затягивания — задержки ухода троекторий по ε от положения равновесия системы быстрых движений, М.А. Шишкова [1] построила конкретный пример такой системы СВОДУ(R), А.И.Нейштадт [2] — на более широкие предположения о поведении собственных значений, Д.А. Турсунов [3] — на СВДЧП(R). К.С.Алыбаев [4] с помощью перехода от СВОДУ(R) к СВОДУ (C) и метода линий уровня получил значительно более общие результаты. Совместно с М.Р. Нарбаевым [5] он в комплексной области изменения независимой переменной обнаружил кривую в форме петли, определяющую область затягивания потери устойчивости на вещественной оси. Она была названа "простирающийся пограничный слой" и доказано, что решения СВОДУ (C) вдоль таких линий остаются ограниченными модулю, и не стремятся к решению вырожденного уравнения по ε .

Для определенности такие линии назовём погранслойными линиями. Исследованию существования погранслойных линий посвящены работы К.Б.Тампагарова [6,9].

В частности К.Б. Тампагаровым получены следующие основные результаты:

- 1. Впервые введены понятия: пограничные области, погранслойные линии, регулярные и сингулярные области для СВОДУ(С) с аналитическими функциями.
- 2. Показано, что существование погранслойных линий является специфическими свойствами СВОДУ(С) с аналитическими функциями.
- 3. Найдены различные формы погранслойных линий и установлена зависимость погранлойных линий от начальных значений аргумента;
- 4. Обнаружено новое явление простирающиеся до бесконечности пограничные области;
- 5. Сформулированы широкие достаточные условия возникновения затягивания потери устойчивости, являющиеся обобщением ранее полученных другими авторами результатов.
- 6. Доказано существование погранслойных линий, проходящих через заданные точки и имеющих в них ветвления.

В работах К.Б. Тампагарова предпологается, что вырожденные уравнения имеют единственное, изолированные решения (корней).

Исследованию CBOДУ(R)(C) вырожденные уравнения которых имеют несколько решений посвящены работы A.Б. Мурзабаевой [11-12].

Далее будут изложены основные результаты К.Б. Тампагарова и А.Б. Мурзабаевой

3. ПОГРАНСЛОЙНЫЕ ЛИНИИ ДЛЯ ЛИНЕЙНЫХ СИНГУЛЯРНО ВОЗМУЩЕННЫХ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С АНАЛИТИЧЕСКИМИ ФУНКЦИЯМИ

§ 3.1. Определения и постановка задачи

Рассмотрим линейное неоднородное СВОДУ-С:

$$\varepsilon z' t, \varepsilon = a t z t, \varepsilon + f t, t \in \Omega, a t, f(t) \in Q \Omega$$
, (1)

и линейное однородное СВОДУ-С:

$$\varepsilon z' t, \varepsilon = a t z t, \varepsilon, t \in \Omega, a t \in Q \Omega,$$
 (2)

с начальным условием

$$z t_0, \varepsilon = z^0, (3)$$

где t_0 —внутренняя точка области $\Omega, z^0 \in \mathbb{C}$. Пусть при определенных требованиях на правую часть уравнения (1) существует решение задачи (1)-(3), принадлежащее Q Ω_1 $(\Omega_1 \subset \Omega)$ по первому аргументу и непрерывное по второму аргументу.

Это решение обозначим через $z(t, \varepsilon)$ для тех значений t, для которых оно существует и однозначно определено.

Введем следующие определения. Пусть задано множество $\Omega_0 \subset C$.

Определение 1. Если

- 1. $\forall t \in \Omega_0 \mid z t, \varepsilon o$ граничено no ε);
- 2. $\forall t \in \Omega_0 \lim_{\varepsilon \to 0} z t, \varepsilon \text{не существует}$.

то множество Ω_0 назовем погранслойным множеством, а точки, принадлежащие ему, будем называть пограничными точками.

Пример 1. Полагая $\Omega=C$, $a\ t\equiv a\in R$, $a>0-const,\ z^0=1$, получим решение задачи (2)—(3) в виде $z\ t, \varepsilon=\exp\ a\frac{t-t_0}{\varepsilon}$.

Определение 2. Точки, для которых $\lim_{\varepsilon\to 0} z(t,\varepsilon)$ существует, назовем регулярными точками.

Определение 3. Множество, состоящее только из регулярных точек, назовем регулярным множеством. Регулярные множества будем обозначать символом Ω_r .

Определение 4. Точки, для которых при каком-нибудь начальном значении z_0 функция $z(t,\varepsilon)$ неограничена по ε , назовем сингулярными.

Определение 5. Любое множество сингулярных точек назовем сингулярным множеством. Сингулярные множества будем обозначать символом Ω_s .

Определение 6. Погранслойное множество, являющееся непрерывным, локальновзаимно однозначным образом отрезка, будем называть погранслойной линией (ПСЛ). ПСЛ, проходящую через точку t_0 , будем обозначать символом L_0 t_0 .

В примере 1 прямая L_0 $t_0=t$ ϵ $C|t_1=t_{10},-\infty < t_2 < +\infty$ будет ПСЛ, так как на ней $\lim_{\epsilon \to 0} z$ $t, \epsilon=\lim_{\epsilon \to 0} \exp(a\frac{i(t_2-t_{20})}{\epsilon})$ не существует, но z $t, \epsilon\equiv 1$ ограничено.

Определение 7. Для погранслойной точки $t_1 \in \mathbb{C}$ число $\theta \in \Theta_l$ называется погранслойным направлением, если для любого малого $\sigma > 0$ существует такое малое $\delta > 0$, что множество

$$\{t \in \mathbb{C} \mid |Arg(t-t_I) - Arg\theta \mid <\sigma, \mid t-t_I \mid =\delta \}$$
 содержит погранслойные точки.

Далее на конкретном примере будет показана существенность условия линейности в уравнении (1), т.е. присутствия члена $a\ t\ z\ t, \varepsilon$. Поэтому на заданную функцию $a\ t$ мы

наложим только условие: эта функция существует, то есть $a\ t$ не равна тождественно нулю: $a\ t\not\equiv 0$.

Рассмотрим уравнения вида (2) с $z^0 \neq 0$. Этот довольно тривиальный случай будет рассмотрен по следующим причинам: во-первых, потому, что этот результат понадобится в дальнейшем для рассмотрения общего случая, а во-вторых, потому, что это дает возможность получить некоторое предварительное представление о структуре решения, ожидаемой в общем случае.

Решение задачи (2)-(3) можно представить в виде

$$z\ t, \varepsilon = z^0 exp \frac{ReF\ t}{\varepsilon} (\cos \frac{ImF\ t}{\varepsilon} + i \sin \frac{ImF\ t}{\varepsilon}), F\ t = \frac{t}{t_0} a\ \tau\ d\tau.$$

Отсюда следует, что для значений t, для которых $Re\ F\ t=0$, функция $z\ t$, ε совершает быстрые колебания по ε , оставаясь ограниченной по модулю: $z\ t$, $\varepsilon=z^0$. $Re\ F(t)$ является гармонической функцией и она свои заданные значения принимает на некоторых линиях.

Таким образом, если существует хотя бы одно значение $t=t_0$ для которого $Re\ F\ t_0=0$, то существует линия такая, что для любого t, принадлежащего этой линии, будет $Re\ F\ t=0$. Из $Re\ F\ t<0$ следует $z\ t, \varepsilon\to 0$ по ε ; из $Re\ F\ t>0$ следует $z\ t, \varepsilon\to \infty$ по ε .

Таким образом, что асимптотическое поведение z t, ε по ε в полне характеризуется действительнозначными функциями комплексной переменной $Re\ F$ t $u\ exp\ \frac{1}{\varepsilon}ReF$ t .

Введем следующие определения.

Определение 8. Функцию $Re\ F(t)$ назовем характеризующей функцией ($X\Phi$).

Определение 9. Функцию $V t = exp \frac{Re \ F(t)}{\varepsilon}$ назовем функцией амплитудной скорости (АСФ).

Пример 2. $a t = \exp t$; $t_0 = 0$.

$$XΦ: Re F t = Re(exp t - 1) = exp t_1 cos t_2 - 1,$$

ACΦ:
$$V t = \exp \frac{1}{\varepsilon} \exp t_1 \cos t_2 - 1$$
.

Далее, определим области, где $X\Phi$ неположительны и неотрицательны, а с использованием $AC\Phi$ определим $\Pi C\Pi$ и PO, CO.

Название АСФ связано тем, что для заданных значений t колебания $z(t,\varepsilon)$ (амплитуда) по ε определяются свойствами функции V t = $exp\frac{1}{\varepsilon}Re\ F(t)$.

Постановка задачи. На основе принятых определений доказать существование погранслойных линий и построить регулярные, сингулярные области, для решения $z(t,\varepsilon)$ задачи (1)-(3).

§ 3.2. Линейные однородные уравнения

3.2.1. Взаимосвязь погранслойных линий и регулярных, сингулярных областей

Установимвзаимосвязи погранслойных множеств (линий) регулярных и сингулярных областей. Для этой цели рассмотрим следующие примеры.

Пример 3. Вернемся к Примеру 1 с t_0 =0. Тогда $z(t,\varepsilon)$ = $exp(at/\varepsilon)$.

Для этой функции
$$X\Phi Re\ F\ t\ = t_1$$
,а $AC\Phi V\ t\ = exp\frac{at_1}{\varepsilon}$.

Если ХФ на некоторых линиях принимает отрицательные значения, то на этой линии $z \ t, \varepsilon$ ограничена или $z \ t, \varepsilon \to 0$ *по* ε (если значение $Re \ F \ t$ сравнимо с ε).

Если $X\Phi$ на некоторых линиях принимает положительные значения, то на этой линии z t, ε ограничена или z t, $\varepsilon \to \infty$ по ε .

Таким образом нам надо определить значения $Re\ F\ t\ < 0\ u\ Re\ F\ t\ > 0$.

При этом значения $Re\ F\ t$ могут быть сравнимы с ε .

В нашем примере такие значения образуют множество

$$\begin{split} \Omega_0 = & \ t \in \mathcal{C} | \ \varepsilon \ln \varepsilon < t_1 < -\varepsilon \ln \varepsilon \,, -\infty < t_2 < \infty \;. \\ \forall t \in \Omega_0 (\ z \ t, \varepsilon \ - \text{ограничена, но} \lim_{\varepsilon \to 0} z \ t, \varepsilon \ - \text{не существует}). \end{split}$$

Теперь определим следующие множества

$$\begin{split} \Omega_r = & t \epsilon \mathcal{C} | - \infty < t_1 \leq \epsilon \ln \epsilon, -\infty < t_2 < +\infty , \\ \Omega_s = & t \epsilon \mathcal{C} | - \epsilon \ln \epsilon < t_1 < +\infty, -\infty < t_2 < +\infty . \end{split}$$

 $\forall t \epsilon \ \Omega_r \mathrm{AC} \Phi exp rac{t_1}{\varepsilon} o 0 \ \mathrm{no} \ \varepsilon (z \ t, \varepsilon \ \to 0),$ следовательно $\ \Omega_r - \mathrm{PO}.$

$$\forall t \epsilon \ \Omega_s \text{AC} \Phi exp \frac{t_1}{\varepsilon} \to +\infty$$
по $\epsilon (z \ t, \epsilon \to +\infty)$, следовательно, $\Omega_s - \text{CO}$.

Особую роль играют множества точек, для которых $Re\ F\ t=0.$ В рассматриваемом примере таким множеством является прямая

$$L_0 \ 0 = t \in C | t_1 = 0, -\infty < t_2 < +\infty$$
.

Согласно Определения 6 L_0 0 — ПСЛ.

Для получения погранслойных направлений поступим следующим образом.

При $Re\ t=0$ — погранслойные точки, образующие ПСЛ, заменяем t=is, $s\in R_+$,и получаем $z(t,\varepsilon)=exp(ias/\varepsilon)$ — быстрые колебания; можно также заменить t=-is, $s\in R_+$. Таким образом, для $t_0=0$ имеются два погранслойных направления: $\Theta=i\ u\ \Theta=-i$.

Рассмотренный пример показывает, что $X\Phi$ и $AC\Phi$ вполне определяют погранслойные множества, РО и СО для решений СВОДУ вида (2).

Можно выдвинуть следующую гипотезу.

Гипотеза:

Погранслойные линии определяются из условия $Re\ F\ t=0$.

Погранслойные множества - как значения t, удовлетворяющие условию

$$\varepsilon \ln \varepsilon < Re F t < -\varepsilon \ln \varepsilon$$
.

Регулярные множества - из условия $Re\ F\ t \le \varepsilon \ln \varepsilon$, а сингулярные множества - из условия $Re\ F\ t \ge -\varepsilon \ln \varepsilon$.

Вышерассмотренный пример подтверждает данную гипотезу.

Следующий пример показывает, что условие линейности является существенным.

Пример 4. Уравнение $\varepsilon z^{'}$ t, $\varepsilon = z^{2}$ t, ε , с начальным условием $z(t,\varepsilon) = 1$, имеет решение z t, $\varepsilon = \frac{\varepsilon}{\varepsilon - t}$. Это решение не стремится к нулю по ε только в окрестности точки t = 0. Следовательно, ПСЛ отсутствуют.

3.2.2. Существование погранслойных направлений

Заменим в (1) t_{ω} $s=t_0+\omega s$, $\omega\in\Theta_1$, $s\in R_+$:

$$\varepsilon dz(t_{\omega} \ s \ , \varepsilon)/(\omega ds) = a \ t_{\omega} \ s \ z(t_{\omega} \ s \ , \varepsilon) + f(t_{\omega} \ s \). \tag{4}$$

Обозначая W_ω $s,\varepsilon=z$ t_ω s , ε , A_ω $s=a(t_\omega(s)), F_\omega(s)=f(t_\omega(s)),$ получаем уравнение

$$\varepsilon W_{\omega}^{'}(s,\varepsilon) = \omega \left(A\omega(s) W(s,\varepsilon) + F_{\omega}(s) \right) \tag{5}$$

с начальным условием

$$W(0,\varepsilon) = z_0. (6)$$

В силу условия $a(t)\neq 0$, существует такое целое неотрицательное n, что

$$a \ t = (t - t_0)^n a_n \ t \ , a_n \ t \in Q \ \Omega \ , a_n \ t_0 \neq 0.$$
 (7)

При этом отметим, что n, как функция от t_0 , может быть больше нуля только на множестве точек, не имеющих точку прикосновения, в силу свойств аналитических функций.

Подставляя (7), получаем

$$\omega A_{\omega} s = \omega a t_0 + \omega s = \omega \omega s^n a_n t_0 + \omega s =$$

$$= \omega^{n+1} s^n a_n (t_0 + \omega s).$$

Уравнение (5) принимает вид

$$\varepsilon W_{\omega}^{'}\ s, \varepsilon\ = \omega^{n+1}a_{n}\ t_{0} + \omega s\ s^{n}W\ s, \varepsilon\ + \omega F_{\omega}\ s\ ,\ s\in R_{+}. \eqno(8)$$

Выбирая $\omega = \omega_0$ так, чтобы было $Re \ (\omega_0^{n+1}a_n \ t_0) = 0$, получаем погранслойное направление. Это можно сделать самое меньшее двумя способами.

В силу непрерывности, при ω , близких к ω_0 , будет и $Re(\omega^{n+1}a_n\ t_0\)>0$, и $Re(\omega^{n+1}a_n\ t_0\)<0$.

Отсюда, в свою очередь, следует, что при $s < \delta$, где δ - достаточно мало, будет и $Re(\omega^{n+1} \ a_n(t_0 + \omega s)) > 0$, и $Re(\omega^{n+1} \ a_n(t_0 + \omega s)) < 0$.

Из общей теории СВУ следует, что при таких ω решение уравнения (4) будет либо стремиться к ∞ по ε , либо стремиться к решению вырожденного уравнения с возможным всплеском в начале, но такие всплески (при n>0) будут только в отдельных точках.

Отметим еще, что при движении от любой регулярной точки начальное условие (6) заменяется на условие вида: $|W(0,\varepsilon)|$ ограничено по ε . Но общие асимптотические оценки сохраняются.

Таким образом, в каждой погранслойной точке имеются не менее двух погранслойных направлений. Движение по соответствующему направлению является решением некоторого ОДУ на плоскости \boldsymbol{C} и дает ПСЛ.

Такое уравнение, если его можно построить, будем называть погранслойным уравнением, соответствующим начальной задаче (1) - (3).

3.2.3. Построение погранслойных уравнений

Из вышеизложенного видно, что вдоль ПСЛ решение уравнения имеет быстрые колебания. Для упрощения исследования можно применить замену, аналогичную переходу от «фазовых координат» к «энергии».

Рассмотрим уравнение (2). Введем функцию

$$U s, \varepsilon = z T s , \varepsilon z T s , \varepsilon^*, s \in \mathbf{R}_+, T(0) = 0,$$

– квадрат модуля функции $z(t, \varepsilon)$ вдоль некоторой траектории.

Наша цель – так подобрать функцию T(s), чтобы было $U'(s,\varepsilon) = 0$.

Имеем:

$$\varepsilon U'(s,\varepsilon) = \varepsilon (z(T(s),\varepsilon)(z(T(s),\varepsilon))^*)' =$$

$$= \varepsilon (z'(T(s),\varepsilon)(z(T(s),\varepsilon))^* + z(T(s),\varepsilon)(z'(T(s),\varepsilon))^*) =$$

$$= a \ T \ s \ z \ T \ s \ , \varepsilon \ T' \ s \ z \ T \ s \ , \varepsilon \ ^* +$$

$$+ z(T(s),\varepsilon)(a(T(s))z((T(s),\varepsilon)T'(s))^* =$$

$$= z(T(s),\varepsilon)(z(T(s),\varepsilon)^*(a \ T \ s \ T' \ s \ + (a(T(s))T'(s))^*). \tag{9}$$

Пример 2.5. Для уравнения Примера 2.2 положим T(s)=is:

$$\varepsilon U'(s,\varepsilon)=z(s,\varepsilon)z^*(s,\varepsilon)$$
 $(i+(i)^*)=z(s,\varepsilon)z^*(s,\varepsilon)$ $(i-i)=0$.

В общем виде, приравнивая правую часть (2.2.6) нулю, получим

$$a(T(s)) T'(s) + (a(T(s)) T'(s))^* = 0,$$
 (10)

Re(a(T(s)) T'(s) = 0.

Положим $a(T(s))T'(s)=\pm i$. Отсюда получаем: $a(T)dT=\pm ids$, или

$$_{0}^{T}A\tau d\tau = \pm is \tag{11}$$

- уравнение ПСЛ в интегральной форме.

Пример 6. $\varepsilon z'(t,\varepsilon) = (1+2t) z(t,\varepsilon), z(0,\varepsilon) = 1$. Уравнение (11) принимает вид:

$$1 + 2\tau \ d\tau = \pm is, T + T^2 = \pm is \ T \ 0 = 0 \ , T_{12} \ s = (\overline{1 \pm 4is} - 1)/2.$$

Таким образом, эта Π СЛ (ее две ветви, направленные от начала координат в первый квадрант и в четвертый квадрант) разделяют плоскость C на PO (вдоль оси OX) и CO, точнее - по направлению оси OX - CO, а против направления оси OX - PO. Такое же уравнение можно получить, применяя $X\Phi$ и $AC\Phi$.

Решение уравнения (2) можно представить в виде $z t, \varepsilon = \exp \frac{F t}{\varepsilon}$.

Отсюда имеем $U s, \varepsilon = z(T s, \varepsilon)^2 = \exp \frac{2ReF T s}{\varepsilon}$.

Подберем T s так, чтобы вдоль некоторой линии выполнялось $U^{'}$ s, $\varepsilon = 0$.

Имеем

$$\exp \frac{2ReF \ T \ s}{\varepsilon} = \frac{2}{\varepsilon} \exp \frac{2ReF \ T \ s}{\varepsilon} \quad 2Re \quad F' \ T \ s \quad T' \ s =$$

$$= \frac{2}{\varepsilon} \exp \frac{ReF \ T \ s}{\varepsilon} Re \quad a \ T \ s \quad T' \ s = 0.$$

Отсюда снова получается $Re \ a \ T \ s \ T' \ s = 0$, как в (10).

Это уравнение можно получить также из следующих соображений. Если вдоль какойлибо линии $X\Phi$ равна нулю, то $AC\Phi$ постоянна по ε и вдоль этой линии полная энергия постоянна и ее производная равна нулю.

Учитывая сказанное, имеем $Re\ F\ t=0$ или $Re\ _{t_0}^t a\ \tau\ d\tau=0$.

Тогда $F t = ReF(t) + i \mathcal{J}m F t = i \mathcal{J}m F t$.

Таким образом, ПСЛ определяется совокупностью уравнений

$$Re F t = 0 u \mathcal{J}m F t = \pm s, s \in R_+.$$

Первое уравнение определяет ПСЛ, а второе уравнение - направление ПСЛ.

В общем случае ПСЛ имеет по крайней мере два направления, исходящие из точки t_0 .

По линии уровня $Re\ F\ t=0$ функция $\mathcal{J}m\ F\ t$ либо возрастает, либо убывает. Если $\mathcal{J}m\ F\ t$ убывает(возрастает), так как точка t_0 является внутренней, то от точки t_0 существуют по крайней мере два направления. По одной из них $\mathcal{J}m\ F\ t$ возрастает и этому направлению соответствует уравнение $\mathcal{J}m\ F\ t=s$, а по другой убывает и это направление определяется уравнением $\mathcal{J}m\ F\ t=-s$.

Применяя ХФ и АСФ, общую картину можно уточнить для примера 5.

Для понимания картины расположения погранслойных множеств и (PO), (CO) поступим следующим образом.

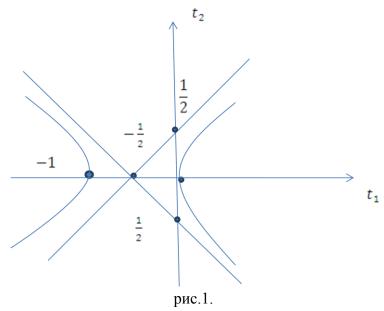
Пример 7. Определим ХФ для Примера 6.

$$Re \ F \ t = \int_{0}^{t} 1 + 2\tau \ d\tau = Re \ \frac{1}{4} \ 1 + 2t^{2} - \frac{1}{4} = \frac{1}{4} (1 + 2t_{1})^{2} - 4t_{2}^{2} - 1$$

Введем в рассмотрение функцию $F_0 t = \frac{1}{4} (1 + 2t_1)^2 - 4t_2^2$.

Тогда $Re\ F\ t\ = F_0\ t\ - F_0\ 0$.

Начертим линию уровня $F_0 \ t = 0$ (рис. 1)



Как было доказано, ПСЛ определяется уравнением $Re \ F \ t = 0$.

Отсюда $Re\ F\ t\ = F_0\ t\ - F_0\ 0\ = 0$, или

$$(1+2t_1)^2-4t_2^2=1, t_2=\pm \overline{(1+2t_1)^2-1}$$
.

Этому уравнению соответствуют гиперболы, проходящие через точки (0; 0) и (-1; 0) (рис 2.1).

Рассмотрим область Ω , заключенную между этими гиперболами.

Очевидно, что для любой точки, принадлежащей этой области, $X\Phi$ не положительна, т.е. $\forall \ t \in \Omega \ ReF \ t \le 0$,причем равенство имеет место только для точек, принадлежащих гиперболам. Отсюда $AC\Phi V \ t$ —ограничена.

Таким образом Ω - PO, а оставшаяся часть плоскости - CO, т.е. для этой области V t —неограничена.

Мы здесь особо не выделяем погранслойное множество, так как оно частично входит в (PO) и (CO).

3.2.4. Построение алгоритма приближенного поиска погранслойных линий с точками ветвления

Уравнение погранслойной линии в проекции на вещественную ось имеет вид

$$Rea(T)dT = 0. (12)$$

Пример 2.8. $\varepsilon z'$ t, $\varepsilon = e^t - 2 z t$, ε , $z(0, \varepsilon) = 1$.

Уравнение (11) принимает вид:

Вычисление для контроля

$$e^{T} - 1 - 2T = e^{T_1}(\cos T_2 + i \sin T_2) - 1 - 2T_1 - 2iT_2.$$

Таким образом, эта ПСЛ (ее две ветви, направленные от начала координат в первый квадрант и в четвертый квадрант) разделяют плоскость на РО (вдоль оси ОХ) и СО.

Построим алгоритм приближенного поиска ПСЛ.

Представим заданный коэффициент в видеa(t) = U(t) + iV(t).

Выберем шаг h>0. Для вектора длины h - сдвига ΔT из (12) получаем приближенное уравнение:

$$Re(a(T)\Delta T)=0$$
; $Re((U(T)+iV(T))\Delta T)=0$.

Отсюда

$$\Delta T / / iU(T) + V(T); \ \Delta T(T) = (V(T) + iU(T)) / \sqrt{(V^2(T) + U^2(T))} h.$$

Расчетные формулы

$$T_0:=0; T_k:=T_{k-1}+\Delta T(T_{k-1}), k=1,2,3,...$$

Была написана программа на языке pascal. Подставлены данные из примера 6. Для контроля в ней заложено также вычисление выражения

$$F(T)=T+T^2 (ReF(T) \approx 0).$$

3.2.5. Теоремы о разрешимости уравнения погранслойной линии

Теорема 1. Для любой точки T_I на ПСЛ, соответствующей значению параметра s_I , существует такой интервал $(s_I - \delta, s_I + \delta)$, что T(s) — однозначная аналитическая функция на этом интервале.

Доказательство. Перепишем уравнение $a(T)dT = \pm ids$ в виде $dT/ds = \pm i/a(T)$

Поскольку $a(T_I) \neq 0$ по условию, это уравнение с начальным условием $T(s_I) = T_I$ имеет аналитическое решение в некоторой окрестности этой точки, что и требовалось доказать.

Теорема 2. Для любой точки $T_I = (X_I, Y_I)$ на ПСЛ, соответствующей значению параметра s_I , либо существует такой интервал $(X_I - \delta, X_I + \delta)$, что ПСЛ в окрестности точки T_I представляется в виде x+iF(x) ($X_I - \delta \le x \le X_I + \delta$), $F(X_I) = Y_I$, где F(x) - однозначная скалярная гладкая функция, либо существует такой интервал ($Y_I - \delta, Y_I + \delta$), что ПСЛ в окрестности точки T_I представляется в виде $G(y)+iy(X_I - \delta \le x \le X_I + \delta)$, $G(Y_I) = X_I$, где G(y) - однозначная скалярная гладкая функция.

Доказательство. Перепишем T(s) в виде T(s)=X(s)+iY(s). Поскольку в силу (1.12) $dT(s)/ds\neq 0$, или $dX(s)/ds+idY(s)/ds\neq 0$, хотя бы одно из чисел (dX(s)/ds), (dY(s)/ds) не равно нулю. Если первое число не равно нулю, то получаем $F_1(s):=dY(s)/dX(s)=(dY(s)/ds)/(dX(s)/ds)$ - сушествует. Также в силу соотношения $dX(s)/ds\neq 0$ получаем, что в некоторой окрестности точки X_I число s однозначно выражается через x: s=S(x). Отсюда следует ОДУ с начальным условием $dy/dx=F_1(S(x))$, $y(X_I)=Y_I$. Теорема доказана.

3.2.6 Асимптотика решений сингулярно возмущенных дифференциальных уравнений на погранслойных линиях

Введем на отрезке ПСЛ естественную координату σ , представляющую длину линии от одного из концов отрезка. Из Теорем 1 и 2 и свойств спрямляемых кривых следует, что такую координату можно ввести.

Обозначая значение функции $z(t,\varepsilon)$ в точке ПСЛ с координатой σ через $V(\sigma)$, получаем:

Теорема 3. Если на рассматриваемом участке a $t \neq 0$, то существует такая гладкая функция $H(\sigma)$, определяемая функцией a(t), имеющая положительную производную, что V $\sigma = const \cdot \exp i \frac{H \sigma}{c}$.

В окрестности точек ветвления ПСЛ картина более сложная. Во-первых, для каждого компонента ПСЛ нужно вводить свою координату. Во-вторых, как показывает основной примерa $t = t^n$, f t = 0для уравнения (1), производная соответствующей функции $H(\sigma)$ может в некоторых точках обращаться в нуль.

§ 3.3. Существование погранслойных линий решений сингулярно возмущенных уравнений с заданными свойствами

Теорема 4. Для любого набора различных ненулевых точек $\{z_k: k=1..n\}, n \ge 1$, существует такой многочленa(t),что погранслойные линии решения задачи (2)–(3) проходят через все эти точки.

Доказательство. Используя формулу для многочлена Лагранжа, найдем такой ненулевой многочлен $B_n(t)$ (степени*n*), чтобы было $B_n(0)=0$, $ReB_n(z_k)=0$, k=1.. n:

$$B_1 t = it \frac{b_1}{z_1}; B_n t = it \frac{n}{k=1} \frac{b_k}{z_k} \frac{n}{j=1, j \neq k} \frac{(t-z_j)}{(z_k-z_j)}, n > 1,$$
 (13)

где b_k – произвольные ненулевые вещественные числа; тогда $B_n(z_k)=ib_k$.

Поскольку $B_n(t)$ - ненулевой многочлен, пусть p - такое первое натуральное число, что $B_n^{(p)}(z_k) \neq 0$; такое число существует. Тогда для t, близких к z_k , получаем

$$Re(B_n \ t) \approx Re(B_n \ z_k + B_n^p (z_k) \ t - z_k^p/p!) =$$

 $= Re(B_n^p z_k t - z_k^p)/p!.$

Отсюда следует, что существуют t, сколь угодно близкие к z_k что для них и

$$Re(B_n(t)) > 0, \ u \ Re(B_n(t)) < 0.$$
 (14)

Положим a $t=B_n^{'}$ t ,тогда решение задачи (2)–(3) записывается в виде Z $t,\varepsilon=z_0exp$ $\int\limits_0^t a(\sigma)d\sigma=z_0exp$ $B_n(t)$.

Отсюда следует заключение теоремы.

Пример 2.9. Положим n=2, $z_1=1$, $z_2=i$, $b_1=2$, $b_2=3$. Формула (13) дает:

$$B_2 t = it \frac{b_1}{z_1} \frac{t - z_2}{z_1 - z_2} + \frac{b_2}{z_2} \frac{t - z_1}{z_2 - z_1} = it \frac{2t - i}{11 - i} + \frac{3t - 1}{ii - 1} = \frac{it}{2} - t + 5it - 5i + 5.$$

Таким образом, уравнение z't = -it - 5t + 2.5 + 2.5i z(t) с начальным условием (3) имеет ПСЛ, проходящую через точки

$$t = 1 u t = i$$
.

Построение обобщенных многочленов Лагранжа

Далее нам понадобится следующее обобщение многочлена Лагранжа.

Теорема 2. Для любого набора различных точек t_k : k=1..n, $n\geq 2$, чисел α_k : k=1..n, $\{\beta_k: k=1..n\}$ существует такой многочлен $D_n(t)$, что D_n $t_k=\alpha_k$, $D_n^{'}(t_k)=\beta_k$, k=1..n.

Доказательство. Для этого нужно найти такие многочлены $L_{0k}(t)$, $L_{1k}(t)$, что (с использованием обозначения символа Кронекера)

$$L_{0k} t_j = \delta_{jk}, L'_{0k} t_j = 0; L_{1k} t_j = 0, L'_{1k} t_j = \delta_{jk}; j = 1..k.$$
 (15)

Для построения этих многочленов используем многочлен – квадрат компоненты многочлена Лагранжа:

$$P_k \ t := \int_{j=1, j \neq k}^{n} \frac{(t-t_j)^2}{(t_k-t_j)^2} \ .$$

Также обозначим $S_k(t) \coloneqq \prod_{j=1, j \neq k}^n \frac{1}{t-t_j}$

Имеем: $P_k t_i = \delta_{ik}$; $P_k' t = 2S_k t P_k t$.

Положим L_{0k} $t := P_k$ t $(1-2 t-t_k S_k t_k)$.

Тогда получаем: $L_{0k}\ t_k=P_k\ t_k\ 1-2\ t_k-t_k\ S_k\ t_k=P_k\ t_k=1;$ при $j\neq k$ будет $P_k(t_j)=0$ и $L_{0k}\ t_j=0.$

Далее

$$L_{0k}' t = P_k t -2S_k t_k) + 2S_k t P_k t (1 - 2(t - t_k S_k t_k = 2P_k t (S_k t 1 - 2 t - t_k S_k t_k - S_k t_k);$$

$$L_{0k}^{'t_j} = 2\delta_{jk} S_k t_j 1 - 2 t_j - t_k S_k t_k - S_k(t_k).$$

При j=k выражение в скобке равно нулю.

Также положим: $L_{Ik}(t)$: $= (t-t_k) P_k(t)$. Очевидно, что при $t=t_j$ будет $L_{1k}(t_j)=0$. Далее L_{1k} $t=P_k$ $t+2S_k$ $(t_k) P_k(t)(t-t_k)$.

 $L_{1k}^{'}$ $t_{k}^{}$ = P_{k} $t_{k}^{}$ = 1. Очевидно, что при $t=t_{j}
eq t_{k}^{}$ будет $L_{1k}^{'}$ $(t_{j})=0$.

Условия (15) выполнены. Имеем:

$$D_n t = \prod_{k=1}^n \alpha_k L_{0k} t + \beta_k L_{1k} t =$$

$$= \prod_{k=1}^n \alpha_k (1 - 2(t - t_k) S_k(t_k)) + \beta_k (t - t_k) \prod_{j=1, j \neq k}^n \frac{(t - t_j)^2}{(t_k - t_j)^2}.$$

Теорема доказана. Приведем пример.

Пример 10:

$$n = 3; t_{1} = 0; t_{2} = 1; t_{3} = 2; \alpha_{1} = 0; \alpha_{2} = 2; \alpha_{3} = 0; \beta_{1} = 8; \beta_{2} = 0; \beta_{3} = 4.$$

$$D_{3} t = \begin{cases} \alpha_{k}(1 - 2(t - t_{k}) S_{k}(t_{k})) + \beta_{k}(t - t_{k}) \\ \beta_{k}(t - t_{k}) \end{cases} \begin{cases} \frac{(t - t_{j})^{2}}{(t_{k} - t_{j})^{2}} = \frac{2t(t - 1)^{2}(t - 2)^{2} + 2t^{2}(t - 2)^{2} + t - 2t^{2}t - 1^{2}.$$

Основной результат

Теорема 6. Для любого набора различных ненулевых точек

 $\{t_k: k=1..n\},\ n\geq 1$, существует такой многочлен a(t), что погранслойные линии решения задачи (2)–(3) проходят через все эти точки и во всех этих точках имеет место ветвление.

Доказательство. Используя Теорему 5, построим такой многочлен $D_{n+1}(t)$, что

$$D_{n+1} \ t_0 = 0, \ D_{n+1}^{'} \ t_0 \neq 0, \ D_{n+1} \ t_k \neq 0, \ ReD_{n+1} \ t_k = 0,$$

 $D_{n+1}^{'} \ t_k = 0, k = 1..n,$

и положим $a(t) = D_{n+1}^{'}(t)$. Тогда получаем:

$$z t, \varepsilon = z_0 exp$$

$$\int_0^t a(\sigma) d\sigma = z_0 exp \ D_{n+1}(t)$$

и имеет все указанные свойства.

Пример 11.
$$t_0 = 0$$
, $n = 1$, $t_1 = 2$. Выберем $z_0 = 1$, $D_2^{'} = 0 = 3$, $D_2 = 2 = 5i$.

$$\begin{split} D_2 \ t &= \ ^1_{k=0} \ \alpha_k (1-2(t-t_k) \ S_k(t_k)) + \beta_k (t-t_k) \ \frac{(t-t_{1-k})^2}{(t_k-t_{1-k})^2} = \\ &= 3 \ t-t_0 \ \frac{t-t_1^2}{t_0-t_1^2} + 5i \ 1-2 \ t-t_1 \ S_1 \ t_1 \ \frac{t-t_0^2}{t_1-t_0^2} = \\ &= 3t \ t-2^2/4 + 5i(1-2 \ t-2 \ \frac{1}{t_1-t_0})t^2/4 = \\ &= 3t \ t-2^2/4 + 5i(1-2 \ t-2 \ /2)t^2/4 = t/4 \cdot (3 \ t-2^2 + 5i \ 3t-t^2); \\ &z(t,\varepsilon) = \exp \ t/4 \cdot (3 \ t-2^2 + 5i \ 3t-t^2)/\varepsilon \ . \end{split}$$

Для проверки ветвления в точке t=2 сделаем замену t=2+s, где s- малое по модулю комплексное число.

$$D_2 2 + s = (2+s)(3s^2 + 5i \ 3 \ 2 + s - 2 + s^2)/4 =$$

$$= (2+s)(3s^2 + 5i \ 3 \ 2 + s - 2 + s^2)/4 = (2+s) *$$

$$* (10i - 5is + 3 - 5i \ s^2))/4 = (20i + 6 - 15i \ s^2 + (3 - 5i)s^3))/4.$$

Четыре направления ветвления определяются уравнением $Re((6-15i)\theta^2)=0, \theta\in\Theta_1$.

4. Сингулярно возмущенные уравнения с аналитическими функциями теряющие единственность при вырождении

4.1. Постановка задачи

В теории сингулярно возмущенных уравнений одним из основных проблем является задача о предельном переходе.

Кратко данную задачу можно сформулировать следующим образом.

Пусть рассматривается уравнение

$$\varepsilon x' t, \varepsilon = f(t, x(t, \varepsilon)),$$
 (1)

С начальным условием

$$x \ t_0, \varepsilon = x^0, \tag{2}$$

o<arepsilon - малый параметр; x t,arepsilon = x_1 t,arepsilon , ..., $x_n(t,arepsilon)$, $t_0\leq t\leq T$.

При $\varepsilon = 0$ из (1) получаем, соответствующее, вырожденное уравнение

$$f t, u t = 0. (3)$$

Предположим, что (3) имеет изолированное, непрерывное, решение $u \ t = u_0(t)$ определенное при $t_0 \le t \le T$.

Задача. При каких требованиях на функцию $f(t, x(t, \varepsilon))$ для $x(t, \varepsilon)$ - решения задачи (1)-(2) справедливо предельное соотношение

$$\lim_{\varepsilon \to 0} x \ t, \varepsilon = u_0(t)$$
для $t_0 \le t \le T$.

В наиболее общем виде данная задача решена в [7]. Во всех исследованиях связанных с задачами о предельном переходе рассматривались случаи, когда вырожденное уравнение имеет одно решение.

Сингулярно возмущенные уравнения с аналитическими функциями, когда вырожденное уравнения имеют одно решение исследованы в работах [1-2, 4-9], случаи, когда вырожденное уравнение имеет несколько решений ранее не рассматривались.

В данной работе исследования будут проведены в этом направлении. Одной из особенностью данной работы является, то что при исследовании задачи о предельном переходе не требуется устойчивость точек покоя по Ляпунову[7].

4.2. Решение задачи

Пусть рассматривается сингулярно возмущенное уравнение

$$\varepsilon z' t, \varepsilon = f(t, z(t, \varepsilon)),$$
 (4)

где $0<\varepsilon$ - малый параметр; $t\epsilon\Omega\subset C$ и Ω — односвязная область комплексной плоскости; $z(t,\varepsilon)$ - неизвестная скалярная функция.

Предположим выполнения условий:

 $U.1 \ f \ t, z \ \epsilon Q \ H$ - пространство аналитических функций в области

 $H=\ (t,z)\ t\epsilon\Omega,\ z-a_0\le \delta$, где a_0 - некоторое комплексное число, $\delta\in R_+=[0,+\infty).$

При $\varepsilon=0$ из (4) получим, вырожденное уравнение

$$f t, \xi t = 0 \tag{5}$$

U.2. Пусть ξ_1 t=a t , ξ_2 t=b(t) решение уравнения (2) удовлетворяющиеусловию a t , b t $\in Q(\Omega)$.

Пусть $t_0 \in \Omega$ и её внутренняя точка.

Определение 1. Пусть: 1. $z(t,\varepsilon)$ решение уравнения (4), удовлетворяющее условию z $t_0,\varepsilon=z^0$.

3. Существует область $\Omega_1 \subset \Omega$ содержащая точку t_0 и

$$\forall t \in \Omega_1 \lim_{\varepsilon \to 0} z \ t, \varepsilon = a(t)$$

При выполнении условий 1-2 область Ω_1 будем называть областью притяжения корня (решения) a(t).

Задача. Найти области притяжения корней a(t) и b(t) содержащиеся в Ω .

Решение этой и других задач составляет предмет наших дальнейших исследований.

Рассмотрим сингулярно возмущенное уравнение следующего вида (уравнение Бернулли)

$$\varepsilon z' t, \varepsilon = a t z t, \varepsilon + b t z^2(t, \varepsilon)$$
 (6)

с начальным условием

$$z t_0, \varepsilon = z^0, \tag{7}$$

где $t \in \Omega$, $t_0 \in \Omega$ и её внутренняя точка;

Этот тривиальный случай рассматривается для прогнозирования дальнейших исследований.

U. Пусть a t , $b(t) \in Q(\Omega)$ и $\forall t \in \Omega \ (a(t) \neq 0, \ b(t) \neq 0)$

Вырожденное уравнение, соответствующее (6) имеет решения (корни)

$$\xi_1(t) \equiv 0 \text{ и } \xi_2 t = -\frac{a(t)}{h(t)}$$

Согласно условия Uфункция ξ_2 t $\epsilon Q(\Omega)$.

Задача: Определить области притяжения содержащиеся в Ω для решений ξ_1 t, $\xi_2(t)$.

Для решения этой задачи поступим следующим образом. Обе части урвнения (6) разделив на $z^2(t,\varepsilon)$, данное уравнение представим в виде

$$\varepsilon \frac{1}{z t, \varepsilon} = -\frac{a(t)}{z(t, \varepsilon)} - b(t)$$
 (8)

Уравнение (8) линейное, относительно функции $\frac{1}{z(t,\varepsilon)}$, и её решение можно представить так

$$z t, \varepsilon = (\varepsilon z^0 exp \frac{F t}{\varepsilon}) / (\varepsilon - z^0 \int_{t_0}^t exp \frac{F \tau}{\varepsilon} b(\tau) d\tau), \tag{9}$$

где $F t = \int_{t_0}^t a(\tau) d\tau$

Выражение $\varepsilon-z^0$ $\frac{t}{t_0}exp\frac{F\ \tau}{\varepsilon}b(\tau)d\tau\neq 0$, за исключением отдельных частных случаев.

Теперь исследуем асимптотическое поведение функции (9), в области Ω , при $\varepsilon \to 0$.

Вернемся к функции

$$F t = \int_{t_0}^t a(\tau) d\tau. \tag{10}$$

Если учесть условие U, то

$$\forall t \in \Omega \ F' \ t = a \ t \neq 0 \ .$$

Отсюда следует, что функция F(t) не имеет нулей в области Ω . Пологая $t=t_1+it_2$, где t_1,t_2 – действительные переменные, $i=\frac{1}{-1}$, введем обозначения

$$ReF \ t = F_1 \ t_1, t_2 \equiv F_1 \ t$$
 , $JmF \ t = F_2(t_1, t_2) \equiv F_2(t)$.

Функции $F_k \ t \ (k=1,2)$ являются сопряженно гармоническими функциями.

Наши дальнейшие исследования будут проведены с использованием линии уровней гармонических функций.

Введем следующее определение

Определение 2. Множество $t \in \Omega$ F_k $t = L_k - const$ назавем линией уровня функции $F_k(t)$ и обозначим (L_k) .

Поскольку $\forall t \in \Omega \ F' \ t = a(t) \neq 0$, то отсюда следует

$$\forall t \in \Omega \ \frac{\partial F_1}{\partial t_1} \neq 0 \ \lor \frac{\partial F_1}{\partial t_2} \neq 0 \ \land \ \frac{\partial F_2}{\partial t_2} \neq 0 \ \lor \frac{\partial F_2}{\partial t_1} \neq 0 \ .$$

Для определенности возьмем

$$\forall t \in \Omega \ \frac{\partial F_1}{\partial t_2} \neq 0 \ . \tag{11}$$

Тогда

$$\forall t \in \Omega \ \frac{\partial F_2}{\partial t_1} \neq 0 \ . \tag{12}$$

Это следует из того, что $\frac{\partial F_1}{\partial t_2} = -\frac{\partial F_2}{\partial t_1}$.

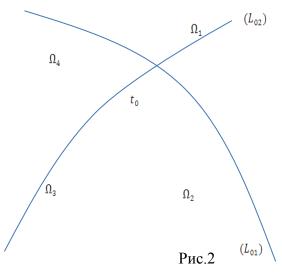
Из условия $\forall t \in \Omega$ $F^{'}$ $t \neq 0$ также следует, что через любую точку области Ω проходит единственная линия уровня функции $F_k(t)$. Линии уровня F_1 t и F_2 t , в точках пересечения, являются взаимно ортогональными [10].

Таким образом область Ω полностью покрывается сетью взаимно ортогональных линии уровней функций $F_k(t)$.

Возьмём линии уровня $(L_{o1})=F_1\ t\ =F_1\ t_0\ =0$ и $(L_{o2})=F_2\ t\ =F_2\ t_0\ =0$

Линии уровня L_{o1} и L_{o2} пересекаются в точке t_0 и область Ω делят на четыре части (рис.2)

Эти части обозначим Ω_i (j = 1,2,3,4).



Пусть $L_k = t \in \Omega F_k t = const (k = 1,2).$

Справедлива следующая лемма

Лемма 1. По линии уровня L_2 функция $F_1(t)$ строго монотонна. Также, по линии уровня L_1 функция $F_2(t)$ строго монотонна.

С доказательством леммы можно ознакомится в [10].

Согласно Леммы 1 $\forall t \in \Omega_1 \quad \Omega_4 \quad F_1 \ t \ \leq 0 \quad F_1(t) \geq 0$.

При этом равенство имеет место только для t принадлежащих линии L_{01} . Для определенности возьмём

$$\forall t \in \Omega_1 \quad \Omega_4 \quad F_1 \ t \ \leq 0$$
 . Тогда $\forall t \in \Omega_2 \quad \Omega_3 \quad F_1 \ t \ \geq 0$.

Теперь перейдем к исследованию асимптотического представления функции (9) в области Ω . Рассмотрим следующие случаи:

1.
$$t \in L_{01}$$
 2. $t \in \Omega_1$ Ω_4 3. $t \in \Omega_2$ Ω_3 .

Отметим, в наших дальнейшихисследованиях асимптотическое поведение интеграла

$$\mathcal{J} t = exp \frac{F \tau}{\varepsilon} b(\tau) d\tau$$

является существенным. При исследовании $\mathcal{J}(t)$ надо будеть выбрать соответствующие пути интегрирования.

Пусть $t \in L_{01}$.

В (7) для интеграла $\mathcal{J}(t)$ путь интегрирование выберем так: путь состоит из части L_{01} соединяющего точки t_0 и t. Путь интегрирование можно представить в виде определенной (явной) функции.

Для этого возьмём уравнение

$$F_1 t = 0.$$

Согласно (5) из этого уравнения определяется однозначная, бесконечно дифференцируемая функция

$$t_2 = \varphi(t_1)$$

с областью определения $-\infty \leq \alpha_1 < t_1 < \alpha_2 \leq +\infty$, причем $\alpha_1 < t_{10} < \alpha_2$ и $t_{20} = \varphi \ t_{10} \ (t_0 = t_{10} + it_{20}).$

С учетом выбранного пути интегрирования функцию (9) перепишем в виде

$$z t, \varepsilon = (\varepsilon z^0 exp \frac{i}{\varepsilon} F_2(t)) / (\varepsilon - z^0 \frac{t_1}{t_{10}} exp \frac{i}{\varepsilon} F_2 \tau b \tau \cdot (1 + i\varphi'(\tau_1)) d\tau_1), \quad (13)$$

где $t=t_1+i\varphi\ t_1$, $\tau= au_1+i\varphi(au_1)$.

Возьмем интеграл

$$\mathcal{J} t = exp \frac{i}{\varepsilon} F_2(\tau) b \tau \cdot (1 + i\varphi'(\tau_1)) d\tau_1$$

и к этому интегралу применим интегрирование по частьям. Предварительно введем обозначение

$$-\frac{\varepsilon}{i}\frac{b_1 \ t_{10}}{F'_{21} \ t_{10}} - \frac{\varepsilon}{i} \int_{t_{10}}^{t_1} \frac{b_1 \ \tau_1}{F'_{21} \ \tau_1} \exp \frac{i}{\varepsilon} F_{21}(\tau_1) d\tau_1.$$

В полученном выражение последний интеграл имеет порядок ε (не считая множителя ε). В этом можно убедится проинтегрировав этот интеграл ещё раз по частьям.

Таким образом для $\mathcal{J}(t)$ имеем следующее асимптотическое представление

$$\mathcal{J} t = \frac{\varepsilon}{i} \left(\frac{b_1 t_1}{F'_{21} t_1} exp \frac{i}{\varepsilon} F_{21} t_1 - \frac{b_1 t_{10}}{F'_{21} t_{10}} + 0 \varepsilon \right]. \tag{14}$$

Учитывая (14) функцию (9) запишем в виде

$$z t, \varepsilon = (iz^{0} exp \frac{i}{\varepsilon} F_{2}(t)) / (i - z^{0} (\frac{b_{1} t_{1}}{F_{21}' t_{1}} exp \frac{i}{\varepsilon} F_{21} t_{1} - \frac{b_{1} t_{10}}{F_{21}' t_{10}} + 0 \varepsilon))$$
 (15)

Отсюда следует, что $\forall t \in (L_{01})$ функция $z(t,\varepsilon)$ при $\varepsilon \to 0$ предела не имеет, но ограничена по модулю.

2. Пусть $t \in \Omega_1 \cup \Omega_4$. Для интеграла $\mathcal{J}(t)$ путь выберем следующим образом: путь состоит мз части L_{01} соединяющего точки t_0 и t; части L_2 соединяющего точки t и t.

Заметим, может случится так, что для некоторых t не существует пути соединяющая точки t и t. В этом случае подбирая L_2 определим некоторую область $\Omega_1 \cup \Omega_4$ и функцию $z(t,\varepsilon)$ будем рассматривать в этой области.

Рассмотрим уравнение

$$F_2 t = L_2. (16)$$

В силу (6) из (11) определяется бесконечно дифференцируемая, однозначная функция $t_1 = \psi(t_2)$ (17)

с областью определения $-\infty \le \beta_1 < t_1 < \beta_2 \le \infty$.

Интеграл $\mathcal{J}(t)$, с учетом выбранного пути интегрирования представим в следующем виде

$$\mathcal{J} t = \int_{t_{0}}^{t} b \tau \exp \frac{F \tau}{\varepsilon} d\tau = \int_{t_{10}}^{t_{1}} b \tau (1 + i\varphi' \tau_{1} \exp \frac{i}{\varepsilon} F_{21} \tau_{1} d\tau_{1} + \int_{t_{2}}^{t_{2}} b \tau (\psi' \tau_{2} + i) \exp \frac{F_{11} \tau_{2} - iL_{2}}{\varepsilon} d\tau_{2},$$

где в первом интеграле $\tau = \tau_1 + i\varphi(\tau_1)$, функция $F_{21}(\tau_1)$ тот же, что и в первом случае; во втором интеграле $\tau = \psi \ \tau_2 \ + i\tau_2$, $F_{11}(\tau_2) \equiv F_1(\psi \ \tau_2 \ , \tau_2)$.

Введем еще следующие обозначения

$$b \ \tau \cdot (1 + i\varphi'(\tau_1)) \equiv b_1 \ \tau_1 ,$$

$$b \ \tau \cdot (\psi' \ \tau_2 \ + i) \equiv b_2 \ \tau_2$$

Каждый из интегралов проинтегрируем по частьям. Для первого интеграла возпользуемся вычислениями проведенными в предыдущем случае. Для второго интеграла имеем

$$\begin{split} \mathcal{J}_{2} \ t &= \int_{t_{2}}^{t_{2}} b_{2} \ \tau_{2} \ \frac{\varepsilon}{F_{11}^{'}(\tau_{2})} dexp \frac{F_{11} \ \tau_{2} + iL_{2}}{\varepsilon} = \\ &= \varepsilon [\frac{b_{2} \ t_{2}}{F_{11}^{'} \ t_{2}} exp \frac{F_{11} \ t_{2} + iL_{2}}{\varepsilon} - \frac{b_{2} \ t_{2}}{F_{11}^{'} \ t_{2}} exp \frac{iL_{2}}{\varepsilon} - \\ &- \int_{t_{2}}^{t_{2}} \frac{b_{2} \ \tau_{2}}{F_{11}^{'} \ \tau_{2}} exp \frac{F_{11} \ \tau_{2} + iL_{2}}{\varepsilon} d\tau_{2}]. \end{split}$$

Отсюда учитывая, что интеграл содержащееся в [...] имеет порядок єв этом можно убедится проведя интегрирование по частьям и учесть

 $\forall t \in \Omega_1 \quad \Omega_4 \quad F_{11} \ \tau_2 \leq 0$), для интеграла $\mathcal{J}_2(t)$ имеем следующее асимптотическое представление

$$\mathcal{J}_{2} t = \varepsilon \left[\frac{b_{2} t_{2}}{F'_{11} t_{2}} exp \frac{F_{11} t_{2} + iL_{2}}{\varepsilon} - \frac{b_{2} t_{2}}{F'_{11} t_{2}} exp \frac{iL_{2}}{\varepsilon} + 0 \varepsilon \right].$$

С учетом проведенных вычислений для функции $z(t,\varepsilon)$ получим асимптотическое представление в виде

$$z t, \varepsilon = \varepsilon z^{0} exp \frac{F_{11} \tau_{2} + iL_{2}}{\varepsilon} / [\varepsilon - \varepsilon z^{0} (\frac{1}{i} (\frac{b_{1} t_{1}}{F'_{21} t_{1}} exp \frac{i}{\varepsilon} L_{2} - \frac{b_{1} t_{10}}{F'_{21} t_{10}} + \frac{b_{2} t_{2}}{F'_{21} t_{2}} exp \frac{F_{11} t_{2} + iL_{2}}{\varepsilon} - \frac{b_{2} t_{2}}{F'_{21} t_{2}} exp \frac{i}{\varepsilon} L_{2} + 0 \varepsilon)]$$

$$(18)$$

Усли учесть $\forall t\in\Omega_1$ Ω_4 F_{11} $t_2\leq 0$, то для значений t достаточно отдаленных от линии L_{01} имеем F_{11} $t_2\ll 0$. Тогда для таких t из (18) получим

$$\lim_{\varepsilon \to 0} z(t, \varepsilon) = 0 \tag{19}$$

3. Пусть $t \in \Omega_2$ Ω_3 . Для этого случая путь интегрирование выбирается таким же как и в случае 2. Проведя аналогичные вычисления, которые повторяют вычисления проведенные для случая 2, получим представление (18).

Только в этом случае $F_{11}(t_2) \ge 0$ и для значений t достаточно далеких от линии L_{01} выполняется F_{11} $t_2 \gg 0$. Для осуществления предельного перехода в (18) произведем элементарные преобразования и получим (числитель и знаменитель (18) умножаем на $exp^{\frac{-F_{11}}{c}t_2-iL_2}$)

$$z t, \varepsilon = z^{0} / (exp \frac{-F_{11} t_{2} - iL_{2}}{\varepsilon} - z^{0} (\frac{1}{i} \frac{b_{1} t_{1}}{F'_{21} t_{1}} exp \frac{-F_{11} t_{2}}{\varepsilon} - \frac{b_{1} t_{10}}{F'_{21} t_{10}} exp \frac{-F_{11} t_{2} - iL_{2}}{\varepsilon} + \frac{b_{2} t_{2}}{F'_{11} t_{2}} - \frac{b_{2} t_{2}}{F'_{11} t_{2}} exp \frac{-F_{11} t_{2}}{\varepsilon} + O(\varepsilon)).$$

Отсюда переходя к пределу и учитывая, что рассматриваются значения t для которых F_{11} $t_2 \gg 0$, имеем

$$\lim_{\varepsilon \to 0} z(t, \varepsilon) = -1 / \frac{b_2 t_2}{F'_{11} t_2} . \tag{20}$$

В (20) проведём следующие преобразования

$$b_2 \ t_2 \equiv b \ t \ \psi' \ t_2 + i = b \ t \cdot -\frac{\partial F_2}{\partial t_2} / \frac{\partial F_2}{\partial t_1} + i =$$

$$= \frac{b \ t \ (-\frac{\partial F_2}{\partial t_2} + i \frac{\partial F_2}{\partial t_1})}{\frac{\partial F_2}{\partial t_1}} = \frac{-b \ t \ (-\frac{\partial F_1}{\partial t_1} + i \frac{\partial F_2}{\partial t_2})}{\frac{\partial F_2}{\partial t_1}}$$

$$F'_{11} \ t_2 \equiv (F_1 \ \psi \ t_2 \ , t_2 \ ' = \frac{\partial F_1}{\partial t_1} \cdot \psi' \ t_2 \ + \frac{\partial F_1}{\partial t_2} =$$

$$\frac{\partial F_1}{\partial t_1} \cdot -\frac{\partial F_2/\partial t_2}{\partial F_2/\partial t_1} \ + \frac{\partial F_1}{\partial t_2} = \frac{-\partial F_1/\partial t_1 \cdot \partial F_2/\partial t_2 + \frac{\partial F_2}{\partial t_2} \cdot \frac{\partial F_2}{\partial t_1}}{\partial F_2/\partial t_1} =$$

$$= -\frac{\frac{\partial F_1}{\partial t_1}^2 + \frac{\partial F_1}{\partial t_2}^2}{\partial F_2/\partial t_1}$$

Далее учитывая проведенные преобразования, получим

$$\frac{b_2 \ t_2}{F'_{11} \ t_2} = \frac{b(t)}{\frac{\partial F_1}{\partial t_1} - i \frac{\partial F_1}{\partial t_2}} = \frac{b(t)}{a(t)}$$

Таким образом из (20) имеем

$$\lim_{\varepsilon \to 0} z \ t, \varepsilon = -\frac{a(t)}{b(t)}. \tag{21}$$

Полученные соотношения (14) и (16) показывают, что в областьях Ω_1 Ω_4 , Ω_2 Ω_3 существуют подобласти которые являются областьями притяжения, соответственно, решений ξ_1 t = 0и ξ_1 t = $-\frac{a(t)}{b(t)}$. Поставленная задача решена.

Общий прогноз: Области притяжения определяются свойствами функций $ReF\ t\ = Re\ {t\over t_0}^t a(s) ds;$

Возможно, такие области отделяются линиями, определяемые уравнениями $ReF\ t=0.$

Литература

- 1. Шишкова М.А. Рассмотрение одной системы дифференциальных уравнений с малым параметром при высших производных //Докл. АН СССР. − 1973. − Т.209 №3. − С. 576-579.
- 2. Нейштадт А.И.О. затягивании потери устойчмвости при динамических бифуркациях I, II [Текст] / А.И. Нейштадт // Дифференциальные уравнения, 1987. –Т. 23. № 12. С. 2060-2067; 1988. Т.24.№2. С. 226-233.
- 3. Турсунов Д.А. Асимптотика решений бисингулярно возмущенных обыкновенных и элиптических дифференциальных уравнений, дисс... докт.физ.-мат.наук: 01.01.02/ Д.А.Турсунов. Бишкек, 2014.-192c
- 4. Алыбаев К.С. Метод линий уровня исследования сингулярно возмущенных уравнений при нарушении условия устойчивости //Вестник КГНУ. Серия 3, Выпуск 6. Бишкек, 2001г. С. 190-200.
- 5. Алыбаев К.С. Явление простирающегося симметричного пограничного слоя для сингулярно возмущенных уравнений при потере устойчивости [Текст] / Алыбаев К.С., Нарбаев М.Р. //Вестник ЖАГУ. Жалал-Абад, 2008. №1. с.122-126
- 6. Тампагаров К.Б. Погранслойные линии для сингулярно и регулярно возмущенных дифференциальных уравнений первого порядка с аналитическими функциями. [Текст] / К.Б. Тампагаров // Естественные и математические науки в современном мире: сб. статей по материалам XLVII международной научнопрактической конференции. №10 (45). Россия, Новосибирск: СиБАК, 2016. —С. 67-73.
- 7. Тихонов А.Н. Системы дифференциальных уравнений содержащие малые параметры при производных //Мат.сб. 1952.-Т.31(73), №3. С. 575-586.
- 8. Каримов С.К. Асимптотика решений некоторых классов дифференциальных уравнений с малым параметром при производных в случае смены устойчивости покоя в плоскости "быстрых" движений. Дисс... доктора физ.-мат.наук: 01.01.02, Ош, 1983. 260 с.
- 9. Панков П.С., Алыбаев К.С., Тампагаров К.Б., Нарбаев М.Р. Явление погранслойных линий и асимптотика решений сингулярно возмущенных линейных обыкновенных дифференциальных уравнений с аналитическими функциями //Вестник ОшГУ, 2013-№1 (специальный выпуск). С. 227-231.
- 10. Федорюк М.В. Метод перевала [Текст] / М.В. Федорюк // Москва: Наука, 1977. 368с.
- 11. Мурзабаева А.Б. Сингулярно возмущенные уравнения с аналитическими функциями при нарушении единственности решений вырожденного уравнения [Текст] / А.Б. Мурзабаева // Инновации в науке: сб.ст.по матер. LXIII междунар.науч.-практ.конф. № 11 (60). Новосибирск: СибАК, 2016.-С.42-49.
- 12. Мурзабаева А.Б. Сингулярно возмущенные уравнения при нарушении единственности решений вырожденного уравнения и условия устойчивости [Текст] / А.Б. Мурзабаева //Естественные и математические науки в современном мире: сб. ст. по матер. XLIX междунар.науч.-практ.конф. № 12 (47). Новосибирск: СибАК, 2016.-С.77-85.