УДК 622.831 (575.2) (04)

ВЗАИМОСВЯЗЬ ФИЗИЧЕСКИХ СВОЙСТВ И НАПРЯЖЕННОГО СОСТОЯНИЯ ПОРОДНОГО МАССИВА С АКУСТИЧЕСКИМИ ПАРАМЕТРАМИ

А.Ш. Мамбетов – ст. научн. сотрудник

On the base of correlation analysis close link is proved between rock acoustic parameter and its lasting properties and intense condition.

Перспективными методами определения механических свойств и напряженного состояния горных пород без их разрушения являются геоакустические методы, позволяющие вести измерения с достаточной точностью. Они дают возможность внедрять сплошной, непрерывный контроль механических свойств и состояния пород, необходимых для оперативного управления процессами горного производства.

Геоакустические методы изучения механических свойств и напряженного состояния основаны на предложении и наличии связи механических характеристик, напряженного состояния горных пород с акустическими параметрами.

Анализ корреляционных зависимостей между прочностью пород на сжатие и их акустическими свойствами [1-3] позволил выделить следующие их типы:

$$\sigma_{cw} = \frac{a}{b - V_p} - C, \qquad (1)$$

$$\sigma_{cxc} = a + bV_p, \qquad (2)$$

$$\sigma_{cw} = aV_p^b , \qquad (3)$$

$$\sigma_{cm} = aV_p^2 + bV_p + C, \qquad (4)$$

$$\sigma_{cxc} = \rho V_p^2 + a \,, \tag{5}$$

$$\sigma_{c,w} = (a\rho - b)^2, \qquad (6)$$

$$\sigma_{cw} = aV_n + bV_n\alpha_1 - C\alpha_1 - d ,$$

где V_p – скорость продольной волны, м/с; а, в, d – постоянные для породы данного месторождения и данного вида зависимости; α_1 – коэффициент затухания продольной волны; ρ – объемная масса.

Анализ [4–5] показал, что если за основу корреляционной зависимости брать один акустический параметр (напримерV_p), то коэффициент вариации расчетного предела прочности относительно фактического значения прочности составляет 25–40%. При двух акустических параметрах ρ V_p, α_1 V_p (формулы 5 и 7) коэффициент вариации составляет уже 10–25%, а при трех параметрах (ρ ,V_p, V_s) – 10–20%.

Так, например, определены корреляционные связи для известняка месторождения Хайдаркан и получены следующие зависимости:

$$\sigma_{cw} = f(V_p); \sigma_{cw} = 0,042V_p - 84,3;$$

$$\tau_{\sigma cw}^{V_p} = 0,434$$
(8)

$$\sigma_{c,w} = f(V_p^2), \sigma_{c,w} = 31,2+3,78V_p^2;$$

$$\tau_{c,w}^{\rho V p} = 0,427,$$
(9)

$$\sigma_{c,w} = f(\rho V_p), \sigma_{c,w} = 1, 3V_p^2 \rho - 42,5;$$
(10)

$$\begin{aligned} \tau_{\sigma c \infty}^{\mu p} &= 0,351, \\ \sigma_{c \infty} &= f \left(V_p, V_p^2 \right), \end{aligned}$$

$$\sigma_{cxc} = -1713,3 + 673,6V_p - 60,8V_p^2;$$
(11)
$$\tau_{\sigma r w}^{V_p V_p^2} = 0,471,$$

Таблица 1

(7)

ГЕОМЕХАНИКА И НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ПОРОД ГОРНОГО МАССИВА

Сравнительный анализ способов определения свойств горных пор	ОЛ
сравнительный анализ способов определения своисть горных пор	υд

Покаратели	Номер зависимости					
Показатель	(8)	(9)	(10)	(11)	(12)	(13)
σ _{сж,} МПа	117,3	118,5	119,7	118,4	124,8	92,7
O ₀ ,%	24,76	26,0	26,7	25,9	32,8	-1,4
U	5,0-3,1	6,3–3,9	8,2–5,5	4,4–2	5,3–2,7	11,3–5,6

$$\sigma_{cwc} = f(\rho);$$

$$\sigma_{cwc} = (64, 4 - 20, 15\rho)^2; \tau^{\rho}_{cwc} = 0,678,$$
(12)

$$\sigma_{cm} = f(1/M_A); \sigma_{cm} = \frac{1234.9}{48.78 - M_A \times 10^{-9}}; \quad (13)$$

 $\tau_{\sigma c \mathcal{H}}^{M_A} = 0,912.$

Сравнительный анализ перечисленных зависимостей по информативности использованного акустического параметра и величине относительной ошибки представлен в табл. 1.

Относительная ошибка O_o определена для образца известняка с данными: $\sigma_{c \ m} = 94,0$ МПа; $\alpha = 0,01 \text{ см}^{-1}$; $\rho = 2,64*10^3 \text{ кг/M}^3$; $V_p = 4800 \text{ м/c}$; V = 2800 м/c

$$O_o = \frac{\sigma_{cm} - \sigma_{cmn}}{\sigma_{cmn}} \times 100\%, \qquad (14)$$

где σ_{cm} – предел прочности на сжатие, определенный по корреляционным зависимостям; σ_{cmn} – предел прочности на сжатие, определенный экспериментально.

Из табл. 1 вытекает, что наибольший показатель информативности U имеет акустический модуль больше 3. По градуированным зависимостям на основе акустического модуля можно определить комплекс механических свойств: пределы прочности на сжатие (σ_{cx}); растяжение (σ_p); срез ($\sigma_{cдB}$); сцепление (C) скальных пород.

Зависимость предела прочности на сжатие и растяжение от акустического модуля. Все породы при доведения их до разрушения проявляют упругие и пластические деформации. Анализ кривых "напряжение-деформация" позволяет при всем их различии обнаружить общность принципиального характера: каждая из них может быть разделена на две области – линейную (рис. 1, участок ОА) и криволинейную (участок АБ). Криволинейный участок аппроксимируется прямой, так что величина разрушающих деформаций имеет вид

Рис. 1. Диаграмма разрушения образца известняка Хайдаркана при одноосном сжатии.

$$\varepsilon_r = \frac{\sigma_r - \sigma_a}{\varepsilon_k}, \qquad (15)$$

причем формула (15) соответствует граничным условиям:

если $\sigma_i = \sigma_r$, то $\varepsilon_i = \varepsilon_r$;

если $\sigma_i = 0$, то $\sigma_a = 0$ и $\epsilon_i = 0$.

Подставляя величины разрушающих деформаций в формулу Гука, получаем

$$\sigma_i = \varepsilon \left(\frac{\sigma_r - \sigma_a}{\varepsilon_k} \right), \tag{16}$$

$$\sigma_i = \frac{\varepsilon \sigma_a}{\varepsilon - \varepsilon_k} \,. \tag{17}$$

Подставляя в формулу (17) из формулы $\varepsilon = a\rho V\rho Vs$ (18), получаем

$$\sigma_{_{CHC}} = \frac{M_n}{M_A - N_n},\tag{19}$$

$$M_n = \frac{\sigma_a \varepsilon}{a} \quad \text{M} \quad N_n = \frac{\varepsilon_k}{a} , \qquad (20)$$

где M_n, N_n – постоянные величины для образцов одного вида породы; σ_a – максимальная величина прочности на прямолинейном участке

Вестник КРСУ. 2007. Том 7. № 1

18

кривой "напряжение-деформация", МПа; ε_{κ} – модуль криволинейной части эпюры, МПа; M_A – акустический модуль, Дж/м³; а – коэффициент формулы (18); ε – модуль упругости, МПа.

Для тех же самых условий, но для упругопластических пород общая формула имеет вид:

$$\sigma_{c,w} = \frac{M}{N - M_A},\tag{21}$$

где $M = \frac{\varepsilon_k \sigma_a}{a}$ и $N = \frac{\varepsilon_k}{a}$.

Как известно, процесс деформации и разрушения при растяжении горных пород симметричен деформации и разрушению при сжатии. Поэтому зависимость между пределом прочности на растяжение и акустическим модулем имеет такой же вид:

а) для упругих и упруго-пластических пород –

$$\sigma_p = \frac{M_p}{N_p - M_A},\tag{22}$$

б) для пластических пород -

$$\sigma_{pn} = \frac{M_{pn}}{M_A - N_{pn}}, \qquad (23)$$

где M_p , N_p – постоянные величины для образцов одного вида упругой породы; M_{pn} , N_{pn} – постоянные величины для образцов одного рода пластической породы из одного месторождения; σ_{ρ} , $\sigma_{\rho n}$ – предел прочности на растяжение.

Предел прочности при сдвиге осдв определяем при взаимодействии как сжимающих, так и растягивающих или сдвигающих напряжений.

а) для упруго пластических пород

$$\sigma_{c\partial e} = \frac{M_o}{N_o - M_A},\tag{24}$$

$$C = \frac{M_c}{N_c - M_A},\tag{25}$$

б) для пластических пород

$$\sigma_{c\partial s} = \frac{M_{on}}{M_A - N_{on}},$$
(26)

где M_{on}, N_{on}, M_c, M_o, N_o, M_k, N_k – постоянные для данного рода пород и свойств из одного месторождения; С – сцепление.

Примеры определённых по формулам (21, 22, 23, 24, 25) величин М, N, M_p, N_p, M_{сдв}, M_c, N_c для предела прочности на сжатие, растяжение, сдвиг и сцепление табл. 2–5.

Таблица 2

Месторождение, порода	п, шт.	M·10 ⁹	N·10 ⁹	τ	Интервал действия зави- симости $M_A \cdot 10^9$, дж/м ³
Хайдаркан, известняки	10	-1234,9	48,8	0,912	34,3 - 45,0

Таблица 3

Величины М _р и 1	_р , вычисленные	для пород
-----------------------------	----------------------------	-----------

Хайдаркан, порода	n, шт.	$M_p \cdot 10^9$	$N_p \cdot 10^9$	τ	Интервал действия зави- симости М _А ·10 ⁹ , дж/м ³
Известняки	10	18	34,1	0,752	35,3-48,2
Сланцы	6	-15,7	43,1	0,998	36,0-39,0

Таблица 4

Величины M_{сqв} и N_{сqв}, вычисленные для пород

Месторождение, порода	п, шт.	М _{сqв} ·10 ⁹	N _{cqB} ·10 ⁹	τ	Интервал зависимости М _А ·10 ⁹ , дж/м ³
Хайдаркан, известняки	7	-414,9	30,6	0,954	15,0-27,0

Таблица 5

Месторождение, порода	п, шт.	$M_c \cdot 10^9$	N _c ·10 ⁹	τ	Интервал зависимости М _А ·10 ⁹ , дж/м ³
Хайдаркан, известняки	9	135,6	52,3	0,734	55,0-63,0

Величины M_c и N_c, вычисленные для пород

Полученные величины показывают довольно высокие коэффициенты корреляции, т. е. самый малый разброс.

Следовательно, физические взаимосвязи между акустическим модулем и механическими свойствами скальных пород, позволяющие с достаточной степенью точности рассчитывать ряд наиболее важных для проектирования, контроля и оперативного управления процесса горного производства свойств: пределы прочности горных пород на одноосные сжатие, растяжение, на сдвиг, сцепление.

Анализ результатов сравнительных измерений напряжений в породном массиве [6], проведенных методом разгрузки и геоакустическим методом, полученные в условиях Хайдарканского и Терексайского месторождений, показали прямую зависимость изменения акустического модуля от величины напряжения.

Установлены основные физические показатели, характеризующие напряженное состояние породного массива, и разработаны соответствующие им критерии оценки по геоакустическому контролю вблизи и вне влияний горных выработок:

- характер распределения напряжений в массиве, определяющийся по распределению акустического модуля;
- критическое напряжение, наличие которого устанавливается по величине акустического модуля относительно пороговых значений;
- степень анизотропии напряжений, которая характеризуется отношением акустических

модулей в горизонтальной и вертикальной плоскости массива;

- при слоистом строении массива влияние анизотропии свойств на состояние массива оценивается по величине параметров анизотропии;
- эффективное сечение выработки устанавливается по результатам прозвучивания.

Литература

- 1. *Ржевский В.В., Новик Т.Я.* Основы физики горных пород. М.: Недра, 1984.
- Ямщиков В.С. Методы и средства исследования и контроля горных пород и процессов. – М.: Недра, 1982.
- Терметчиков М.К. Физико-механические свойства горных пород месторождений Киргизии и их корреляционный анализ. – Фрунзе: Илим, 1979.
- Мамбетов Ш.А., Абдиев А.Р., Мамбетов А.Ш. Зональная и поэтапная оценка породного массива Тянь-Шаня. – Бишкек: КРСУ, 2003.
- Хржан Т. Физико-техническое обоснование и разработка метода комплексной оценки механических свойств горных пород для оперативного управления процессами горного производства: Автореф. дисс. докт. техн. наук. – М., 1990.
- Ялымов Н.Т., Мамбетов Ш.А. и др. Результаты сравнительных измерений напряжений в массиве горных пород // Изменение напряжений в массиве горных пород. Ч. 1. – Новосибирск, 1974.