МОДЕЛИРОВАНИЕ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ С ПОМОЩЬЮ ЛАБОРАТОРНОГО СТЕНДА «ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ И ПОДСТАНЦИИ»

Таабалдиева Нурзат Душеновна, к.т.н., доцент, КГТУ им. И.Раззакова, Кыргызстан, 720044, г.Бишкек, пр. Мира 66. Тел: 0312-54-51-4, e-mail: murzat0227@gmail.com **Асан уулу Аскат**, магистр, КГТУ им. И. Раззакова, Кыргызстан, 720044, г.Бишкек, пр. Ч. Айтматова 66. Тел: 0312-54-51-49, e-mail: asanaskat@gmail.com **Бекжанова Бубуайша Бекжановна**, магистр, КГТУ им. И. Раззакова, Кыргызстан, 720044, г.Бишкек, пр. Ч. Айтматова 66. Тел: 0312-54-51-49, e-mail: bubuaisha.bekzhanovna@gmail.com

Аннотация. В данной статье приведены определение масштабных коэффициентов, для того чтобы физические процессы в модели адекватно отображали соответствующие процессы в объекте-оригинале. Приведены выражения для правильного подбора некоторых физических параметров модели.

Ключевые слова: моделирование, физическая модель, линии электропередач, коэффициент подобия, масштабный коэффициент.

FEATURES POWER LINES SIMULATION USING THE LABORATORY STAND "POWER STATIONS AND SUBSTATIONS"

Taabaldieva Nurzat Dushenovna, PhD (Engineering), Associate Professor, Kyrgyzstan, 720044, c.Bishkek, KSTU named after I.Razzakov. Phone: 0312-54-51-49, e-mail: murzat0227@gmail.com Askat Asan uulu, master student, Kyrgyzstan, 720044, c.Bishkek, KSTU named after I.Razzakov. Phone: 0312-54-51-49, e-mail: asanaskat@gmail.com

Bekzhanova Bubuaisha Bekzhanovna, master student, Kyrgyzstan, 720044, c.Bishkek, KSTU named after I.Razzakov. Phone: 0312-54-51-49, e-mail: <u>bubuaisha.bekzhanovna@gmail.com</u>

Annotation. This article contains the definition of the scale factors, to physical processes in the model adequately reflects the relevant processes in the object-original. Expressions for the proper selection of some of the physical parameters of the model.

Keywords: modeling, physical model, power lines, scaling factor, the scaling factor.

Моделирование является важным инструментом решения многих технических задач. В электротехнических дисциплинах моделирование — это инструмент для изучения процессов, происходящих в различных электрических системах. Применяя различные подходы к реализации модели, можно получить информацию как об установившихся, так и о переходных процессах.

Свойства многих электроэнергетических объектов таковы, что их исследование в обычных лабораторных условиях очень затруднительно, или вообще невозможно. Очень трудно представить себе лабораторию, в которой поместилась бы линия электропередачи длиной в несколько десятков километров и напряжением в десятки или сотни киловольт. Поэтому в инженерной практике в таких случаях часто прибегают к физическому моделированию, т.е. эксперименты производятся не с объектом-оригиналом, а с его физической моделью. А затем при помощи определенных правил на основе полученных выводов анализируются свойства объекта оригинала.

Такую возможность дает лабораторный стенд «Электрические станции и подстанции», который представляет комплект блоков — физических моделей различных элементов электроэнергетической системы. Линия электропередачи длинной менее 300 км может быть представлена в виде П-образной схемы замещения. По этому принципу и составлен блок лабораторного стенда «Модуль линии».

Линии электропередач в физических моделях электроэнергетических систем можно осуществлять или в виде уменьшенных линий-моделей, копирующих провода и изоляторы натуры и, следовательно, имеющих распределенные по длине параметры, или в виде цепочечных схем замещения.

Критерии подобия, на основании которых линию электропередач можно изобразить геометрически подобной моделью, могут быть получены из основных критериев подобия (3) и (4). Условия подобия неустановившихся процессов, происходящих в линии электропередачи при включении ее на неизменное напряжение U определяется из дифференциального уравнения [1], дающего взаимную связь физических величин, участвующих в явлении:

$$CL\frac{\partial^2 u}{\partial t^2} + (CR + LG)\frac{\partial u}{\partial t} + RGu = \frac{\partial^2 u}{\partial t^2}$$
 (1)

где t – время;

l — длина;

C, L, R и G — соответственно емкость, индуктивность, сопротивление и проводимость на единицу длины;

u — напряжение вдоль линии.

Предполагается, что во второй линии происходят подобные процессы, описываемые уравнением того же класса, но отличающая значениями своих переменных и физических параметров:

$$C_1 L_1 \frac{\partial^2 u_1}{\partial t_1^2} + (C_1 R_1 + L_1 G_1) \frac{\partial u_1}{\partial t_1} + R_1 G_1 u_1 = \frac{\partial^2 u_1}{\partial t_1^2}$$

$$\tag{2}$$

Если процессы распространения напряжения вдоль этих линий подобны, то имеет место равенство:

$$u = m_{l}u_{1}; \quad l = m_{l}l_{1}; \quad t = m_{r}t_{1} \tag{3}$$

и т.д.

Все переменные и параметры, входящие в уравнение (1), могут быть выражены через переменные и параметры уравнений (2) подстановкой соотношений (3). Произведем эту подстановку, предварительно упростив уравнения (1) и (2) путем приведения их к безразмерному виду.

Разделив каждый член уравнение (1) на *RGu* получим:

$$\frac{CL\partial^2 u}{GRu\partial t^2} + \frac{C\partial u}{Gu\partial t} + \frac{L\partial u}{Ru\partial t} + 1 = \frac{\partial^2 u}{RGu\partial l^2}.$$

Произведя подстановку из (3), получим:

$$\frac{C_{1}L_{1}m_{C}m_{L}\partial^{2}u_{1}}{G_{1}R_{1}m_{G}m_{R}m_{t}^{2}u_{1}\partial t_{1}^{2}} + \frac{C_{1}m_{C}\partial u_{1}}{G_{1}m_{G}m_{u}u_{1}\partial t_{1}} + \frac{L_{1}m_{L}\partial u_{1}}{R_{1}m_{R}m_{t}u_{1}\partial t_{1}} + 1 = \frac{\partial^{2}u_{1}}{R_{1}G_{1}m_{G}m_{R}m_{t}^{2}u_{1}\partial t_{1}^{2}}$$
(4)

Уравнение (2) после почленного деления на $R_1G_1u_1$ принимает вид:

$$\frac{C_1 L_1 \partial^2 u_1}{G_1 R_1 u_1 \partial t_1^2} + \frac{C_1 \partial u_1}{G_1 u_1 \partial t_1} + \frac{L_1 \partial u_1}{R_1 u_1 \partial t_1} + 1 = \frac{\partial^2 u_1}{R_1 G_1 u_1 \partial t_1^2}$$
(5)

При соотношениях между коэффициентами подобия

$$\frac{m_C m_L}{m_G m_R m_t^2} = 1; \qquad \frac{m_C}{m_G m_t} = 1; \qquad \frac{m_L}{m_R m_t} 1; \qquad \frac{1}{m_G m_R m_l^2} = 1$$
 (6)

Уравнение (4) тождественно уравнению (5), следовательно эти уравнения при условиях (6) отражают подобные процессы. Соотношение (6) с учетом (3) можно переписать в виде соотношений между символами физических параметров исследуемого процесса.

Частные критерии подобия могут соответствовать различным практически осуществляемым на моделях случаям. Так, отказываясь от геометрического подобия и вводя в критерии параметры, отнесенные к единице длины, получим:

$$\frac{C_{(0)}}{G_{(0)}t} = idem; \qquad \frac{L_{(0)}}{R_{(0)}t} = idem; \qquad R_{(0)}G_{(0)}l_{\Delta}^{2} = idem$$
 (7)

где $l_{\scriptscriptstyle \Delta}^2$ - длина моделируемого участка линии.

Чтобы физические процессы в модели лабораторного стенда адекватно отображали соответствующие процессы в объекте-оригинале, ее параметры (напряжения, сопротивления и т.д.) должны быть подобраны определенным образом. Для правильного подбора параметров модели используется расчет масштабных коэффициентов, используя (6) и (7). Масштабный коэффициент для некоторого физического параметра X определяется выражением:

$$M_X = \frac{X_{(O)}}{X_{(M)}}$$

3десь X_{O} — параметр оригинала; X_{M} — параметр модели.

Так, например, если номинальное напряжение линии электропередачи 110 кВ, то, учитывая, что номинальное напряжение лабораторного стенда 380 В, масштабный коэффициент напряжения удобно принять равным их отношению:

$$M_U = \frac{110 \cdot 10^3}{380} = 289,5 \tag{8}$$

Следовательно, если в какой-то точке модели измеренное напряжение составит, к примеру, 364B, то прогнозируемое напряжение в соответствующей точке оригинала составит $364 \cdot 289,5 = 105,4 \text{ kB}$.

Параметры оригинала связаны между собой теми же физическими законами, что и соответствующие им параметры модели (например, в соответствии с законом Ома падение напряжения на сопротивлении, как в оригинале, так и в модели равно произведению тока и сопротивления). Поэтому между масштабными коэффициентами также существует определенная зависимость. Два любых масштабных коэффициента могут быть выбраны произвольно, исходя только из удобства работы с моделью; все остальные вычисляются в соответствии с известными физическими законами.

При моделировании электроэнергетических объектов первым, по выражению (8), выбирается масштабный коэффициент напряжения. Это связано с тем, что напряжение оригинала обычно задано.

Вторым удобно выбрать масштабный коэффициент мощности, поскольку мощность нагрузок оригинала также обычно задана, а возможности регулировки мощности нагрузок модели достаточно ограничены. Итак,

$$M_{\mathcal{S}} = \frac{P_{HE} \cdot 10^6}{3 \cdot P_{\Phi}} \tag{9}$$

где $P_{H\!B}$ – активная мощность самого крупного потребителя оригинала, МВт; P_{Φ} – мощность одной фазы модели нагрузки, Вт.

Обратите внимание на то, что для всех видов мощности – активной, реактивной и полной используется один и тот же масштабный коэффициент.

Остальные масштабные коэффициенты, как уже отмечалось, произвольно выбрать нельзя, они должны быть вычислены.

Масштабный коэффициент тока:

$$M_I = \frac{M_P}{M_{II}} \tag{10}$$

Масштабный коэффициент сопротивления:

$$M_Z = \frac{M_U}{M_L} \tag{11}$$

Масштабный коэффициент проводимости:

$$M_{Y} = \frac{M_{I}}{M_{II}} \tag{12}$$

Так же как и в случае с мощностями, для активных, индуктивных, емкостных и полных сопротивлений используется один и тот же масштабный коэффициент, так же как один масштабный коэффициент для всех проводимостей.

Обычно этих коэффициентов бывает достаточно, но при необходимости аналогично могут быть определены масштабные коэффициенты и для других параметров (индуктивность, емкость, частота и т.д.).

Создать модель линии электропередачи для исследования в лабораторных условиях означает, что нужно выбрать масштабные коэффициенты, по ним определить параметры модели и изготовить модель.

При выполнении моделировании ЛЭП задается оригинал, а студентам необходимо составить для нее схему замещения, определить параметры схемы замещения, выбрать масштабные коэффициенты и определить параметры модели. Сама физическая модель создается на основе соответствующего блока, входящего в состав лабораторного стенда (рис.1). Необходимо только при помощи переключателей придать ему параметры, возможно более близкие к требуемым параметрам модели. Результаты эксперимента приведены ниже в рис.2.

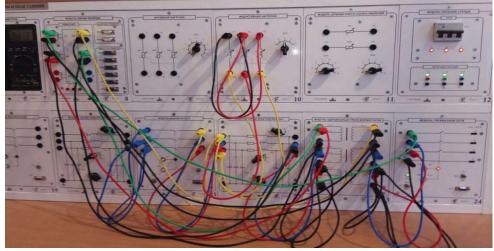
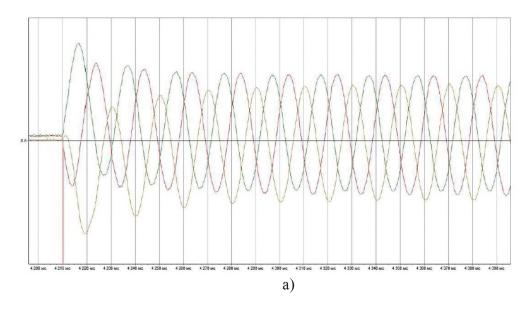



Рис.1. Физическая модель линии

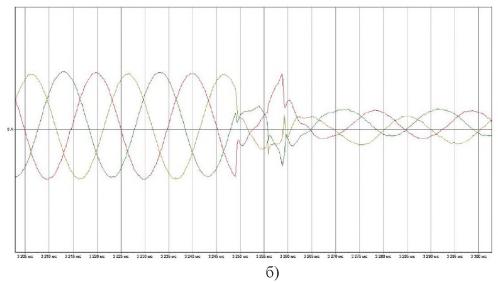


Рис.2. Осциллограммы короткого замыкания в конце линии, а) осциллограмма токов короткого замыкания б) осциллограмма напряжений короткого замыкания

Список литературы

- 1. Веников В.А. Физическое моделирование электрических систем: учеб.пособие / Веников В.А, Иванов-Смоленский А.В. М.: Госэнергоиздат, 1956. 256с.
- 2. Лыкин А.В. Электрические системы и сети: учеб. пособие / А.В. Лыкин. М.: Университетская книга; Логос, 2008. 254 с.
- 3. Костин В.Н. Передача и распределение электроэнергии: учеб. пособие / В.Н. Костин, Е.В. Распопов, Е.А. Родченко. СПб.: СЗТУ, 2003. 147 с.
- 4. Идельчик В.И. Электрические системы и сети: учебник для вузов / В.И. Идельчик. М.: Энергоатомиздат, 1989. 592 с.