ВЫБОР РЕЖИМОВ РЕЗАНИЯ ПРИ ОБРАБОТКЕ ДЕТАЛЕЙ ИЗ ПЛАСТМАСС ТОЧЕНИЕМ

Самсонов Владимир Алексеевич, к.т.н., профессор КГТУ им. И. Раззакова, г. Бишкек, пр. Мира 66, e-mail: <u>aebrat@mail.ru</u>

Цель статьи - разработка рекомендации по выбору оптимальных условий точения деталей из пластмасс с заданной шероховатостью их поверхностей.

Ключевые слова: Режим резания скорость резания, подача, нормативная стойкость, шероховатость поверхности.

THE CHOICE OF THE MODES OF CUTTING WHEN PROCESSING DETAILS FROM PLASTIC TURNING

Samsonov Vladimir Alekseevich, Cand. Tech. Sci., professor of KGTU of I. Razzakov, Bishkek, Mira Ave. 66, e-mail: <u>aebrat@mail.ru</u>

Article purpose - development of the recommendation about the choice of optimum conditions of turning of details from plastic with the set roughness of their surfaces.

Keywords: Cutting mode cutting speed, giving, standard firmness, surface roughness.

Все возрастающее использование изделий из пластмасс обуславливает необходимость определения оптимальных условий их механической обработки на металлорежущих станках. Имеющиеся нормативные материалы [1] не охватывают всего многообразия пластмасс и характеристик инструментальных материалов для их обработки. В связи с этим в настоящий работе предпринята попытка восполнить этот пробел путем сборе и обобщения научных статей, справочных материалов и каталогов отечественной и иностранной технической литературы и разработки рекомендаций по выбору режимов резания при обработке деталей из пластмасс точением.

Виды пластмасс, для которых разработаны представленные ниже рекомендации. Приведены в таблице 1. В качестве инструмента используются резцы, оснащенные пластинкам твердого сплава и резцы из синтетического алмаза типа баллас /AC/, а также типа карбонадо /ACПК/.

Рекомендуемые диапазоны глубины резания, подача и инструментальный материал приведены в таблице 1.

Режим обработки точением деталей из пластмасс

Таблица 1

Обрабатываемый	Инструментальный	Глубина резания	Подача	
Материал	материал	t, mm	S ₀ , мм/об	
Оргстекло	BK8	0,5-2,5	0,1-0,0,25	
Фторопласт	BK8	0,5-4,0		
Фенопласт	ВК3М	0,5-5,0	0,1-0,40	
Волокник	BK2	0,5-40		
Гетинакс	ВК6М	0,5-5,0	0,1-0,50	
Стеклотестолит	ВК2	0,5-4,0	0,1-0,4	
Стеклопластик	BK8			
Органопластик	BK8	0,5-5,0	0,1-0,4	
Гетинакс	АСПК	0,2-1,0		
	АСБ	0,5-2,0		
Стеклопластик	АСПБ	0,2-1,0	0.1.0.4	
	АСБ	0,5-2,0	0,1-0,4	
Стеклотестолит	АСПК	0,2-1,0		
	АСБ	0,5-2,0		

Во многих случаях при точении пластмасс необходимо обеспечивать заданную шероховатость обработанной поверхности. Тогда подачу выбирают следующим образом. При заданной шероховатости для твердосплавных резцов подачу можно определять по зависимостям:

Для
$$Ra=1,2$$
—4 мкм; $S_o=0,032 \cdot r^{0,16} \cdot R_a^{1,44}$, мм/об Для $R_z \ge 6,3$ мкм; $S_0=0,048 \cdot r^{0,38} \cdot R_z^{1,26}$, мм/об,

где r-радиус при вершине резцы, мм; R_a , R_z – параметры заданной шероховатости обработанной поверхности, мкм

При обработке гетинакса, стеклотекстолита и стеклопластика резцами из синтетического алмаза с фаской на вершине $f \approx 0,3\,$ мм и радиусом $r \approx 0,8\,$ мм Подачу можно определить по зависимости: $So=C_z\cdot R^a_{\ z}$, мм/об.

Скорость резания можно определить по формуле:

$$V = \frac{Cv \cdot K_M \cdot K1}{T_M \cdot tx \cdot Sy0}$$
, м/мин

где T- выбранная стойкость инструмента, мин; значения нормативной стойкости $T_{\rm H}$., $C_{\rm v}$, m, x и y приведены в таблице 2.

Таблица 2 Значения коэффициентов C_z , C_v , нормативной стойкости и показателей степени в формулах подачи и скорости резания при точения пластмасс.

Обрабатываемый материал	Материал инструмента	Cz	a	Cz	m	x	y	Тн, мин
						0,3	0,4	
Оргстекло	BK8			147	1	8	5	60
	DICO			2702	1 1	0,3	0,6	60
Фторопласт	BK8			3723	1,1	6	8	60
Фенопласт	BK3M			554	0,3	0,2	0,3	60
					0,1	0,1		
Волокнит	BK2			204	6	8	0,2	60
						0,5	0,5	
	ВК6М			5640	0,3	5	5	60
Гетинакс			1,	5355		0,0		
	АСПК	0,01	0	00	1,0	8	0,1	2700
	A CE	0.01	1,	3570	1.0	0,0	0.1	1020
	АСБ	0,01	0	00	1,0	8	0,1	1030
	ВК2			467	0,1 8	0,0	0,0	60
		0,001	1,	1950		0,1	0,1	
стеклотестолит	АСПК	8	6	00	1,0	Ő	2	900
		0,000	2,	1300		0,1	0,1	
	АСБ	08	3	00	1,0	Ó	2	540
Стеклопластик					0,4	0,3	0,3	
	BK8			152	9	3	7	60
		0,001	1,	2800		0,0	0,1	
	АСПК	5	7	00	1,0	3	0	720
		0,000	2,	1860		0,0	0,1	
	АСБ	28	1	00	1,0	3	0	480
0	DIGO			257	0,3	0,0	0,1	60
Органопластик	BK8			357	1	5	8	60

 $K_{\text{м}}$ -поправочный коэффициент, характеризующий марку твердого сплава, приведен в таблице 3.

Таблица 3

Поправочный коэффициент $K_{\text{м}}$, учитывающий влияние марки твердого сплава на скорости резания при точения пластмасс

Обрабатываемый	К _м для резцов из сплава				
материал	BK 2	ВК 6М	ВК 3	вк8М	
Фенопласт	_	0,91	0,70	1,00	
Волокнит	1,0	_	0,70	0,90	
Гетинакс	_	1,0	0,77	1,1	
Стеклотекстолит	1,0	_	0,70	0,90	
Стеклопластик	1,52	_	1,0	1,76	
Органопластик	1,28	_	1,0	1,31	

При работе резцами из AC $K_M=1,0$

К₁-поправочный коэффициент, характеризующий тип резца, приведен в таблице 4.

Таблица 4 Поправочный коэффициент, учитывающий влияние типа резца на скорость резания при точении пластмасс

тип резца	проходной	подрезной	отрезной	расточной
K_1	1,0	0,8	0,7	0,9

При работе резцами из АС К₁=1,0

Частота вращения шпинделя $C_v \cdot K_M \cdot K_1$

$$n = \frac{1000 \cdot V}{\pi D}$$
 об/мин

При ступенчатом регулировании частоты вращения шпинделя ее значения рекомендуется уточнять в меньшую сторону.

Вывод: Представленные материалы позволяют определить рациональные режимы резания при точения деталей из различных пластмасс, а также оптимальные условия их обработки, обеспечивающие требуемую шероховатость обработанной поверхности.

Список литературы

- 1. Общемашиностроительные нормативы режимов резания, нормы износа и расхода резцов, сверл и фрез при обработке неметаллических конструкционных материалов. НИИМАШ. – М.: 1982-144 с.
- 2. All-machine-building standards of the modes of cutting, standard of wear and an expense of cutters, drills and mills when processing nonmetallic constructional materials. NIIMASh. M.: 1982-144 pages.