УДК 539.374

МОДЕЛИРОВАНИЕ ПРОЦЕССА ЛОКАЛИЗАЦИИ ДЕФОРМАЦИИ В УСЛОВИЯХ ОДНООСНОГО СВЕРХПЛАСТИЧЕСКОГО РАСТЯЖЕНИЯ

Д.А. Китаева

Приведено решение задачи об устойчивости одноосного растяжения стержня из алюминиевых сплавов в условиях динамической сверхпластичности с трехмерной визуализацией процесса. Подтвержден экспериментально установленный результат о возникновении «бегающей» шейки в режимах сверхпластичности.

Ключевые слова: локализация деформации; растяжение; «бегающая» шейка; динамическая сверхпластичность; алюминиевые сплавы.

MODELLING OF THE LOCALIZED DEFORMATIONS UNDER UNIAXIAL SUPERPLASTIC TENSION

D.A. Kitaeva

The solution of the problem on the aluminum bar stability uniaxial tension under the dynamic superplasticity conditions with three-dimensional process visualization is provided. Experimentally established result about "running necks" emergence under the superplasticity conditions is confirmed.

Keywords: strain localization; tension; "running necks"; dynamic superplasticity; aluminum alloys.

Введение. Несмотря на давность установления феномена локализации, вопрос о механизмах ее формирования является во многих аспектах дискуссионным и не может считаться окончательно решенным [1–4].

Локализация пластической деформации при растяжении воспринимается зачастую как потеря устойчивости пластического течения металла. Однако анализ экспериментов [5] показал, что именно непрерывная локализация является физической основой пластичности. Способность к формоизменению есть способность к локализации деформации [6]. Поэтому предложено рассматривать процесс как макроскопический, характерной особенностью которого является спонтанное появление и замораживание многочисленных «бегающих» шеек, а затем при увеличении локально деформированного объема, устойчивой шейки, когда начинается монотонное уменьшение величины последнего вплоть до разрушения. Поэтому в дальнейшем потерю устойчивости, выражающуюся в образовании четко выраженной шейки, будем связывать с термином «устойчивая локализация», считая, что при равномерной деформации течение металла происходит путем возникновения и замораживания «бегающих» шеек.

Постановка задачи об устойчивости деформации вязкопластического тела принадлежит А.А. Ильюшину [7], который изучил близкие течения по отношению к плоскому равномерному деформированию полосы и плоскому деформированию цилиндра, сделав при этом выводы об устойчивости этих процессов.

Потеря устойчивости в [1, 7, 8] трактуется как нарушение равномерности пластического деформирования, выражающееся в появлении местного утонения в виде шейки.

Изучение явления локализации деформации в настоящее время весьма важно с точки зрения теории и технологических приложений сверхпластичности. Создание представлений о закономерностях развития больших и сверхпластических деформаций крайне необходимо для более полного и точного суждения об их природе и скрытых возможностях.

Задача о локализации деформаций и устойчивости в температурно-скоростных режимах динамической сверхпластичности рассматривается в контексте общей проблемы локализации де-

формации [1]. Как утверждается в [1], большие пластические деформации отличает существенная неравномерность течения, которая проявляется как развитие значительных локальных деформаций. Собственно поэтому в известном определении понятия эффекта сверхпластичности подчеркивается способность металлических материалов именно равномерно деформироваться с высокой скоростной чувствительностью [2]. Последнее утверждение пригодно для структурной сверхпластичности, которая реализуется [5, 7] в опредетемпературно-скоростных условиях ленных в сплавах с исходным мелким зерном (1-10 мкм) и связана с оценкой эффекта по величине коэффициента скоростной чувствительности. Однако использование указанного коэффициента [1, 2, 10] позволяет только объяснить причину равномерности сверхпластического течения без формулировки критериальности.

Постановка задачи. Рассмотрим задачу моделирования процесса локализации и устойчивости одноосного изотермического сверхпластического растяжения [3, 11], отказываясь от линеаризации, предложенной в [1]. Стержень выполнен из материала с неподготовленной структурой (динамическая сверхпластичность).

Стержень начального радиуса R_0 отнесем к цилиндрической системе координат рф*z*, причем ось *z* совместим с продольной осью; $\rho = r/R_0$, где *r* – текущий радиус [12].

Считаем, следуя [1, 7, 8], что в момент потери устойчивости компоненты тензора напряжений σ_{ij} и тензора скоростей деформаций $\dot{\epsilon}_{ij}$ меняются

на бесконечно малые величины $\delta \sigma_{ii}$, $\delta \dot{\epsilon}_{ii}$.

Постановка задачи включает:

- уравнения равновесия:

$$\frac{\partial \delta \sigma_{\rho}}{\partial \rho} + \frac{\delta \sigma_{\rho} - \delta \sigma_{\phi}}{\rho} + \frac{\partial \delta \tau_{\rho z}}{\partial z} = 0;$$
$$\frac{\partial \delta \sigma_{z}}{\partial z} + \frac{\partial \delta \tau_{\rho z}}{\partial \rho} + \frac{\delta \tau_{\rho z}}{\rho} = 0; \qquad (1)$$

- кинематические соотношения:

$$\delta \dot{\varepsilon}_{\rho} = \frac{\partial \delta \upsilon_{\rho}}{\partial \rho} ; \ \delta \dot{\varepsilon}_{\phi} = \frac{\delta \upsilon_{\rho}}{\rho} ; \ \delta \dot{\varepsilon}_{z} = \frac{\partial \delta \upsilon_{z}}{\partial z} ;$$
$$\delta \dot{\gamma}_{\rho z} = \frac{\partial \delta \upsilon_{\rho}}{\partial z} + \frac{\partial \delta \upsilon_{z}}{\partial \rho} ; \qquad (2)$$

- условие несжимаемости:

 $\frac{\partial}{\partial}$

$$\frac{\delta \upsilon_z}{\partial z} + \frac{\partial \delta \upsilon_\rho}{\partial \rho} + \frac{\delta \upsilon_\rho}{\rho} = 0; \qquad (3)$$

- определяющие соотношения:

$$\delta \sigma_{\rho} - \delta \sigma_{0} = \frac{2}{3} \frac{\delta \sigma_{u}}{\delta \dot{\epsilon}_{u}} \delta \dot{\epsilon}_{\rho}; \ \delta \sigma_{\phi} - \delta \sigma_{0} = \frac{2}{3} \frac{\delta \sigma_{u}}{\delta \dot{\epsilon}_{u}} \delta \dot{\epsilon}_{\phi};$$
$$\delta \sigma_{z} - \delta \sigma_{0} = \frac{2}{3} \frac{\delta \sigma_{u}}{\delta \dot{\epsilon}_{u}} \delta \dot{\epsilon}_{z}; \ \delta \tau_{\rho z} = \frac{1}{3} \frac{\delta \sigma_{u}}{\delta \dot{\epsilon}_{u}} \delta \dot{\gamma}_{\rho z}; \quad (4)$$

- уравнение состояния [13]:

$$\sigma_{u} = \sigma * \left[1 + m_{0} \left(\frac{\dot{\varepsilon}_{u}}{\dot{\varepsilon} *} - 1 \right)^{3} + \beta(\xi) \left(\frac{\dot{\varepsilon}_{u}}{\dot{\varepsilon} *} - 1 \right) \right].$$
(5)

Здесь v_{ρ} , v_z – компоненты скоростей перемещений; σ_u , $\dot{\varepsilon}_u$ – интенсивности напряжений и скоростей деформаций; v^* , $\dot{\varepsilon}^*$ – альтернативные внутренние параметры состояния; $\beta(\xi)$ – управляющий параметр, являющийся функцией нормированной температуры ξ ; $m_0 = \text{const}$ – постоянная материала.

Основное *дифференциальное* уравнение. Совместным рассмотрением соотношений (1)–(5) задача сведена к дифференциальному уравнению относительно вариаций скоростей осевого δυ_z и радиального δυ_p перемещений [3, 12]:

$$-\left[\frac{\partial F}{\partial \rho}\right]\left(2\frac{\partial^{2}\delta\upsilon_{\rho}}{\partial\rho\partial z} + \frac{1}{\rho}\frac{\partial\delta\upsilon_{\rho}}{\partial z} - 2\frac{\partial^{2}\delta\upsilon_{z}}{\partial\rho^{2}} - \frac{1}{\rho}\frac{\partial\delta\upsilon_{z}}{\partial\rho}\right) - 2\left[\frac{\partial^{2}F}{\partial\rho\partial z}\right]\left(2\frac{\partial\delta\upsilon_{\rho}}{\partial\rho} + \frac{1}{\rho}\delta\upsilon_{\rho}\right) + \\ + 2\left[\frac{\partial F}{\partial z}\right]\left(\frac{1}{\rho^{2}}\delta\upsilon_{\rho} - \frac{\partial^{2}\delta\upsilon_{\rho}}{\partial\rho^{2}} - \frac{\partial^{2}\delta\upsilon_{\rho}}{\partial z^{2}} - \frac{1}{\rho}\frac{\partial\delta\upsilon_{\rho}}{\partial\rho}\right) + \left[\frac{\partial^{2}F}{\partial\rho^{2}} - \frac{\partial^{2}F}{\partial z^{2}}\right]\left(\frac{\partial\delta\upsilon_{\rho}}{\partial z} + \frac{\partial\delta\upsilon_{z}}{\partial\rho}\right) + \\ + F\left(\frac{2}{\rho^{2}}\frac{\partial\delta\upsilon_{\rho}}{\partial z} - 2\frac{\partial^{3}\delta\upsilon_{\rho}}{\partial\rho^{2}\partial z} - \frac{2}{\rho}\frac{\partial^{2}\delta\upsilon_{\rho}}{\partial\rho\partial z} - \frac{\partial^{3}\delta\upsilon_{\rho}}{\partial z^{3}} + \frac{\partial^{3}\delta\upsilon_{z}}{\partial\rho^{3}} + \frac{1}{\rho}\frac{\partial^{2}\delta\upsilon_{z}}{\partial\rho^{2}} - \frac{1}{\rho^{2}}\frac{\partial\delta\upsilon_{z}}{\partial\rho}\right) = 0, \quad (6)$$

где

$$\delta \dot{\epsilon}_u \left(\partial \rho \right) \left(\rho \right) \rho \partial \rho \partial \rho \rho 3m_0$$

 $F = F(\rho, z) = \frac{\delta \sigma_u}{\delta \omega_{\rho}} = \left(\frac{\partial \delta \upsilon_{\rho}}{\partial \omega_{\rho}}\right)^2 + \left(\frac{\delta \upsilon_{\rho}}{\partial \omega_{\rho}}\right)^2 + 2\frac{\delta \upsilon_{\rho}}{\partial \delta \omega_{\rho}} + 2\frac{\partial \delta \upsilon_{\rho}}{\partial \omega_{\rho}} + 2\frac{\delta \upsilon_{\rho}}{\partial \omega_{\rho}} + 1 + \frac{\beta(\xi)}{\delta \omega_{\rho}}$

23

(7)

Для функции $\delta \upsilon_{\rho} = \delta \upsilon_{\rho} (\rho z)$ принято выражение вида [1, 7]:

$$\delta \upsilon_{\rho} = \frac{1}{\rho} \sum_{n=1}^{\infty} R_n(\rho) \cos(n\lambda z)$$
 (8)

Здесь λ – параметр, характеризующий протяженность шейки [1, 6]; функции $R_n(\rho)$ определяются зависимостями

$$R_n(\rho) = \rho \Big[C_{1n}(\lambda \rho) I_1(n\lambda \rho) + C_{2n}(\lambda \rho) K_1(n\lambda \rho) \Big],$$
(9)

причем $I_1(n\lambda\rho)$, $K_1(n\lambda\rho)$ – соответственно функция Бесселя мнимого аргумента и функция Макдональда (модифицированная функция Ганкеля); функции $C_{1n}(\lambda\rho)$, $C_{2n}(\lambda\rho)$ определенны в [3, 12].

Записаны [3, 12] условия существования и краевые условия в форме частного решения основного уравнения (6).

Условие устойчивости. Потеря устойчивости трактуется как нарушение равномерности пластического деформирования, выражающееся в появлении местного утонения – шейки. В качестве критерия устойчивости принято условие А.А. Ильюшина в виде [7]

$$\delta v_{\rho} > 0,$$
 (10)

где δυ_ρ – вариация скорости радиального смещения в момент локализации на поверхности стержня.

С учетом формул (8), (9) в момент начала локализации (z = 0 и $\rho = \rho_0$) условие устойчивости (10) принимает вид

$$\delta \upsilon_{\rho} = \sum_{n=1}^{\infty} \begin{bmatrix} C_{1n} (\lambda \rho_0) I_1 (n \lambda \rho_0) + \\ + C_{2n} (\lambda \rho_0) K_1 (n \lambda \rho_0) \end{bmatrix} > 0, \quad (11)$$

причем

$$\rho_0 = r_0 / R_0 = 1 / \sqrt{1 + \varepsilon}$$
, (12)

где ε – осевая деформация; r_0 – радиус стержня в момент потери устойчивости.

В момент начала локализации установлены явные выражения для вариаций скоростей перемещений и деформаций, определено поле вариаций напряжений [3, 12].

Численный анализ процесса локализации деформации. Численная реализация решения задачи об устойчивости одноосного растяжения при динамической сверхпластичности, выполнена в [11, 12] с помощью программного пакета Mathcad с удержанием пятнадцати членов ряда (11) и подтверждается экспериментально установленными результатами о возникновении «бегающей» шейки в режимах сверхпластичности (рисунок 1).

Были рассмотрены материалы из группы промышленных алюминиевых сплавов, проявля-

ющие сверхпластические свойства при одноосном растяжении, – деформированные сплавы АМг5, 1561 (АМг61), Д18Т и АК8 [9].

Выражение радиуса стержня ρ_0 в момент образования шейки через осевую деформацию согласно (12) дало возможность трансформировать критерий устойчивости (10) и отслеживать деформацию стержня уже через параметр $\lambda = \lambda_c$, названный критическим параметром протяженности шейки.

Отмечено положительное влияние эффекта на течение металла – протяженность шейки увеличивается с накоплением осевой деформации, ростом температуры и скорости деформации в термомеханических режимах сверхпластичности.

Для всех исследованных сплавов проведен сравнительный анализ величин параметра λ_c , характеризующих предельную протяженность шеек. Установлено, что в термомеханических режимах эффекта феномен «бегающей» шейки наиболее ярко проявляется в сплаве типа дуралюмин Д18Т. Наименьшая способность к шейкообразованию в процессе нагрева и деформации отмечена у сплава АМг5. Однако из группы рассматриваемых материалов именно у сплава АМг5 в [9] были зафиксированы наибольшие показатели относительного остаточного удлинения (свыше 200 %).

Таким образом, на основании полученных данных сделан вывод о том, что потери устойчивости, выражающиеся в образовании четко выраженных шеек – процессы образования и развития именно устойчивых локализаций – не могут считаться факторами, способствующими равномерному течению с высокими степенями деформации всего стержня.

Рисунок 2 – Визуализация процесса локализации сверхпластического растяжения

Показано [3, 11, 12], что указанный феномен при растяжении не реализуется, если хотя бы одна из определяющих сверхпластическую деформацию характеристик – температура или скорость деформации – выведены из диапазонов проявления эффекта.

Моделирование «бегающей шейки». Считаем, что возмущенная поверхность стержня удовлетворяет уравнению [1]

$$\rho = 1 - \sum_{n=1}^{\infty} \delta_n \cos(n\lambda z), \qquad (13)$$

где δ_n – малые величины.

Для определения неизвестных в формуле (13) коэффициентов δ_n воспользуемся выражением, описывающим контур шейки по результатам экспериментальных исследований закритической деформации холодных металлов [1]:

$$\rho = 1 - \delta e^{-(\lambda z/2)^2}$$
 (14)

При разложении приведенной функции в ряд Фурье в интервале $[-\pi/\lambda; \pi/\lambda]$ зависимость (14) примет вид (13), где

$$\delta_n = \frac{\lambda}{\pi} \int_{-\pi/\lambda}^{\pi/\lambda} e^{-(\lambda z/2)^2} \cos(n\lambda z) dz, \quad n = 1, 2, 3 \dots (15)$$

Перепишем интеграл (15) следующим образом:

$$\delta_n = \frac{1}{\pi} \int_{-\pi/\lambda}^{\pi/\lambda} e^{-(\lambda z/2)^2} \cos(n\lambda z) d(\lambda z), \quad n = 1, 2, 3 \dots (16)$$

Проведем замену переменной, полагая в (16) $t = \lambda z$. В результате имеем:

$$\delta_n = \frac{1}{\pi} \int_{-t}^{t} e^{-t^2/4} \cos(nt) dt, \quad n = 1, 2, 3 \dots \quad (17)$$

Таким образом, малые величины δn зависят только от n и определяются численно согласно формуле (17).

Зависимость (13) с учетом (17) примет следующий вид:

$$\rho = 1 - \sum_{n=1}^{\infty} \left[\frac{\cos(nt)}{\pi} \left(\int_{-t}^{t} e^{-t^{2}/4} \cos(nt) dt \right) \right]. \quad (18)$$

Вычисление текущего радиуса ρ по формуле (18) проводилось в среде Mathcad с удержанием пятнадцати членов ряда.

На основе полученных значений в программе моделирования 3D Studio Max построена наглядная трехмерная картина деформирования стержня в условиях сверхпластической деформации при одноосном растяжении (рисунок 2).

Заключение. Предложенное решение расширяет представления о закономерностях сверхпластической деформации динамического типа в алюминиевых сплавах [14], позволяя выделять ответственный за локализацию параметр протяженности шейки и контролировать посредством последнего нарушение равномерности пластического течения.

Отметим, что задачу о локализации деформации в изотермических условиях для одноосной ситуации можно рассматривать как основу для разработки технологической стратегии процессов объемного формоизменения на базе управляемой сверхпластической деформации [15].

Литература

- 1. Дель Г.Д. Технологическая механика / Г.Д. Дель. М.: Машиностроение, 1978. 174 с.
- Смирнов О.М. Обработка металлов давлением в состоянии сверхпластичности. / О.М. Смирнов. М.: Машиностроение, 1979. 168 с.
- Китаева Д.А. Локализации и устойчивость деформации в температурно-скоростных режимах динамической сверхпластичности: дис... канд. физ.-мат. наук / Д.А. Китаева. Бишкек, 2005. 132 с.
- Келлер И.Э. Особенности развития локализации деформации в металлах с существенной зависимостью от скорости деформации и их описание в рамках вязкопластичности: автореф. дис. ... д-ра физ.-мат. наук / И.Э. Келлер. СПб., 2014. 32 с.
- Пресняков А.А. Изменение текущих скоростей при растяжении сверхпластичных сплавов / А.А. Пресняков, Р.К. Аубакирова, Л.К. Горбачева // Физика металлов и металловедение. 1979. Т. 47. № 5. С. 960–965.
- Пресняков А.А. Локализация пластической деформации / А.А. Пресняков. Алма-Ата: Наука, 1981. 122 с.
- Ильюшин А.А. Деформация вязкопластического тела / А.А. Ильюшин // Ученые записки Моск. госуд. ун-та. Механика. 1940. Вып. 39. С. 3–81.
- Ишлинский А.Ю. Об устойчивости вязкопластического течения полосы и круглого прутка /

Вестник КРСУ. 2017. Том 17. № 1

А.Ю. Ишлинский // Прикладная математика и механика. 1943. Т. 7. Вып. 2. С. 109–130.

- Рудаев Я.И. Введение в механику динамической сверхпластичности / Я.И. Рудаев. Бишкек: Изд-во КРСУ, 2003. 134 с.
- Келлер И.Э. Равновесные формы свободной границы при одноосном растяжении нелинейно-вязкой полосы / И.Э. Келлер // Прикладная механика и техническая физика. 2010. Т. 51. № 1 (299). С. 117–124.
- Китаева Д.А. Об устойчивости одноосного растяжения при динамической сверхпластичности / Д.А. Китаева // Вестник КРСУ. 2005. Т. 5, № 2. С. 86–92.
- Китаева Д.А. Локализация и устойчивость сверхпластической деформации растяжения / Д.А. Китаева, Я.И. Рудаев. Saarbrücken: Palmarium Academic Publishing, 2012. 126 с.

- Рудаев Я.И. К вопросу о математическом моделировании сверхпластического одноосного растяжения / Я.И. Рудаев, Д.И. Чашников // Судостроительная промышленность. Серия Материаловедение. 1989. Вып. 12. С. 41–48.
- 14. Китаева Д.А. О температурно-скоростном деформировании алюминиевых сплавов / Д.А. Китаева, Ш.Т. Пазылов, Я.И. Рудаев // Прикладная механика и техническая физика. 2016. Т. 57. № 2 (336). С. 182–189.
- Рудаев Я.И. Сверхпластичность в процессах объемного формообразования / Я.И. Рудаев, Д.А. Китаева, Г.Е. Коджаспиров // ХІ Всерос. съезд по фундаментальным проблемам теорет. и прикл. механики (20–24 августа 2015 г., Казань). Казань: Изд-во Казанск. унта, 2015. С. 3252–3254.