References

1. Makhmudov M.: Systems of automatic recycling of Turkic text on lexical and
morphological level, Elm, 114 p. Baku (1991) (In Russian)

2. Migalkin V.V.: Modeling of the Yakut language spelling and development a set of
programs to check the spelling of Yakut texts in Windows environment, Author. diss.... Ph.D,,
Yakutsk (2005) (In Russian)

3. Sadyqov T.: Problems of modeling of Turkic morphology: an aspect of causing Kyrgyz
nominal inflectional forms, 119 p. Publishing House of the "Ilim" (1987) (In Russian)

4. Sirazitdinov Z.A.: Modeling grammar of Bashkir language. Inflectional system. 160 p.
Utfa (2006) (In Russian)

5. Sirazitdinov Z.A.: On the modeling of inflectional system agglutinative language pair
combinations (for example, the Bashkir language) / Actual problems of modern Mongolian and
Altaic. Proceedings of the International Scientific Conference. Elista, 2014. pp 139-143. (In
Russian)

6. Altenbek G., Wang Xiao-long: Kazakh Segmentation System of Inflectional Affixes. In:
Joint Conference on Chinese Language Processing, pp.183-190 (2010)

7. Zafer HR,, Tilki B., Kurt A., Kara M.: Two-level description of Kazakh morphology.
In: Proceedings of the first International Conference on Foreign Language teaching and Applied
Linguistics, FLTAL 2011, Sarajevo (May 2011).

8. Sharipbaev A A.: Intelligent morphological analyzer, based on semantic networks:
Conference proceedings Open Semantic Technologies for Intelligent Systems (2012)

9. Bekmanova G.T.: Some approaches to the problems of automatic word changes and
morphological analysis in the Kazakh language. In: Bulletin of the East Kazakhstan State Technical
University Named by D. Serikbayev, Nel, pp. 192-197, Ust-Kamenogorsk (2009) (In Russian)

10. Zhubanov A .H.: Basic principles of formalization of the Kazakh text content, 250 p.
Almaty (2002) (In Russian)

YAK 81.374:811.512.161:811.512.154
PARSING AND ANNOTATION OF TURKISH-KYRGYZ DICTIONARY

Kadyr Momunaliev, Kyrgyz-Turkish Manas University kadyr.momunaliev(@gmai.com

The case study described in this article is the first milestone on the way toward a full
featured Text Encoding Initiative P5 annotation standard. The paper outlines parsing and annotating
workflow to obtain initial XML-based structure of Turkish-Kyrgyz dictionary. Typography-based
parsing techniques are implemented in procedural programming language environment;
corresponding workflow charts are presented in form of pseudo code and block schemas. Resulted
XML dictionary bases are verified and applied in desktop and web e-dictionary implementations. It
is proposed that such kind of explicitly structured data representation is easier to manipulate and use
as a basement for further deeper lexicographic annotations.

Keywords: dictionary data, structured data, unstructured data, XML, human-computer,
typography, semantics, syntax, parsing

HHAPCUPOBAHUE U AHHOTHPOBAHHUE TYPEIKO-KBIPI'BI3CKOI'O CJIOBAPA

Momynanuee Kaowp 3amupoeuu, Keipevizcko-Typeyxuii Vuusepcumem «Manacy
kadyr.momunaliev(@gmai.com

JlaHHOE TeMaTHIeCKOe HCCIIEA0BaHNE MPECTABISIET COO0M ONMH U3 MPOWAEHHBIX TANOB HA
NyTH K JOCTH)KEHUIO MOJHOLEHHOTO cTaHmapTa aHHOTHpoBaHusi Text Encoding Initiative PS.

66

Crarhst OCBEIaeT METONOJIOTHIO MApCHUHra W aHHOTHPOBAHUS PE3yJbTaTOM KOTOPOW SIBISIETCS
XML cTpyKTypHpOBaHHbIE [OaHHbIE TYPELKO-KBIPTbI3CKOrO cjoBapsi. [lpueMbl mapcuHra
OCHOBAHHbIE HAa THUMNOTrPaQHUUECKUX CBOMCTBAX TEKCTAa pEaJIN30BaHbl B MPOLEAYPHOH cpene
NPOrapaMMHPOBAHMSL, COOTBETCTBYIOIIHE AJITOPUTMBbI TPEACTABICHBI B BUIE OJIOK CXEM H TICEBIO
kona. ITonyuennsie XML cTpykTyphl ObutH BepU(pUIMPOBAaHbI U MpUMEHEeHB! B od¢-raiiH u Bed
NPUJIOKEHUSAX THIA SJEKTPOHHOrO CJoBaps. B KadecTBe TEXHWYECKOTO MPEIJIOKEHUs
YTBEPIKIAETCSI, YTO AHHOTUPOBAHHBIE M CTPYKTYPUPOBAHHBIE JAHHbIE JIErde MOIAAITCS MAIIHHHOM
00paboTku u mpencTaBIOT co0oit GyHmameHnt mis Gonee yriyOJIEHHOTO JIEKCUKOTrpaduIecKoro
aHamn3a.

Knarwuesbie ca0Ba: CJIOBapHBIE JAHHBIE, CTPYKTYPUPOBAHHBIE JAHHBIE,
HECTPYKTYPUPOBaHHBIE NaHHBbIE, XML, 4e0BeK-KOMITBIOTED, TUIIOrpadusi, CEMAHTHKA, CHUHTAKCHC,
MapCUHT

1. Introduction

Today big amounts of information accumulated in electronic media or in printed form
require universal, i.e. globally accessible and efficient way of representation since the world is
becoming a worldwide network of information exchange and business transactions [1]. This
information from different domains of human activity needs not only physical infrastructure
allowing transmission of bytes, files and documents, but should allow transmission of their
semantics, i.e. their meaning. In the coming future of Semantic Web computers are going to
“understand” the contents of documents, i.e. navigate, read, access and capture relevant
information. Human’s part of information processing by browsing and reading is less efficient and
thus cannot provide a competitive advantage.

In such a setting new standards of information representation that is purposed for computer
access are being sought for. Some new technologies allowing keeping information semantics in
computer-readable manner has already appeared (XML and RDF). These types of information
provide explicit semantic structure and often called machine-readable or machine-accessible
formats.

The trend of data conversion to computer-readable format is not an exception for
dictionaries. Many dictionaries are under their way to be converted and others are already done.
There 1s a range of formats to encode dictionary data: binary, relational database etc. But why to
choose XML -based formats, such as XDXF *, StarDict Textual File Format, TEI P5 etc.? The
main reason is that they may be used as a cross format representations, i.e. universally
interchangeable data containers or structures. Many software agents are able to work with XML,
since it has open and predictable structure. Even a human being is able to read and edit such files

They don’t require special purpose converters to convert from one format to another, since
XML query and transformation languages provide mapping standards between different XML
schemas [2].

In our case study we have a formatted text representation of a dictionary that should be
analyzed to obtain lexical (or editorial) XML encoded representation reflecting semantic structure
of the dictionary. Parsing in this context implies splitting up textual body of a human readable
document to explicitly shown lexicographical units in form of XML tree. Factually it is a
conversion of human readable data to machine readable format. Figure I demonstrates what data is
given as input and what may be gotten as output.

* XDXF (XML Dictionary eXchange Format) is a project to unite all existing open dictionaries and provide both users
and developers with universal XML-based format, convertible from and to other popular formats like Mova, PtkDic,
StarDict. Retrieved from www.en.wikipedia.org

67

<articlex

bugda-_v 61,1-5,-';151‘&_ ~ henizli'rengi 6yymait <key=bugday</key=<definition type='h">
EYITVY. <I[CDATA[Gyyaai. ™ benizlifrengi Gyyaai wy3oyy.
bugu 1. 6yy. 2. kormencamma. 11=</definition>
bugulama 1. 6ymco. 2. Gyyra aiiman- </article>
TEBIPYY. <article>

<keyrbugu</key><definition type='h">
<I[CDATA[1. Byy. 2. HOHAESHCALMA.
11=</definition>

<farticle=

<article=

<keyrbugulama</key><definition type='h">
<I[CDATA[1. 6ynoo. 2. Byyra alnasgpipyy.
11=</definition=

<farticle>

Figure 3. The sample of input(left) and output(right) data (Textual file schema) of the parser.

Why to encode dictionary data? Because if there were no machine-readable formats
machines/computers would have to generate parsers for every dictionary they encounter since every
dictionary may have its own specific structure and rules to interpret the content. Secondly
dictionaries are rather static information sources that may be parsed once for further multiple
usages.

2. Input Data

The Turkish-Kyrgyz Dictionary by Gulzura Cumakunova® (hereinafter Cumakunova’s
dictionary) has been chosen as an input data to be parsed and annotated. The dictionary is structured
and formatted according to international lexicographical rules. In the input file all headings, footers,
page numbers, first matter, last matter has been temporarily removed, and their annotations are not
subject of this paper. The input data implies a series of dictionary entries readable by human. The
main body of the dictionary data has hierarchical structure and is shown in form of a schematic tree,
see [igure 2.

Description of Figure 2:

1. All dictionary entries belong to the dictionary, i.e. <dictionary/> unit is the root element

2. There must be at least one dictionary entry in the <dictionary/>, 1.e. <entries/>1+

3. [Each entry consists of mandatory form and definition parts: <form/> and <definition/>.
Form part contains Turkish source text and definition part contains Kyrgyz target text.

4. Form block consists of two parts: 1st part contains headword (<headword/>) that may
be single headword or the first word of the compound phrase, or acronym; 2nd part contains
information related to <headword/> that may be special ending causing headword to inflect
(<ending/>), or it may contain the compound phrase(s) in full view, or very close synonym, or
acronym’s expanded view. (see the tree leaves at the left)

5. Definition block is divided by two areas or blocks: sense and usage (in the tree
<sense_ block/> and <usage block/>).

a. Sense block contains one or more sense items which in turn comprise one or more
options of translation equivalents very close by meaning and delimited by commas. Translation
equivalents may be accompanied by sense example which consists of Turkish source text and
Kyrgyz target text. Full stop character delimits translation equivalents from sense example. And
finally there may be two kinds of references: ‘see’ reference and ‘compare’ reference. ‘See’
reference comprises all the sense item space and nothing may accompany it. ‘Compare’ reference is
an appendix for translation(s) (as like as sense example). Both of references are preceded by

> More information about the dictionary author could be found on:
https://ky.wikipedia.org/wiki/ymakyHosa, 'yn3ypa

68

reserved abbreviations in Kyrgyz(‘k.” abbreviated form of ‘xapa’ — ‘see’, and ‘can.’ abbreviated
form of ‘canbiuTep’ — ‘compare’).

b. Usage block is optional and if it occurs then it may consist of one or more usage items
(i.e. samples of stereotypic phrases, idioms, proverbs etc) which don’t necessarily explain the
certain sense of the headword, but show its usage. Usage items are not attached to certain sense
item, instead they refer to the headword in general. There is no special delimiter dividing sense
items group from usage items, but usage items come after sense items. Any usage item is
represented by source Turkish phrase and its target Kyrgyz translation(s) delimited by round
bracket enumeration (like ‘1)’, ‘2)’ etc). Translations of usage item are not terminated by full stop.

6. Additionally any leaf of the tree (rather sense or usage children) may contain author’s
explanation note placed in the round brackets and outlined by italic font. (This is not shown in the
diagram.)

<dictionarv/

<entries/>

<definition/

] (<sense block/) <<usage block/>>
(<ending/> |

<form/

(<headword/> |

<headword <headword part=2/>
part =1/> | | <synonym/> |
<headword <acronym type =

tvne= <sense item/>

<<usage item/>)

<tarset/>

<<trans|ation/>1 >

<example item

(<source/>)

(<reference
type = ‘see’/>
| <reference

type=

Gtranslation/>1>
<<source > <<’rarge’r/> >

Notations

1. ? means ‘optional’

2. 1+ means ‘one or
more’

3. | sign stands for OR

Figure 4. Lexicographical structure of the dictionary data.

The parser is intended to make use of typography features (pre-annotated, i.e. converted to
XML tags), syntax and reserved constructions that described in the following tables (7able 1,2.3).
Dictionary’s typographical features and their corresponding lexicographical meanings are
summarized in 7able 1

69

Table 1. Typography-to-semantics interpretation schema

Typographic Indicators Semantics or
Content unit | Layout Formatting Character set Lexicographical
meaning
Text Bold font Latin Turkish Turkish content

(Headword, idiom,
stereotypic phrases
and other source
matter)

Text Normal font Cyrillic Kyrgyz | Kyrgyz content
(senses, translations
and other target

matter)

Text Italic font Latin International names
of flora and fauna
species

Cyrillic Kyrgyz | Additional
explanations
Cyrillic Kyrgyz | abbreviations®
Line Out dented, 1.€.
hanging, i.e. First line of the entry
shifted to the left
Word locates at the Bold font Latin Turkish
beginning of Headword
hanging line

Text locates at the Bold font Latin Turkish

beginning of a Form block’

hanging line

Word First letter Proper name
capitalization

Word Full Acronym
capitalization

Syntax, i.e. punctuation meanings are shown in 7able 2.

Table 2. Syntax of the dictionary or punctuation semantics

Punctuation name Notation Additional | Function or meaning
indicators
Swung dash ~ bold Headword placeholder
Slash / Delimits equally suitable words in a
given context
Full stop . Sense item’s end

Usage item’s end

Example item’s end

Sense block translations’ end

Accompanies abbreviations

6 Kyrgyz abbreviations are followed by mandatory full stop and don’t change, i.e. they are fixed pre-defined words.
’ There are two exceptions with ke’ (or) and acronym expanded form, see section Entry Parsing

70

bold Accompanies sense items’
enumeration numbers

Comma , Delimits sense block translation
variants
Comes after headword showing that
it has additional information(ending
or synonym)

Colon Bold Indicates that headword is not used
by itself, but constitutes compound
phrase that follows immediately

Round brackets (and) Embrace additional explanations or
notes

Only right | Follows usage translations
one enumeration numbers

Dash - Followed Line break

by end of
line symbol
or tag
Compound or united word
Bold, Ending prefix in the form block
preceded by
space
character or
comma

There are also reserved character constructions or/and abbreviations that also indicate or delimit

some lexicographical units, see 7able 3.

Table 3. Reserved characters and words

Character or Notation Additional Construction Function or meaning
word indicator
Roman digits L 11, I etc. bold Hyponym’s number
Arabic digits 1,2, 3 etc. Bold, 1.]2.]3. etc. Beginning of a sense
followed item and its number
by full stop
Arabic digits 1,2, 3 etc. Bold, |2) |3)etc Beginning of the usage
followed item translation and its
by end number
round
bracket
Kyrgyz See [7] Italic, [abbr]. Provide additional
abbreviations followed information or cut
by full stop down repetitive text
usage, see meanings in
[7]

Relying on the above mentioned typographic, syntactic and reserved

content features and their

corresponding meanings it is possible to define some rules to delimit certain lexicographical units,
see Table 4. This is the main principle of the parsing and annotation process which is described in

the following section.
3. Method

71

When parsing formatted text data, there are three main features document needs to have to be
parsed:

1. Layout

2. Formatting

3. Content patterns (repetitive text sequences)

Parsing is arranged relying on the one of this feature or combination of them since each of
the mentioned features refers to a certain semantic unit of human readable textual data. For
example, having bold word(s) in the beginning and out dented (shifted to the left) line most
probably refer s to the next dictionary entry (here bold is a formatting feature and out dentation is a
layout feature (see Figure 1)). Combinations of such kind of features give us opportunity to define
rules to delimit certain lexicographic unit.

Table 4. Some rules for lexicographical units’ delimitation

Delimiter Notation Additional Delimits What
feature

Comma + space + |, - Headword and the suffix that

dash changes headword ending

Colon ; bold First word from remainder part of a
headword in complex headword
cases

Comma , Semantically close meanings of a
sense

Full stop . One sense from another sense; one
translation from another translation

THE OBJECTIVE: to detect beginning and ending points of every lexicographical unit and
mark it up with an appropriate XML tag.

Depending on pursued goals dictionary data may be encoded in different views. It depends
on what kind of information is going to be captured via encoding. There are three main views (or
information aspects) among others dealing with complexity of both typography and information
structure.

e (a) the typographic view — the two-dimensional printed page, including information about
line and page breaks and other features of layout

e (b) the editorial view — the one-dimensional sequence of tokens which can be seen as the
input to the typesetting process; the wording and punctuation of the text and the sequencing
of items are visible in this view, but specifics of the typographic realization are not

e (c) the lexical view—this view includes the underlying information represented in a

dictionary, without concern for its exact textual form [3].

In this context our objective is to obtain editorial view of the dictionary. But before this,
typographical view may simplify the whole task of annotation processes.

Pre-annotation Phase

Parser is intended to accept pre-annotated typographical view of the dictionary. Pre-
annotation implies converting visually detectable typographical features to XML format. At the
beginning it is easier to obtain typographic (not editorial or lexical) view in XML representation
from formatted source text, because this procedure doesn’t require any delimitation or parsing
techniques, only converting layout, formatting and special purpose content (content indicators) into
form of xml tags. For example, “some string in bold font” would be represented as “<bold> some
string in bold font</bold>"; or to encode the order of lines every line might have its number: <line
number = 10>the content of tenth line</line>; and content information such as abbreviations should
be marked up by <abr/> tag etc. It is like an html code of a document, since html was originally

72

intended to reflect the document structure (but not semantics). We can use names of tags and
attributes to encode any information we need. All these pre-annotated XML elements will be useful
in main annotation, i.e. parsing and marking up processes. Pre-annotation allows reduce the number
of different data types into one data type: linear XML (see Fig.2.). This process should preserve
typographic information but in different representation.

Figure 5. Reducing different information media number to one linear XML.®

Syntax
Layout
Typographic view
Formatting (XML encoding)

Conventional
constructions

As a result of this simplification the code and logic of the parser becomes clearer, i.e.
without excessive complexities of formatted text editors’ inner data representation mechanisms.
Having performed this reduction the programmer will need only XML processor (XSLT or other
XML supporting languages) and a means to perform parsing of bare (without formatting) textual
content. Data in the XML representation can be edited even in a simple text editor.

Parsing Technique Based on Delimitation & Markup

Entries Delimitation

The main issue of parsing was that not every dictionary entry captured exactly one
paragraph. So another delimiter or delimitation mechanism had to be defined. The task of
delimitation has various solutions. For example the most obvious solution would be to find every
occurrence of line that is shifted to the left. This solution exploits layout feature of the
typographical view, see Table 1 and Figure 2.

abandone: : ~ - etmek-"* (boxecma)- - aTaan-T
JAIIEH - - KeHHIYYTe -~ VIVpaTvy. -~
olmak-(foxcma) wennTyy. ¥ Paragraph simbol doesn't

abanmak- 1 - miinnyy,- Tagavy,- cyfenyy.Y
#A3MAHVV.- 2 -Kapmiel- TVPVY, 9610007
3 - 003 - Ky9 - KonmoHvI- - (bupeeny)l
EEHYY. EBIIVY. 4. --ap2o--e3--EyTYHT
(bupssza)- apTvv.¥

certainly delimit two
neibour entries

Figure 6. The main issue in entries delimitation task.

Another solution is to implement content-based parsing scenario where new delimiter (string
of characters), i.e. text that certainly refers to the two articles meeting spot should be defined.
Whatever parser’s principle is the workflow of entries delimitation and basic structure delineation
would be as following (see Listing 2): (In fact we chose the latter one, which defines new delimiter
string)

Listing 1. Dictionary entries delimitation workflow pseudo code
1 Begin
2 For each line in Dictionary Do

® Conversion of punctuation characters to XML tags is rather optional

73

3 Select line

4 If line is out dented Then

5 (first line of the entry found)

6 Set cursor to the beginning of the line

7 put end tag of previous entry (e.g. </article>)
8 put start tag of next entry (e.g. <article>)

9 Else

10 Proceed to the next iteration

11 End IF

12 End For

13 Set cursor to the very beginning of Document

14 Cut the first occurrence of close entry tag(</article>)
15 Set cursor to the very end of Document

16 Paste close tag cutin 14

17 End

Note: In this algorithm the very first entry will be preceded by excessive end tag (</article>)
and the very last entry will lack ending tag (</article>), that is why lines 13-16 are added.

Entry Parsing

Form Block Parsing

Now that until this moment delimitation is performed, i.e. every dictionary entry is delimited
and marked up with <article > tags we can access each of them one by one. This may be realized
either by means of XPath or by means of procedural programming language with or without XML
support. Choice of solution depends on programmer’s preferences. But whatever the tool is,
headword of an entry should be recognized as the first word in the form block, and form block is the
sequence of Turkish characters in bold font starting from the very beginning of the entries content.
By traversing every entry and finding the word satisfying this condition it is possible to implement
form block markup function, see Listing 2.

Listing 2. Pseudo code of the form block parsing and marking

1 Begin

2 For each entry in Dictionary Do

3 Select content

4 Find text which is bold & Turkish

5 If word is found & it is at the beginning of content
6 Then

7 Mark it up as form block(Form block’s found)
8 Select first word

9 Mark it up as headword

10 Select remainder part of content

11 If remainder part is not empty

12 Mark remainder part as headword tail

13 Parse headword tail (see Listing 3.)

14 End If

15 Else

16 Throw an exception (entry syntax is wrong)
17 End If

18 End For

19 End

74

Not every headword consists of one word or it may have specific cases when it changes or it may
have very close synonyms. So that the headword variations (possible syntaxes) are:
1. headword

headword, -ending
headword: ~ headword tail
headword, Synonym
HEADWORD (Acronym’s Expanded Form’TekcT KbICK.)
Description: 1. Simple headword; 2. Headword with ending; 3. Complex headword: one
meaning but several words; 4. two or more words very close by meaning and by spelling; 5.
Abbreviated word with the meaning of each capital letter and text in Kyrgyz containing reserved
contraction ‘kbick.” (contraction of ‘abbreviation’ like ‘abbr.”).

Actually this information may be found in form block and it should be parsed (parser is
described in Listing 3.)

nok W

Listing 3. Headword tail parsing and markup (location: dictionary/entry/form/)

1 BEGIN

2 CAPTURE <tail>

3 GET content of <tail> as Content

4 IF Content is empty THEN

5 EXIT

6 ELSE IF Content starts with ‘, -> THEN

7 MARKUP text after °, -’as </ending>

8 UNMARK <tail/>

9 ELSE _IF Content starts with ;> THEN

10 MARKUP text after “: ’as <headword part=2/>
11 CAPTURE <headword>

12 RENAME <headword> to <headword part=1>
13 CAPTURE <tail/>

14 UNMARK <tail/>

15 ELSE_IF Content starts with ;" THEN

16 MARKUP text behind °, as <synonym/>
17 UNMARK <tail/>

18 ELSE_IF Content starts with * C THEN

19 MARKUP text behind © (Cas <acronym/>
20 UNMARK <tail/>

21 ELSE

22 Throw an exception (entry syntax is wrong)
23 END IF

24 END

Definition Block Parsing (see Results)
Sense Block Parsing (see Results)
Usage Block Parsing (see Results)

4. Discussion
Input File Problem

Initially dictionary was available in pdf format. But since it was difficult to process text data
in pdf file directly (or maybe we lack knowledge on how to work with it) it was decided to convert
it to more text accessible formats like txt, html or doc. That is why AdobeAcrobat’s (version 11.0.2)
pdf converter was used, which in fact offers various types of files to save as, e.g. eps, html, docx,
doc, pptx, xIsx, xml table, txt etc. Of course the most interesting format was xml, since we were

75

going to obtain such an encoding of data that would provide us with explicitly structured semantic
units of the dictionary. As turned out AdobeAcrobat’s xml file didn’t preserve all the information
we needed for parsing. That is why the most close to origin file doc format was chosen. Here
beneath in the 7able 1, we showed criteria which we took as a guide to choose a file type to start up
with:

Table 5. AdobeAcrobat’s output files comparison with regard to dictionary data completeness

File type Formatting Layout Content
Doc Preserved Preserved Preserved
Xml Lost Lost Preserved

The only shortcoming of doc file was that it contained some misspellings or precisely saying
character mis-encodings when Turkish character occurred in Kyrgyz word or vice versa. Probably
this happened as a result of OCR reading when it attempted to read word with one encoding but the
word was actually in different, e.g. in Turkish(Latin character set) word “aba” first character is in
Cyrillic. This issue was fixed programmatically as part of the input file normalization. Another task
was to remove all data except dictionary entries: introduction, usage notes, headings, page numbers
etc.

Ambiguity Problem

Any sense item including the last one theoretically may have a sense example. If so and if
example and usage item are delimited in similar way there is no way to identify the item coming
after the last sense weather it is example or usage item.

5. Results:

An Algorithm of the Parser. The main result of the work is the workflow of the
Cumakunova’s dictionary parser, see Figure 5. Node A is expanded in Module A, and nodes B and
C in corresponding Modules B and C

Figure 7. The workflow of the parser

76

-

Input dictionary
data as

A 4

Markup Dictionary as
<dictionary/>

A 4

Get content of
<dictionary/> as Content

v

Delimit&Markup{Content)
as series of <entry/>

v

For each <entry/> in <dictionary/>

v

Get content of <entry/> as
Content

v

Delimit form block from
definition block

v

Markup form block as
<form/> and definition
block as <definition/>

77

/Stands for:

1.Delimit&Markup(Content)
as pair of <temp> elements
2. Rename 1 <temp> as
<form/>

3. Rename 2™ <temp> as

<definition/>

Module A.

/
A ’

/Equivalent of: \

For each entry/form in
<dictionary/>

A 4

Get content of <form/> as

Content

v

Delimit headword itself
from its tail

y

Markup headword as
<headword/> and
remainder part as <tail/>

y

Parse and markup the
content of <tail/>

1.Delimit&Markup(Content)
as pair of <temp> elements
2. Rename 1 <temp> as
<headword/>

3. Rename 2™ <temp> as

}ilb /

A 4

For each entry/definition in

<dictionary/>

A 4

Get content of
<definition/> as Content

v

Delimit sense area from
usage area

y

Markup sense area as
<sense_a/> and remainder

part as <usage_a/>

78

See Listing 4 .Headword tail
parsing and markup

Equivalent of: \
1.Delimit&Markup(Content) as
pair of <temp> elements

2. Rename 1°* <temp> as
<sense_a/>

3. Rename 2™ <temp> as

<licaca 9/\ j

A end

Module B.

Delimit&Markup content of
<sense_a/> as a series of
<sense_item/> elements

v

For each <sense_item> element in

<sense_a/> block

y

Get content of
<sense_item/> as Content

v

Delimit sense text from

usage text

y

A

Module C

Markup sense text as
<sense/> and remainder
part as <example/>

/Equivalent of:

1.Delimit&Markup(Content)
as pair of <temp> elements
2. Rename 1°* <temp> as
<sense/>

3. Rename 2™ <temp> as

A

Delimit&Markup the
content of <usage_a/> as
series of <usage_item/>

elements

v

For each <usage_item> element in

<usage_a/> block

A 4

Get content of
<usage_item/> as Content

v

Delimit usage Turkish text
from usage Kyrgyz text

'

A

Markup Turkish text as
<source/> and remainder

part as <target/>

79

<example/>

~

Cend

Applications

Parsed data has been applied to obtain StarDict’s Textual file dictionary bases and to create
PhpMyAdmin (MySQL administration tool written in PHP) xml import file. But it should be stated
that this is only an intermediate stage whence primary goal of the parental research is TEI standard
which allows for creating reliable ontologies.

StarDict Dictionary. Stardict has its Textual file dictionary format that uses RELAX NG
schema. According to StarDict creator, Hu Zheng, Textual file format was designed to reflect
structure of a dictionary [4]. This textual representation of a dictionary has several advantages
against earlier created binary opaque format that hides source data and doesn’t allow editing
dictionaries.

Textual file format may be used to:

1. examine dictionary content

2. make changes to a dictionary

3. create a new dictionary from scratch

It should be said that binary files such as images, audio, video are not stored in Textual file
directly, instead their links refer to the resource location. The order of articles (or dictionary entries)
in this format doesn’t matter.

6. Conclusion

This study of data structuring has shown that semantic structure of a dictionary as of any
other abstraction is nothing but different encodings weather by means of typography(layout,
formatting, text) and syntax or by means of computer purposed data representation language such
as XML (see Figure 4). In the first case human beings are able to decode the essential meaning of
the data since they are aware of typography-to-semantics interpretation rules. For example in case
of Cumakunova’s dictionary, when they see bold text they get the knowledge that this text is in
Turkish and when they see normal text it must be in Kyrgyz; or when they see out dented line they
understand that this is the beginning of a new dictionary entry etc. To enable machines/computers to
operate with the same semantics the human encodings must be converted to machine-readable
format, i.e. information about any semantic unit must be provided explicitly. Computer must be
provided by names, attributes and boundaries of units in order to know their semantics and
structure. XML technology provides this meta-information enabling computers to access, process
and operate this kind of structured information at the semantic level not on physical.

Figure 8. Different representations(encodings) of semantics and

O typograph

human » ¢— I:I
» computer

Efficient global information exchange is impossible without commonly understood and
shared standards and concepts. Big amounts of information have to be presented as much as
possible in unambiguous and precise manner. This goal was pursued in efforts of parsing and
annotation of Turkish-Kyrgyz dictionary, since large text corpora from different epochs have to be
parsed and annotated for performing further analysis, such as building a meta— lemma list for the
project interdependencies between language and genomes [3].

Referencies
1. Dieter Fensel: Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag Berlin Heidelberg GmbH, 2004.
2. Dieter Fensel: Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce (Draft version). Springer-Verlag Berlin Heidelberg GmbH, 2004. Page 50. Retrieved
from: http://software ucv.ro/~cbadica/didactic/sbe/documente/silverbullet. pdf, accessed 7/28/2016

80

3. TEI CONSORTIUM, eds.: TEI P5: Guidelines for Electronic Text Encoding and
Interchange. http://www.tei-c.org/Guidelines/P5/

4. Hu Zheng,: Textual Dictionary File Format. StarDict project on GitHub,
https://github.com/huzheng001/stardict-3/blob/master/dict/doc/Textual DictionaryFileFormat,
accessed 8/6/2016

5. T'ymsypa JKymaxynosa: Typxue-Keipreiua cesayk, 50000 ce3. Keipreis-Typk
«Manac» YHuBepCUTETHHHH OacreimManapel, bumkek, 2005.

6. I'ymsypa XKXymakynosa: Typkue-Keipremua cesnyk, 50000 ce3. Keiprens-Typxk
«Manac» YHuBepcuTeTHHHUH Oaceimmanapsel, bumkek, 2005. pages 28-29

YAK 510.5, 519.768.2

METOAOJOTHA ABTOMATH3NPOBAHHOT'O MOMMOJTHEHUS CJIOBAPA
CUCTEMBI MAINIMHHOT'O MEPEBOJA /UL KAJAXCKO-PYCCKOH U KA3AXCKO-
AHI'JIMNCKOMU A3BIKOBOU ITAPBI

V. A. Tykees, Kazaxcxuii Hayuonansneiii Ynusepcumem umenu ane Qapaou, Anmamer, Kazaxcman.
ualsher.tukeyev(@gmail.com

J.P. Paxumosa, Kazaxckuii Hayuonanenwiii Ynusepcumem umenu anv Dapabu, Anrmame:,
Kazaxcman.di.dival@mail.ru

AK.M. Kymanoe, Kazaxckuii Hayuonanenwiii Ynueepcumem umenu ane Dapabu, Armamet,
Kazaxcman. z.zhake(@gmail.com

AnHoTanus. B crarbe OMUCHIBA€TCS METOHOJIOTHSI aBTOMATU3UPOBAHHOTO ITOTIOHEHUS
CJIOBapsi CUCTEMbI MAIITUHHOTO MepeBoaa Apertium sl Ka3aXCKO-PYCCKOM M Ka3ax CKO-aHTJTHHCKOM
SI3BIKOBOM mapel. Llenb JAHHOW METOAOJOTHM COCTOUT B OKA3aHMU MOMOLIM MOJIb30BATEIIO
OOHAPYKUTH JIYUITYIO MOP(HOIOTHYECKYIO TTAPaIUTMy B OAHOS3BIYHOM MOP(OJIOrHIecKOM CIoBape
Apertium. [IpuBeaeHbl IPAKTHUECKUE PE3YIIbTATHL

KawueBble cjioBa: 3anoJHEHNE cioBapei, Apertium, Ka3axCKUH, PyCCKUH W aHTIIUHACKUN
SA3BIK.

METHODOLOGY OF THE AUTOMATED ENRICHMENT OF MACHINE
TRANSLATION SYSTEM DICTIONARIES FOR KAZAKH-RUSSIAN AND KAZAKH-
ENGLISH LANGUAGE PAIR

U.A. Tukeyev, Al Farabi Kazakh National University, Almaty, Kazakhstan.
ualsher.tukeyev(@gmail.com

D.R.Rakhimova, Al Farabi Kazakh National University, Almaty, Kazakhstan. di.dival@mail.ru
Zh.M. Zhumanov Al Farabi Kazakh National University, Almaty, Kazakhstan.
z.zhake(@gmail.com

Abstract: This paper describes the methodology of the automated enrichment dictionary of
the machine translation system Apertium for the Kazakh-Russian and Kazakh-English language
pair. The purpose of this methodology consists in assistance to the user to find the best
morphological paradigm in the monolingual morphological Apertium dictionary. Practical results
are presented.

Keywords: filling of dictionaries, Apertium, Kazakh, Russian and English.

Beenenue

Ha paHHBII MOMEHT CyIIECTBYET MHOIO pAa3jMYHBIX CJIOBAapeHd, Kak IedaTHble, TaK U
snektpoHHble. CroBapu, ucHonb3yemble B MamuHHOM mnepeoge (MII) moker comepikarb
NepeBOIbI HA PA3JIMYHBIE S3BIKM COTEH THICSY CJIOB U (pas, a TaAKKe MPEIOCTaBUTD IOJIB30BATENSAM

81

