Список литературы

- 1. Алексеев Е.Р. МАТLAВ 7/ Е.Р. Алексеев, О.В. Чеснокова М.:НТ Пресс, 2006.
- 2. Попов Е.П. Теория нелинейных систем автоматического регулирования и управления / Е.П. Попов М.: Наука, 1988.
- 3. Терехов В.Н. Системы управления электроприводов / В.Н. Терехов. О.И. Осипов М.: Академия. 2006.
- 4. Сагитов П.И. Параметрический синтез системы управления многодвигательного асинхронного электропривода/ П.И. Сагитов //Вестник Алматинского университета энергетики и связи. -2011.

УДК 517.68

ПОСТРОЕНИЕ КОНЕЧНОМЕРНОГО РЕГУЛЯРИЗИРУЮЩЕГО ОПЕРАТОРА ДЛЯ РЕШЕНИЯ ЛИНЕЙНОГО ВПОЛНЕ НЕПРЕРЫВНОГО ОПЕРАТОРНОГО УРАВНЕНИЯ І-ГО РОДА В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Саадабаев Аскербек Саадабаевич, д.ф.-м.н., профессор, КГУ им. Ж.Баласагына, Кыргызстан, 720033, г. Бишкек, ул. Фрунзе 547, е-mail: <u>caadabaev@mail.ru</u> **Абдылдаева Асель Рыскулбековна**, ст.преп., КГТУ им. И. Раззакова, Кыргызстан, 720044, г. Бишкек, пр. Ч. Айтматова 66, е-mail:asabdyl 72@mail.ru

Цель работы — построение конечномерного ругуляризирующего оператора для решения операторного уравнения первого рода в Гильбертовом пространстве. В работе исследуется нелинейное операторное уравнение и получена сходимость приближенного решения к точному решению исходного уравнения. Получена зависимость параметра n от погрешности приближения.

Ключевые слова: конечномерная аппроксимация, регуляризирующий оператор, вполне непрерывный оператор, функционал, точная нижняя граница, слабо компактное множество

BUILDING A FINITE- DIMENSIONAL REGULARIZING OPERATORS FOR SOLVING LINEAR COMPLETELY CONTINUOUS OPERATOR EQUATION OF THE FIRST KIND IN HILBERT SPACE

Saadabaev Askerbek Saadabaevich, PhD(Mathematics), Professor, Kyrgyzstan, 720033, c.Bishkek, KNU named after J. Balasagyn, e-mail: caadabaev@mail.ru
Abdyldaeva Asel Ryskulbekovna, Kyrgyzstan, 720044, c.Bishkek, KSTU named after I.Razzakov, e-mail: asabdyl_72@mail.ru

The purpose of the article - the construction of a finite regularizing operator for solution of operator equations of the first kind in Hilbert space . In this paper the nonlinear operator equation, and obtained convergence of the approximate solutions to the exact solution of the original equation . The dependence of the n parameter of the error of approximation .

Keywords: finite-dimensional approximation, regularizing operator, compact operator, functional, the greatest lower bound, weakly compact set

Рассмотрим операторное уравнение первого рода

$$Az = u + \delta K z, \tag{1}$$

где A - линейный вполне непрерывный положительный самосопряженный оператор, действующий из гильбертова пространства H в H, K - нелинейный оператор из H в H, и удовлетворяет условию Липшица

$$||K(z_2) - K(z_1)|| \le N||z_1 - z_2||.$$

Пусть уравнение (1) при $u = u_0$ имеет единственное решение $z_0 \in H$.

Известно [1], что линейный вполне непрерывный самосопряженный оператор A в гильбертовом пространстве имеет полную систему ортонормированных собственных элементов $\{\varphi_k\}_{k=1}^\infty$, соответствующих собственным значениям $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_k| \geq \cdots$, причем $|\lambda_k| \to 0$ при $k \to \infty$.

В пространстве R^n рассмотрим функционал [4]

$$M_{\alpha}^{n}(a_{1}, ..., a_{n}, u) = \alpha \left\| \sum_{i=1}^{n} a_{i} \varphi_{i} \right\|^{2} + \left\| A \left[\sum_{i=1}^{n} a_{i} \varphi_{i} \right] + \delta K \left(\sum_{i=1}^{n} a_{i} \varphi_{i} \right) - u \right\|^{2}$$
 (2)

где $\alpha > 0$ - параметр, $(a_1, ..., a_n) \in \mathbb{R}^n$; $u \in \mathbb{H}$.

Пусть H_n - конечномерное пространство, порожденное элементами $\varphi_1, \varphi_2, ..., \varphi_n, P_n$ оператор ортогонального проектирования H в H_n . Минимизируем функционал (2) на \mathbb{R}^n . В силу положительности этого функционала для любого $u \in H$ существует его точная нижняя граница. Легко можно показать [3], что найдется вектор $\overrightarrow{a_{\alpha}} = (a_{1,\alpha}, ..., a_{n,\alpha})$, реализующий точную нижнюю границу. Этому вектору соответствует элемент

$$z_{n,\alpha} = \sum_{i=1}^{n} a_{i,\alpha} \ \varphi_i. \tag{3}$$

Через $\overrightarrow{a_{\alpha}}(u)$ обозначим вектор, минимизирующий функционал (2) при $u=u_0$. По формуле (3) ему соответствует элемент

$$z_{n,\alpha}^{0} = \sum_{i=1}^{n} a_{i,\alpha}(u_0)\varphi_i.$$

Справедлива следующая

ТЕОРЕМА 1. Пусть: 1) A - линейный вполне непрерывный положительный самосопряженный оператор из гильбертова пространства H в H; 2) при $u = u_0$ уравнение (1) имеет единственное решение $z_0 \in H$; 3) параметр α удовлетворяет неравенству

$$\gamma_1 \lambda_{n+1}^2 \le \alpha \le \gamma_2 \lambda_{n+1}^2$$
, γ_1, γ_2 - постоянные,

 $\frac{\lambda_n^2}{\alpha(n)} \to 0$ при $n \to \infty$. Тогда $z_{n,\alpha}^0 \to z_0$ при $n \to \infty$ по норме пространства H.

Доказательство. По определению точной нижней границы [2] из (2) получим

$$\alpha \|z_{n,\alpha}^{0}\|^{2} + \|Az_{n,\alpha}^{0} - u_{0}\|^{2} + \delta \|K\left(\sum_{i=1}^{n} a_{i}\varphi_{i}\right)\| \leq$$

$$\leq \alpha \|P_{n}z_{0}\|^{2} + \|AP_{n}z_{0} - u_{0}\|^{2} + \delta \|Kz_{0}\|.$$
Оценим второе слагаемое справа в неравенстве (4)

$$\left\| A \left[\sum_{i=1}^{n} a_{i}^{0} \varphi_{i} \right] - A \left[\sum_{i=1}^{n} a_{i}^{0} \varphi_{i} \right] \right\|^{2} = \left\| A \left[\sum_{i=n+1}^{n} a_{i}^{0} \varphi_{i} \right] \right\|^{2} = \left\| \sum_{i=n+1}^{n} a_{i}^{0} \lambda_{i} \varphi_{i} \right\|^{2} =$$

$$= \sum_{i=n+1}^{n} a_{i}^{0^{2}} \lambda_{i}^{2} \leq \lambda_{n+1}^{2} \sum_{i=n+1}^{n} a_{i}^{0^{2}} \leq \lambda_{n+1}^{2} \|z_{0}\|^{2}.$$

$$(5)$$

Здесь было использовано неравенство Бесселя. Оценим первое слагаемое справа в неравенстве (4). В силу полноты системы для любого $z \in H$ выполняется точечная сходимость

$$\lim_{n\to\infty} P_n z = z.$$

Тогда по теореме Банаха - Штейнгауса[1]

$$||P_n|| \le 1. \tag{6}$$

Учитывая неравенства (5), и (6), из неравенства (4) имеем

$$\alpha \|z_{n,\alpha}^0\|^2 \le \alpha \|z_0\|^2 + \lambda_{n+1}^2 \|z_0\|^2, \tag{7}$$

$$||Az_{n,\alpha}^{0} - u_{0}||^{2} \le \alpha ||z_{0}||^{2} + \lambda_{n+1}^{2} ||z_{0}||^{2}.$$
(8)

Так как по условию 3) теоремы 1 $\gamma_1 \lambda_{n+1}^2 \le \alpha$, то из неравенства (7) имеем

$$\left\|z_{n,\alpha}^{0}\right\|^{2} \le (1+\gamma_{1}^{-1})\|z_{0}\|^{2}.$$
(9)

Известно [1], что ограниченное множество в гильбертовом пространстве является слабо компактным. В силу неравенства (9) семейство $\{z_{n,\alpha}^0\}$ является слабо компактным, т.е. существует подпоследовательность $\{z_{n_k,\alpha_k}^0\}$ последовательности $\{z_{n,\alpha}^0\}$, слабо сходящаяся к некоторому элементу $z^* \in H$, т.е.

$$z_{n_k,\alpha_k}^0 - \longrightarrow z^*. \tag{10}$$

 $z_{n_k,\alpha_k}^0--\to z^*.$ Так как по условию 3) теоремы 1 $\alpha\leq\gamma_2\lambda_{n+1}^2$, то из неравенства(8) получим

$$\left\|Az_{n_k,\alpha_k}^0 - u_0\right\|^2 \le \lambda_{n+1}^2(\gamma_2 + 1)\|z_0\|^2. \tag{11}$$

 $\left\|Az_{n_k,\alpha_k}^0 - u_0\right\|^2 \le \lambda_{n+1}^2 (\gamma_2 + 1) \|z_0\|^2. \tag{11}$ Отсюда следует, что $Az_{n_k,\alpha_k}^0 \to Az_0$ при $k \to \infty.$ Тогда из условия (10) имеем $u_0 =$ $Az_0 = Az^*$. В силу единственности решения уравнения (1) получим, что $z_0 = z^*$. Таким образом $z_{n_k,\alpha_k}^0 - o z_0$ при $k o \infty$. Покажем, что семейство $\{z_{n_k,\alpha_k}^0\}$ сходится к элементу z_0 по норме. Известно [1], что если $\{z_{n_k,\alpha_k}^0\}$ слабо сходится к z_0 , то справедливо неравенство

$$||z_0|| \leq \lim_{k \to \infty} ||z_{n_k, \alpha_k}^0||.$$

Из неравенства (9) следует, что

$$\overline{\lim_{k \to \infty}} \|z_{n_k, \alpha_k}^0\| \le \|z_0\|$$
 при $\frac{\lambda_{n_k+1}^2}{\alpha_k} \to 0$ при $k \to \infty$.

Тогда из двух последних неравенств получим

$$||z_0|| \le \underline{\lim}_{k \to \infty} ||z_{n_k,\alpha_k}^0|| \le \overline{\lim}_{k \to \infty} ||z_{n_k,\alpha_k}^0|| \le ||z_0||.$$

Отсюда следует

$$\lim_{k \to \infty} ||z_{n_k, \alpha_k}^0|| = ||z_0||.$$

 $\lim_{k \to \infty} \lVert z_{n_k, \alpha_k}^0 \rVert = \lVert z_0 \rVert.$ Известно [1], чтоиз этого равенства и из слабой сходимости следует сходимость по норме $z_{n_k,\alpha_k}^0 \to z_0$.

Это справедливо для любой подпоследовательности $\{z_{n_k,\alpha_k}^0\}$ последовательности $\{z_{n,\alpha}^0\}$. Тогда и для самой последовательности имеем $z_{n,\alpha}^0 \to z_0$ при $n \to \infty$.

Что и требовалось доказать.

Таким образом, при достаточно большихn элемент $z_{n,\alpha(n)}^0$ является приближенным решением уравнения (1).

Пусть вместо элемента u_0 задан элемент u_{δ} , удовлетворяющий неравенству

$$\|u_0 - u_\delta\| \le \delta. \tag{12}$$

Обозначим через $\vec{a}_{\alpha}(u_{\delta}) \in \mathbb{R}^n$ вектор, минимизирующий функционал (2) при $u = u_{\delta}$. Этому вектору соответствует семейство элементов

$$z_{n,\alpha}^{\delta} = \sum_{i=1}^{n} a_{1,\alpha}(u_{\delta}) \varphi_{i}.$$

Тогда справедливо неравенство

$$\alpha \|z_{n,\alpha}^{\delta}\|^{2} + \|Az_{n,\alpha}^{\delta} - u_{\delta}\|^{2} \le \alpha \|P_{n}z_{0}\|^{2} + \|AP_{n}z_{0} - u_{\delta}\|^{2}.$$
(13)

Оценим второе слагаемое справа в неравенстве (13)

$$\begin{split} \|AP_nz_0-u_\delta\|^2 &= \|(AP_nz_0-Az_0)+(Az_0-u_\delta)\|^2 \leq \\ &\leq (\|A(P_n-E)z_0\|+\|u_0-u_\delta\|^2) \leq (|\lambda_{n+1}|\|z_0\|+\delta)^2. \end{split}$$
 Учитывая это и используя неравенство $\|P_n\| \leq 1$, из неравенства (13) получим

$$\|z_{n,\alpha}^{\delta}\|^2 \le \|z_0\|^2 + \frac{1}{\alpha}(|\lambda_{n+1}|\|z_0\| + \delta)^2,$$
 (14)

$$||Az_{n,\alpha}^{\delta} - u_{\delta}||^{2} \le \alpha ||z_{0}||^{2} + (|\lambda_{n+1}|||z_{0}|| + \delta)^{2}.$$
(15)

В силу условия 3) теоремы 1 имеем

$$\frac{|\lambda_{n+1}|}{\sqrt{\alpha}} \le \sqrt{\gamma_1}.$$

Тогда

$$\frac{\delta}{\sqrt{\alpha}} \le \delta \frac{\sqrt{\gamma_1}}{|\lambda_{n+1}|} \le v_1, \quad \text{ r.e. } |\lambda_{n+1}| \ge v_1^{-1} \delta \sqrt{\gamma_1}.$$

$$||z_{n,\alpha}^{\delta}||^2 \le ||z_0||^2 + (\sqrt{\gamma_1} + v_1)^2$$

Учитывая это, из неравенства (14) получим $\left\|z_{n,\alpha}^{\delta}\right\|^2 \leq \|z_0\|^2 + \left(\sqrt{\gamma_1} + v_1\right)^2,$ т.е. семейство $\{z_{n,\alpha}^{\delta}\}$ является ограниченным. В гильбертовом пространстве ограниченное слабо компактным [1]. Существует множество слабо сходящаяся подпоследовательность $\left\{z_{n_k,\alpha_k}^{\delta_k}\right\}$ последовательности $\left\{z_{n,\alpha}^{\delta}\right\}$, т.е. $z_{n_k,\alpha_k}^{\delta_k} - -- \to z^*$ при $k \to \infty$. Учитывая, что $\alpha \le \gamma_2 \lambda_{n+1}^2$, из неравенства (15) получим

$$z_{n_k,\alpha_k}^{\delta_k} - -- \to z^*$$
 при $k \to \infty$. (16)

$$||Az_{n,\alpha}^{\delta} - u_{\delta}||^{2} \le \gamma_{2}\lambda_{n+1}^{2}||z_{0}||^{2} + (|\lambda_{n+1}|||z_{0}|| + \delta)^{2}.$$

Предположим, что $|\lambda_{n+1}| \leq v_2 \delta$.

Тогда из предыдущего неравенства получим

$$\left\|Az_{n,\alpha}^{\delta}-u_{\delta}\right\|^{2}\leq\delta^{2}(\gamma_{2}v_{2}^{2}\|z_{0}\|^{2}+(\|z_{0}\|v_{2}+1)^{2}).$$
 Учитывая это и используя неравенство треугольника, имеем

$$\left\|Az_{n,\alpha}^{\delta} - u_{0}\right\| \leq \left\|Az_{n,\alpha}^{\delta} - u_{\delta}\right\| + \left\|u_{\delta} - u_{0}\right\| \leq \leq \delta + \delta \sqrt{\gamma_{2}v_{2}^{2}\|z_{0}\|^{2} + (v_{2}\|z_{0}\| + 1)^{2}}.$$

Отсюда следует, что

$$\left\|Az_{n_k,\alpha_k}^{\delta_k}-Az_0
ight\| o 0$$
 при $k o \infty$.

Тогда из (16) и в силу единственности решения уравнения (1) имеем $Az^* = Az_0$ и $z^* = z_0$. Отсюда

$$z_{n_k,\alpha_k}^{\delta_k} - -- \rightarrow z_0, \quad k \rightarrow \infty.$$

Значит

$$||z_0|| \le \lim_{k \to \infty} ||z_{n_k, \alpha_k}^{\delta_k}||. \tag{17}$$

Предположим, что

$$\frac{\delta}{|\lambda_{n_k+1}|} \to 0$$
 при $k \to \infty$.

Тогда, используя это и условие 3) теоремы 1, переходя к пределу при $k \to \infty$, из неравенства (14) получим

$$\overline{\lim_{k \to \infty}} \left\| z_{n_k, \alpha_k}^{\delta_k} \right\| \le \|z_0\|. \tag{18}$$

Из неравенств (17) и (18) следует

$$\lim_{k\to\infty} \left\| z_{n_k,\alpha_k}^{\delta_k} \right\| = \|z_0\|.$$

 $\lim_{k\to\infty} \left\| z_{n_k,\alpha_k}^{\delta_k} \right\| = \|z_0\|.$ Из этого равенства и условия (16) имеем сходимость по норме

$$\lim_{k\to\infty} \left\| z_{n_k,\alpha_k}^{\delta_k} - z_0 \right\| = 0.$$

 $\lim_{k o\infty}\left\|z_{n_k,lpha_k}^{\delta_k}{-}z_0
ight\|=0.$ справедливо для любой сходящейся подпоследовательности $\left\{z_{n_k,\alpha_k}^{\delta_k}\right\}$ последовательности $\left\{z_{n,\alpha}^{\delta}\right\}$. Тогда И для самой последовательности имеем

$$\lim_{k\to\infty} ||z_{n,\alpha}^{\delta} - z_0|| = 0.$$

Доказана следующая

TEOPEMA 2. Пусть: 1) выполнены все условия теоремы 1; 2) элемент u_{δ} удовлетворяет неравенству (12); 3) выполнено неравенство

 $v_1^{-1}\sqrt{\gamma_1}\delta \leq |\lambda_{n+1}| \leq v_2\delta$ и $\frac{\delta}{|\lambda_{n+1}|} \to 0$ при $\delta \to 0$.Тогда элемент $z_{n,\alpha}^{\delta}$, соответствующий вектору $\vec{a}_{\alpha}(u_{\delta})$, минимизирующему функционал (2) при $u=u_{\delta}$, сходится к точному решению уравнения (1) по норме пространства H при $\delta \to 0$.

Таким образом, элемент $z_{n,\alpha}^{\delta}$ является приближенным решением уравнения (1) с приближенно заданной правой частью.

Список литературы

- 1. Колмогоров А.Н. Элементы теории функций и функционального анализа/ А.Н.Колмогоров Учеб.для мат. спец. ун-тов. 4-е изд., перераб. М.: Наука, 1976. 572 с.
- 2. Люстерник Л.А. Элементы функционального анализа. / Л.А.Люстерник. В.И. Соболев М.: Наука, 1965. 513 с.
- 3. Саадабаев А. Методы решения интегральных уравнений первого рода. Фрунзе. 1986. 96 с.
- 4. Тихонов А.Н. Методы решения некорректных задач /А.Н.Тихонов, В.Я. Арсенин М.: Наука. 1986. 288 с.

УДК 621.01.622.23

СИЛОВОЙ АНАЛИЗ ПЯТИЗВЕННЫХ КУЛАЧКОВЫХ МЕХАНИЗМОВ

Садиева Анаркуль Эсенкуловна,д.т.н., проф.,КГТУ им. И.Раззакова, Кыргызская Республика, 720044, г. Бишкек, 720044, пр. Мира, 66,

Коколоева Уларкан Уркунбаевна, КГТУ им. И.Раззакова, Кыргызская Республика, 720044, г. Бишкек, 720044, пр. Мира, 66,e-mail:<u>kularkan@mail.ru</u>

Душенова Марина Анарбековна, КГТУ им. И.Раззакова, Кыргызская Республика, 720044, г. Бишкек, 720044, пр. Мира, 66

В статье рассматриваются вопросы силового анализакулачковогомеханизма со сложным толкателем. Разрабатывается методика кинетостатического исследования кинематической цепи с заданной подвижностью, включая группы Ассура. Из плана ускорений известны ускорения центров масс звеньев (q_1,q_2,q_3,uq_4) и угловые ускорения звеньев. По ним определяются силы и моменты сил инерции, а после этого производится полное кинетостатическое исследование механизма, т.е. найдены реакции во всех кинематических парах и уравновешивающий момент M_y , который надо приложить к кулачку, чтобы заставить весь механизм, работать в заданном режиме.

Ключевые слова: кулачковый механизм, кинетостатика, звено, сила инерции, сила тяжести, кинематическая пара, кулачок, силовой анализ, шарнир, тангенциальный момент.

POWER ANALYSIS OF FIVE-MEMBERED CAM MECHANISM

SadievaAnarkulE., Dr., prof.,I.RazzakovKSTU,Kyrgyz Republic, 720044, Bishkek, Mir av., 66, KokoloevaUlarkanU., I.RazzakovKSTU,Kyrgyz Republic, 720044, Bishkek, Mir av., 66, e-mail:kularkan@mail.ru

DushenovaMarina A., I.RazzakovKSTU, Kyrgyz Republic, 720044, Bishkek, Mir av., 66

The article deals with the analysis of the power cam follower with the complex. Developed a technique kinetostatic study kinematic chain with a given mobility, including the Assura group. From acceleration plan known acceleration of the center of mass units $(q_1, q_2, q_3, and q_4)$ and