УДК 515.12

К ТЕОРИИ НЕПРЕРЫВНЫХ ГОМОМОРФИЗМОВ

Т.Дж. Касымова

Для непрерывных гомоморфизмов топологических групп введено понятие базы, посредством которого исследована параллельность (вложение) непрерывных гомоморфизмов в категории *GTOP(H)*.

Ключевые слова: база непрерывного гомоморфизма; категория; характер.

TO THE THEORY OF CONTINUOUS HOMOMORPHISMS

T.J. Kasymova

For continuous homomorphisms of topological groups a concept of base is introduced and the parallel-ability (inclusion) of continuous homomorphisms is researched by means of it in the category GTOP(H).

Keywords: a base of continuous homomorphism; category; character.

An idea to transfer some concepts and statements concerning spaces to mappings allows to generalize many results. In this way works of L.S. Pontryagin [1], B.A. Pasynkov [2], A.A. Borubaev [3], A.A. Chekeev [4] and others are known. A transferring of these results to algebraic objects and studying of their behavior is the actual task significantly enriching the theory of uniform spaces and as a result the theory of uniformly continuous mappings. So, for example, the topological group has algebraic structure, on the one hand, and is a topological space on another one. Below the concept of base of uniformly continuous mapping ([3]) is postponed for continuous homomorphisms of topological groups.

Remind of some basic concepts from books [5], [6].

A family B(x) of neighborhoods of x is called a base for a topological space X at the point x or a local base if for any neighborhood V of x there exists a $U \in$ B(x) such that $x \in U \subset V$. If B is a base for X then the family B(x) consisting of all elements of B that contain x is a base for X at the point x. On the other hand, if for every $x \in X$ a base for X at the point x is given then the union $B=\bigcup_i \{B(x):x \in X_i\}$ is a base for X.

The *character of a point* $x \in X$ is defined as the smallest cardinal number of form |B(x)|, where B(x) is a base for a topological space X at the point x; $|\bullet|$ stands for cardinality; this cardinal number is denoted by $\chi(x, X)$. The *character of a topological space* X is defined as the supremum of all numbers $\chi(x, X)$ for $x \in X$, i.e. $\chi(X)=sup \{\chi(x, X): x \in X\}$.

Definition [6]. A set *G* allocated with structures of group and topology is called a *topological group* if it satisfies the following two axioms:

 (GT_1) Mapping $(x, y) \mapsto xy$ o|f product $G \times G$ into G is continuous.

(GT_{II}) Mapping $x \mapsto x^{-1}$ of group G into itself (symmetry of group G) is continuous.

Axioms (GT_I) and (GT_{II}) are equivalent to the next axiom:

(GT) Mapping $(x, y) \mapsto xy^{-l}$ of product $G \times G$ into *G* is continuous.

Every topological group has a base B(e) of *neighborhoods filters of unit*, satisfying to the following axioms:

(GV₁) For any $U \in B(e)$ there exists $V \in B(e)$ such that $VV \subset U$.

(GV_{II}) For any $U \in B(e)$ there exists $V \in B(e)$ such that $V^{-1} \subset U$.

(GV_{III}) For any $a \in G$ and $U \in B(e)$ there exists $V \in B(e)$ is containing into aUa^{-1} .

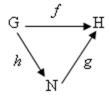
Axioms (GV_I) and (GV_{II}) can be reformulated as:

(GV) For any $U \in B(e)$ there exists $V \in B(e)$ such that $VV^{-1} \subset U$.

Let $f: G \rightarrow H$ be a continuous homomorphism of topological group *G* into topological group *H*, $B(e_G)$, B(e) are a bases of neighborhoods filters of units $e_G \in G$ and $e \in H$, respectively, $B_f(e_G)$ be a neighborhoods system, generated group topology on *G*, generally speaking, more weak, than initial one, i.e. $B_f(e_G) \subseteq B(e_G)$. **Definition 1.** A neighborhoods system $B_f(e_G)$ is said to be a *base of continuous homomorphism f*, if for any neighborhood $U \in B(e_G)$ there exist such neighborhoods $V \in B(e)$ and $W \in B_f(e_G)$ that $f^{-1}(V) \cap$ $W \subset U$ holds and a character $\chi(f) \leq \tau$, if $|B_f(e_G)| \leq \tau$.

It is known [7], that objects in category *GTOP* are all separated topological groups, and morphisms are continuous homomorphisms.

We denote a *category of all continuous homomorphisms* as GTOP(H) it's an objects are continuous homomorphisms $f:G \rightarrow H$, $g:N \rightarrow H$ with fixed bases $B_f(e_G)$ and $B_g(e_N)$ respectively, and morphism from an object $f \in GTOP(H)$ into object $g \in GTOP(H)$ is called *homomorphism* $h:G \rightarrow N$ continuous with respect to topologies, induced by bases $B_f(e_G)$ and $B_g(e_N)$ such that $f = g \cdot h$.



In this case we write $h: f \rightarrow g$.

Lemma. If $B_f(e_G)$ is a base of object $f: G \rightarrow H$ of category GTOP(H), then a family $N = \bigcap \{W: W \in B_f (e_G)\}$ is a normal subgroup of group G.

Proof. Let *G* be a topological group having a base $B(e_G)$ of neighborhoods filters of unit $e_G \in G$, $B_f(e_G)$ be a neighborhoods system, generated group topology on *G*, generally speaking, more weak, than initial one, i. e. $B_f(e_G) \subseteq B(e_G)$. Denote as $N=\cap \{W: W \in B_f(e_G)\}$ a intersection of all neighborhoods of the base $B_f(e_G)$ of continuous homomorphism $f: G \rightarrow H$ (according to Definition 1).

We show that N is a subgroup of group G. By construction $N \subset W$ for any $W \in B_f(e_G)$. On axioms (GV) of base of filter of unit and (GT) of topological group we have:

1) for any $W \in B_f(e_G)$ there exists such $V \in B_f(e_G)$ that $VV^{-1} \subset W$, moreover $NN^{-1} \subset W$ for any $W \in B_f(e_G)$, it means $NN^{-1} \subset N$, i.e. N is a subgroup of group G.

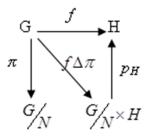
2) For any $W \in B_f(e_G)$ and $a \in N$ there exists such $W \in B_f(e_G)$ is containing into aWa^{-l} , i. e. $V \subset aWa^{-l}$ and $N \subset aWa^{-l}$. Then $a^{-1}Na \subset W$, hence $aNa^{-l} \subset N$, i.e. N is a normal subgroup of group G.

The concept of the mapping parallel to space was introduced by B. A. Pasynkov [2] for topological spaces, it was done by A.A. Borubaev [3] for uniform spaces. We introduce this concept for continuous homomorphisms of topological groups.

Definition 2. Let $f:G \to H$ be a continuous homomorphism of topological group G into topological group H, $\pi: G \to G'_N$ be a projection of G onto factorgroup G'_N on the normal subgroup N. A continuous homomorphism f is parallel to projection π (is denoted as $f \parallel \pi$) if there exists such continuous mapping $i: G \to G'_N \times H$ of topological group G into topological group $G'_N \times H$, that $i = f \Delta \pi$ and $f = p_H \mid_{i(G)} : G \to H$. So the mapping i is called *inclusion*.

Theorem 1. Let $f \in GTOP(H)$, where $f:G \rightarrow H$ is continuous homomorphism – an object of category $GTOP(H), \chi(f) \le \tau$. Then there exists such normal subgroup $N \subset G$ that $f \| p_H$, where $p_H : \frac{G}{N} \times H \rightarrow H$.

Proof. Let $B_f(e_G)$ be a base of continuous homomorphism $f: G \to H$ – an object of category GTOP(H), and $|B_f(e_G)| \le \tau$. There exists natural homomorphism $\pi: G \to G/_N$ is a projection of group G onto factorgroup $G/_N$ on normal subgroup $N = \bigcap \{ W: W \in B_f(e_G) \}$ (according to Lemma), given on rule $\pi(x) = xN$ for any $x \in G$.



Let us consider diagonal product $i = f \Delta \pi$. It is continuous as diagonal product of continuous homomorphisms. We prove, that $f \Delta \pi$ is inclusion of continuous homomorphism f into projection p_H . Note, that $f = p_H \cdot (f \Delta \pi)$.

We show, that $f \Delta \pi$ is one-to-one. Let $x_1, x_2 \in G$ and $x_1 \neq x_2$. Пусть $f(x_i) \in V_i$, $V_i \in B(e)$, i = 1, 2 of group *H*. Then there exist $W_i \in B_f(e_G)$ such that $x_i \in (f \vartriangle \pi)^{-1}(W_i) \subset U_i$, i = 1, 2. We have

Вестник КРСУ. 2016. Том 16. № 5

 $((f\Delta\pi)^{-1}(W_1) \cap f^{-1}(V_1)) \cap ((f\Delta\pi)^{-1}(W_2) \cap f^{-1}(V_2)) = \emptyset,$ hence $(W_1 \times V_1) \cap (W_2 \times V_2) = \emptyset$.

Then, on properties of neighborhoods system [5], $U \subset U_1 \cap U_2 \in B(e_G)$ and $V \subset V_1 \cap V_2 \in B(e)$ such that $(U \cap f^{-1}(V))(x_1) \cap (U \cap f^{-1}(V))(x_2) = \emptyset$. Therefore, there exists $W \subset W_1 \cap W_2 \in B_f(e_G) \subseteq B(e_G)$ such that $(f \Delta \pi)^{-1}(W) \subset U$. It means that $(f \Delta \pi)(x_1) \neq (f \Delta \pi)(x_2)$, i. e. $f \Delta \pi$ is isomorphism.

As topological group *G* is isomorphically enclosed into $G'_N \times H$, then $(f \Delta \pi)(U) \in W \times V|_{(f \Delta \pi)(G)}$ for any neighborhood $U \in B(e_G)$. Then on Definition 1 $W \cap f^{-1}(V) \subset U$, hence $(W \times V) \cap (f \Delta \pi)(G) \subset .$ $(f \Delta \pi)(U)$ The projection $p_H : G'_N \times H \to H$ of Cartesian product of G'_N and topological group *H* on factor *H* is given by $(\pi(x), f(x)) = p_H(x)$ for any $x \in G$. So the diagonal product $f \Delta \pi$ is inclusion of *f* into p_H , i.e. $f || p_H$.

References

- Pontryagin L.S. Continuous groups / L.S. Pontryagin. Moscow: Fizmatgiz, 1973. 527 p. (in Russian).
- Pasynkov B.A. On transferring on mappings of some concepts and statements concerning spaces / B.A. Pasynkov // Mappings and functors. Moscow: MSU, 1984. P. 72–102. (in Russian).
- Borubaev A.A. Uniform spaces and uniformly continuous mappings / A.A. Borubaev. Bishkek, 1990. 170 p. (in Russian).
- Borubaev A.A. Uniform structures on the topological spaces and groups /A.A. Borubaev, A.A. Chekeev. KSPU named after I. Arabaev. Bishkek, 1997. 267 p. (in Russian).
- 5. *Engelking R*. General topology / R. Engelking. Moscow: Mir, 1986. 515 p. (in Russian).
- Bourbaki N. General topology. Topological groups / N. Bourbaki. Moscow: Nauka, 1969. 392 p. (in Russian).
- Bucur I. Introduction to the theory of categories and functors / I. Bucur, A. Deleanu. Moscow: Mir, 1972. 259 p. (in Russian).