E.mail. ksucta@elcat.kg

ОЦЕНКА ВЛИЯНИЯ ГЕОМЕТРИЧЕСКОЙ НЕЛИНЕЙНОСТИ НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ОБОЛОЧЕК ПОКРЫТИЙ

ESTIMATION OF INFLUENCE GEOMETRIC NONLINEARITY ON THE STRESS-STRAIN STATE OF THE SHELLS COVERING

Макалада куполдун каптамасыны нжана жантайыңкы кабыгынын сандык эсептеринин мисалында геометриялык түз эместиктин анын чыңалган деформациялык абалына таасири көрсөтүлгөн.

Ачкыч сөздөр: каптаманын кабыгы, жантайыңкы,купол,геометриялык түз эместик, чыңалуу, деформация (калыбынан бузулуу), ийилүү.

На примерах численных расчетов пологой оболочки и купольного покрытия показаны влияния геометрической нелинейности на их напряженно-деформированное состояние. Дана количественная оценка для внутренних усилий и прогибов.

Ключевые слова: оболочка покрытия, пологая, купол, геометрическая нелинейность, напряжения, деформации, прогибы.

The numerical calculation of a shallow shell and dome cover shows the effect of geometric nonlinearity on the stress-strain state. A quantitative estimate of the internal forces and deflections.

Keywords:shell of coverage, declivous, dome, geometrical non-linearity, tensions, deformations, bending

Результаты исследований напряженно-деформированного состояния тонкостенных конструкций показали важность учета различных видов нелинейностей. Для тонкостенных пространственных систем учет геометрической нелинейности приводит к существенным изменениям их напряженно-деформированного состояния [1-7], что приводит к уменьшению несущей способности конструкции и большим деформациям.

Геометрическая нелинейность для пологой оболочки выражается нелинейными членами в выражениях для деформаций, компоненты деформации срединной поверхности для гибкой оболочки имеют следующий вид [3]:

$$\varepsilon_{1} = \frac{\partial u}{\partial x} - k_{1}w + \frac{1}{2}(\frac{\partial w}{\partial x})^{2}, \quad \varepsilon_{2} = \frac{\partial v}{\partial y} - k_{2}w + \frac{1}{2}(\frac{\partial w}{\partial y})^{2}, \quad \gamma = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}, \quad (1)$$

где u, v, w - перемещения точек срединной поверхности оболочки в направлении осей X, Y, Z, k_1, k_2 - главные кривизны.

По аналогии геометрическая нелинейность для мембранной оболочки учитывается в следующих выражениях для деформаций срединной поверхности [3-4]:

$$\varepsilon_{r} = \frac{\partial u}{\partial r} - \frac{w}{R} + \frac{1}{2} \left(\frac{\partial w}{\partial r} \right)^{2}, \\ \varepsilon_{\theta} = \frac{u}{r} + \frac{\partial v}{r \partial \theta} - \frac{w}{R} + \frac{1}{2} \left(\frac{\partial w}{r \partial \theta} \right)^{2}, \\ \gamma = \frac{\partial u}{\partial r} - \frac{v}{r} + \frac{\partial u}{r \partial \theta} + \frac{\partial w}{\partial r} \cdot \frac{\partial w}{r \partial \theta},$$
 (2)

где r- радиус в кольцевом направлении, θ - угол в тангенциальном направлении, u= $u(r,\theta),v$ = $v(r,\theta),w$ = $w(r,\theta)$ компоненты перемещений в меридиональном, кольцевом и нормальном к срединной поверхности направлениях.

С учетом нелинейности основные уравнения теории пологих оболочек имеют

следующий вид:
$$\Delta_{\kappa}^{2} \varphi + D\Delta^{2} \Delta^{2} w = -\frac{\partial^{2} \varphi}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} - \frac{\partial^{2} \varphi}{\partial y^{2}} \frac{\partial^{2} w}{\partial x^{2}} + 2\frac{\partial^{2} \varphi}{\partial x \partial y} \frac{\partial^{2} w}{\partial x \partial y} + P_{3} + \frac{\partial m_{x}}{\partial x} + \frac{\partial m_{y}}{\partial y}$$

$$\frac{1}{E} \Delta^2 \Delta^2 \varphi - \Delta^2_k w = \left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 + \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} \qquad , \tag{3}$$

где
$$\Delta_{\kappa}^2 = \frac{\partial}{\partial} (k_2 \frac{\partial}{\partial x}) + \frac{\partial}{\partial y} (k_1 \frac{\partial}{\partial y})$$
, m_x , m_y – внешние моменты. $\phi(x,y)$ - функция напряжения,

w(x,y) — прогибы точек в срединной поверхности. По аналогии записываются уравнения равновесия для мембранной оболочки. Для решения используется вариационный метод с использованием метода конечных элементов с поэтапным нагружением.

Вариационное уравнение Лагранжа записывается в виде:

$$\delta \mathcal{F} = \delta U - \delta A, \tag{4}$$

где Э-полная энергия системы

Потенциальная энергия упругой деформации тела можно представить в виде интеграла по его объему V:

$$U = \frac{1}{2} \iiint_{V} (\sigma_{x} \varepsilon_{x} + \sigma_{y} \varepsilon_{y} + \sigma_{z} \varepsilon_{z} + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx}) dx dy dz$$

Работа внешних сил А записывается в виде:

$$A = \frac{1}{2} \iint\limits_{S} (X_{\nu}u + Y_{\nu}v + Z_{\nu}w)ds + \frac{1}{2} \iiint\limits_{V} (Xu + Yv + Zw)dxdydz$$

где X_{ν},Y_{ν} , Z_{ν} — компоненты поверхностной нагрузки; X,Y,Z - компоненты объемных сил; u,v,w — компоненты перемещений.

После подстановки геометрических уравнений (1,2) и выражений для напряжений в (4) функционал энергии Э представляет собой нелинейную функцию. С помощью метода конечных элементов задачу можно свести к решению системы нелинейных алгебраических уравнений относительно неизвестных узловых перемещений. Используя линеаризацию с помощью дополнительных матриц жесткости, задача сводится к системе линейных алгебраических уравнений.

В дальнейшем исследуется влияние геометрической нелинейности на напряженнодеформированное состояние ребристых пологой и купольной железобетонной оболочек покрытий. В ребрах жесткости оболочек учитываются деформации растяжение (сжатие), изгиб в своей плоскости и кручение. Разрешающие уравнения с учетом геометрической нелинейности [4-6] решены с помощью метода конечных элементов с использованием программы Лира 9-6. В процессе решения нелинейная задача последовательно сводилась к линейной, при этом матрица жесткости системы на каждом шаге нагружения с учетом нелинейности изменялась путем добавления дополнительной матрицы геометрической жесткости [7].

Сделаны численные расчеты для гладкой и ребристой оболочек с учетом и без учета геометрической нелинейности.

Пример №1. Рассмотрена пологая оболочка покрытия (18х18 м. в плане), имеющая следующие характеристики: $\gamma = 2500$ кг/м³ – удельный вес материала оболочки; $E = 26 \times 10^8$

кг/м²- модуль упругости материала оболочки; a=b=18 м. – размеры в плане; $\mu=0,2$ – коэффициент Пуассона; $R_1=R_2=32,069$ м. – радиус кривизны; h=0,2 м. – толщина.

При реализации МКЭ использовались треугольные элементы, количество которых для удовлетворения хорошей сходимости было взято 2080. Для простоты на рис.1. показана нумерация характерных точек в срединной поверхности оболочки. В силу симметрии рассматривается четверть оболочки. Для случая шарнирного опирания в оболочке по контуру отсутствуют прогибы, изгибающие моменты, поэтому представлены результаты только для внутренних точек

В таблице 1 представлены значения изгибающего момента $M_1 \cdot 10^{-1}$ кгм. и крутящего момента $M \cdot 10^{-3}$ для гладкой оболочки с учетом и без учета геометрической нелинейности.

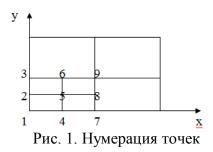


Таблица 1 — Значения изгибающего момента $M_1 \cdot 10^{-1}$ кгм. и кругящего момента $M \cdot 10^{-3}$ для гладкой оболочки

№	Без учета геометр.	С учетом геометр.	Без учета	С учетом
точки	Нелинен. М ₁ ·10 ⁻¹	Нелинен. М ₁ ·10 ⁻¹	геометр.	геометр.
			Нелинен. М·10 ⁻³	Нелинен. М·10 ⁻³
5	2,50	4,62	-7,62	-12,2
6	2,12	3,82	-13,20	-20,2
8	2,53	4,55	-20,5	-32,8
9	2,22	3,92	-13,20	-20,2

В таблице 2 представлены значения продольной силы N_1 кг и сдвигающей силы S кг для гладкой оболочки с учетом и без учета геометрической нелинейности.

Таблица 2 — Значения продольной силы N_1 кг и сдвигающей силы S кг для гладкой оболочки

№ точки	Без учета геометр.	С учетом геометр.	Без учета геометр.	С учетом геометр.		
	Нелинейн. N ₁ кг	Нелинейн. N_1 кг	Нелинейн. S кг	Нелинейн. S кг		
5	-1,51	-2,71	1,22	1,71		
6	-1,41	-2,54	-13,20	-18,43		
8	-1,92	-3,45	-20,5	-28,71		
9	-1,82	-3,22	-13,20	-18,43		

В таблице 3 представлены значения прогибов с учетом и без учета геометрической нелинейности для гладкой оболочки.

Таблица 3- Значения прогибов w(мм) для гладкой оболочки с учетом и без учета геометрической нелинейности

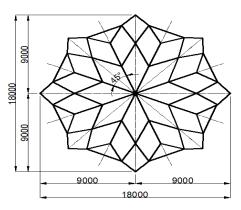
Номера точек	5	6	9	8

W mm.	0,12	-2,35	-4,02	-4,12
Без учета геометр.				
Нелинейности				
W mm.	0,22	-4,30	-7,36	-7,54
С учетом				
геометр. Нелинейности				

Из таблицы 3 видно, что с учетом геометрической нелинейности прогибы возросли почти в 2 раза. В гладкой оболочке без учета геометрической нелинейности наиболее существенными являются усилия в срединной плоскости, т.е. мембранные усилия.

В таблице 4 показаны значения тах перемещений в ребристой оболочке без учета геометрической нелинейности.

Таблица4- Значения тах перемещений w(мм) в ребристой оболочке без учета геометрической нелинейности


№	X	Y	Z	U _x	U _y	Uz
элемента						
В угловой	-0,267	-0,726	-8,66 в	-1,29вдоль	-0,	-0, 114
области		На короткой грани и	серед.	короткого	573	
		полоса в поперечном	Обол.	края		
		направл.				
В	0,00267	-0,0072	-коротк.	0, 161	0,0057	0,00114
середине			грань обол-			
			2,21			

В таблице 5 показаны значения тах перемещений w(мм) в ребристой оболочке с учетом геометрической нелинейности.

Таблица 5-Значения max перемещений в ребристой оболочке w(мм) с учетом геометрической нелинейности

$\mathcal{N}_{\underline{0}}$	X	Y	Z	U_x	U_y	U_z		
элемента								
В угловой	-0,259	-0,841	-9,5	-1,45вдоль	-0,	-0,603		
области	Вдоль		В	короткого	645	Приконтурн. зоне		
	длин.		приконтурн.	края		по короткой		
	грани		зоне			стороне		
В	0,0026	-	-3,6 в	-0, 0181	0,006	0, 006		
середине		0,0084	середине					

Пример №2. Рассматривается купольное ребристое железобетонное покрытие с радиусом опорного кольца 18м и стрелой подъема 9м, опирающееся на железобетонное опорное кольцо. Для определения напряженно-деформированного состояния (НДС) такой системы от статических нагрузок для предложенных конструктивных решений составлена пространственная расчетная схема и проведен расчет на ПК «Лира-9.6». На рисунке 2 приведен план и разрез покрытия.

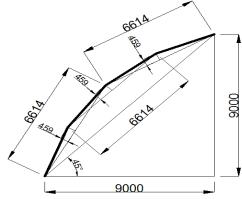


Рис. 2. Геометрические параметры покрытия здания (поперечный разрез и план покрытия)

Оболочка состоит из ромбических элементов, составляенных из железобетонных плит толщиной 30мм, из бетона B20, закрепленных соответственно в контурных ребрах в виде железобетонных элементов прямоугольного сечения 100х200мм. В таблице 6 представлены максимальные и минимальные значения нормальных и касательных напряжений в меридиональном и кольцевом направлениях с учетом и без учета геометрической нелинейности.

Таблица 6-Напряжения (усилия) максимальные и минимальные значения

	Железобетонная оболочка				Железобетонная оболочка				
	Без учета геометрической			C y	нетом	геометр	ической		
Размеры	нелинейности					нелинейности			
Тазмеры									
	$N_{r,max} T/M^2$	$N_{\theta,min}$ T/M^2	$T_{r\theta,max}$	$T_{\theta r}$ min	$N_{r,max}$	$N_{\theta,\min}$	$T_{r\theta,max}$	$T_{\theta r}$ min	
	1 Tr,max 1/1VI	T/M^2	T/M^2	T/M^2	T/M^2	T/M^2	T/M^2	T/M^2	
(H=9м, D=18м)	87,5	-249	94,2	-94,2	104	-299	117	-117	

Из таблицы 6 видно, что учет геометрической нелинейности в купольных конструкциях увеличивает нормальные и касательные напряжения от 10-15%. Наибольшими являются сжимающие усилия.

Обобщая полученные результаты можно сделать следующие выводы:

- 1. Учет геометрической нелинейности необходим как для гладкой, так и для ребристой оболочки, т.к. существенно меняется картина напряженно-деформированного состояния;
- 2. С учетом геометрической нелинейности в основном в пологой оболочке действие мембранных усилий значительно ослабевает, увеличивается влияние изгибных усилий;
- 3. Наличие ребер жесткости существенно уменьшают усилия в пологой оболочке. Учет геометрической нелинейности увеличивают в ребрах продольного направления изгибные усилия на 7,5%; в ребрах поперечного направления от 16 до 60%; в среднем ребре поперечного направления продольные сжимающие усилия достигают наибольших значений (-19,47т) при малых значениях изгибных усилий.
- 4. Геометрическая нелинейность существенно влияет на перемещения пологой оболочки: в ребристой оболочке с учетом геометрической нелинейности линейные перемещения в направлении оси У увеличились на 16,6%, в направлении оси Z на 63%.
- 5. В гладкой оболочке учет геометрической нелинейности приводит к увеличению как мембранных, так и изгибных перемещений, причем этот эффект значителен в приконтурной зоне и в середине оболочки. В приконтурной зоне перемещения вдоль оси

X увеличились с учетом геометрической нелинейности в 1, 6 раза, а перемещения вдоль оси Y-в 1,27 раз. Наиболее значительны линейные перемещения вдоль оси Z (прогибы), например в приконтурной зоне они с учетом геометрической нелинейности увеличились на 21% и достигли величины 9,07 мм, а в середине оболочки они увеличились в 1,2 раза и достигли величины 3,42 мм.

6. В купольной оболочке учет геометрической нелинейности увеличил внутренние усилия на 10-15%, для надежности конструкции необходимо усилить жесткость опорного кольца.

Список литературы

- 1. Леонтьев Н.Н. Строительная механика [Текст] / Н.Н.Леонтьев и др. М.: АСВ,2006.
- 2. Шапошников Н.Н.Строительная механика[Текст] / Н.Н. Шапошников, В.Д Потапов, С.Б. Косицин. –М.: ACB, 2006.
- 3. Горшков А.Г. Теория упругости и пластичности [Текст] / А.Г. Горшков, Э.И. Старовойтов, Д.В. Тарлаковский. М.: Физматлит, 2002. 416с.
- 4. Достанова С.Х.Учет и оценка нелинейности при расчете пологой железобетонной оболочки покрытия[Текст]С.Х.Достанова, О. Тулегенова // Сб. материалов Международ. науч.-практ. Конф. «Строительство, архитектура, дизайн: интеграционные процессы в современных условиях». -Алматы: изд. Дом «Строительство и архитектура», Т.1.-2012.- 78-82с.
- 5. Расчет тонкостенных элементов конструкций[Текст]: Учебное пособие для магистрантов.- Алматы: КазГАСА, ТОО «HitPrint». 2013.- 167с.
- 6. Достанова С.Х.Учет дискретных элементов при расчете пологой железобетонной оболочки[Текст] С.Х. Достанова,Г.Т. Касымова // Сб. материалов Х МНПИК «Состояние современной строительной науки 2012». Полтава: 2012.- 84-88 с.
- 7. Григоренко Я.М.Решение нелинейных задач теории оболочек на ЭВМ[Текст] /Я.М. Григоренко, А.П. Мукоед. Киев: Вища школа, 1983.—286с.