ГИДРОТЕХНИЧЕСКОЕ СТРОИТЕЛЬСТВО И ГИДРОЭНЕРГЕТИКА

УДК 624.131.537(575.2) (04)

ОЦЕНКА УСТОЙЧИВОСТИ ОТКОСОВ ДАМБ ХВОСТОХРАНИЛИЩА №2 В РАЙОНЕ г. МАЙЛУУ-СУУ

Ф.Ф. Рахматуллин – студент КРСУ, **У.Т. Исираилов** – студент КРСУ, **Б.А. Чукин** – канд. техн. наук, старший науч. сотр. НАН КР, **Э.А. Ким** – канд. техн. наук, старший науч. сотр. НАН КР

From the standpoint of realization the elaboration measures, which directed to promotion safety of radio-action tailing pits, there were done stability accounts of tailing pit dike №2. The rated model was made relying on analysis of different versions.

Хвостохранилище №2 г. Майлуу-Суу (намывного типа) находится на левом берегу ручья Айлампа-Сай на отметке 990 м над ур м. Сейсмичность района – 9 баллов. Негативным воздействием является риск попадания содержания отходов хвостохранилища в ручей Айлампа-Сай и далее в реку Майлуу-Суу и бассейн реки Сырдарья. Потенциально-опасными природными процессами, воздействующими на объект, являются сели, паводки, землетрясения, оползни.

Для обеспечения безопасности данных объектов необходимо уточнить класс капитальности сооружения. Назначение класса гидротехнических сооружений подробно приводится в [1].

Таким образом, дамба хвостохранилища №2 высотой 11 м по типу грунтов основания, согласно вышеуказанному СНиПу, относится к типу Б, класс сооружения IV.

Из [2], с учетом класса сооружения, определили коэффициенты устойчивости сооружения:

 $^{\begin{subarray}{l} \begin{subarray}{l} \$

Для оценки устойчивости дамбы хвостохранилища №2 необходимо составление расчетной модели. Модель включает геометрические размеры исследуемого объекта, литологическое строение тела дамбы и его основания, выбор расчетных значений физикомеханических и прочностных свойств грунтов. Для составления расчетной модели были использованы проектные документы, данные результатов бурения скважин и лабораторных исследований, проведенные Ошским филиалом ОАО "КыргызГИИЗ", нормативные документы и научно-исследовательская литература. Приведем основные положения, которые повлияли на окончательный вариант выбора расчетной модели.

Основные показатели грунтов, принятые в проекте, получены по результатам исследований КыргызГИИЗ и приведены в научной и нормативной литературе, действующей на территории Кыргызской Республики (табл. 1).

Учитывая значительное расхождение значений прочностных свойств одних и тех же номенклатурных видов грунтов по результатам лабораторных исследований и приведенных в нормативной литературе, было принято решение произвести оценку устойчивости дамбы по двум вариантам.

Нашей задачей являлась оценка устойчивости дамбы при различных прочностных свойствах грунтов.

Таблица 1

Грунт

Суглинки Супеси Грав.-галечн.

Суглинки Супеси Грав.-галечн.

Супеси

	1 9							
	Коэфф.	Показатель	Сцепление,	Угол внут. тр.				
	пористости, е	текучести, I_L	C, kPa	φ , град.				
По проектным данным								
	_		20	20				
	_	-	_	_				
	_	-	0	45				
По результатам исследований института Кыргыз ГИИЗ								
	0,576	<0	3,24	34				
	0,72	<0	22,85	25				
	_	_	_	_				
I	По данным Института горного дела СО РАН (А.Л. Исаков)							

Суглинки 0,65 0 0,65 0 15 Грав.-галечн.

По СНиП 2.02.02-85. Основания гидротехнических сооружений и СНиП 2.02.01-83*. Основания зданий и сооружений 24 Суглинки 0,65 0 31 0 13 24 0,65 Супеси 0,65 0 38 Грав.-галечн.

Показатели грунтов

В 1 варианте тело дамбы и ее основание сложены супесью с прочностными показателями, соответствующими наиболее низким нормативным значениям [3, 4]:

C=13 кПа,
$$\phi$$
=24°.

Во 2 варианте прочностные свойства грунтов тела дамбы немного занижены от лабораторных значений КыргызГИИЗ и составляют:

для основания $C=23 \text{ к}\Pi \text{а}, \phi=25^{\circ}.$

Все расчеты устойчивости, включая и фильтрационные, выполнялись по программе Slide 5.0. Расчет проводился по методу Бишопа (Bishop simplified), методу Моргенштерн-Прайс (Morgenstern-Price) и методу Спенсора (Spencer). В статье приводятся результаты по методу Спенсора, как наиболее точного. Необходимо отметить, что во всех результатах расчета значения К₃, подсчитанные по различным методам, отличались не более чем на 7%.

Согласно требованиям СНиП [2], расчеты устойчивости откосов грунтовых плотин всех классов следует выполнять для круглоцилиндрических поверхностей сдвига. При расчетах устойчивости (пункт 5.13* [2]) прочностные характеристики грунтов тела дамбы 3 и 4 классов следует принимать постоянными. В расчетах устойчивости значения прочностных свойств гравийно-галечникового грунта, уложенного в дренажную призму, принимались переменными в зависимости от напряжений. Это обусловлено тем, что для гравийногалечникового грунта известна зависимость снижения значений угла внутреннего трения с ростом напряжений. Вызвано это разрушением частиц под нагрузкой [5].

24

27

38

Результаты расчета по первому варианту. Тело дамбы и основание сложены супесью с прочностными показателями, соответствующими наиболее низким нормативным значениям [3, 4]:

$$C=13 к\Pi a, \phi=24°.$$

Расчетная модель дамбы хвостохранилища №2, где приведены все основные геометрические размеры и наименование грунтов, участвующих в расчетах, приведена на рис. 1.

Как видно, расчетное значение К3=1,5 превышает нормативное (ks=1,1) на 27%. Таким образом, статическая устойчивость дамбы хвостохранилища №2 обеспечена. Сейсмическая устойчивость дамбы хвостохранилища №2 также обеспечена (Кз=1,241).

Результаты расчета по второму варианту. Тело дамбы и основание сложены супесью. Прочностные свойства грунтов тела дамбы приближены к данным КыргызГИИЗ и составляют:

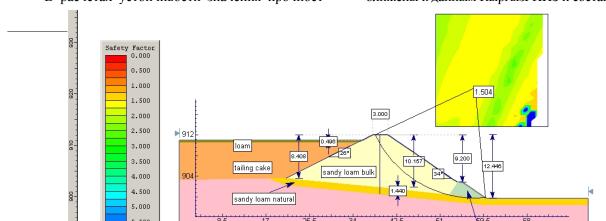


Рис. 1. Расчетная модель дамбы хвостохранилища №2. Оценка статической устойчивости дамбы хвостохранилища №2 по 1 варианту.

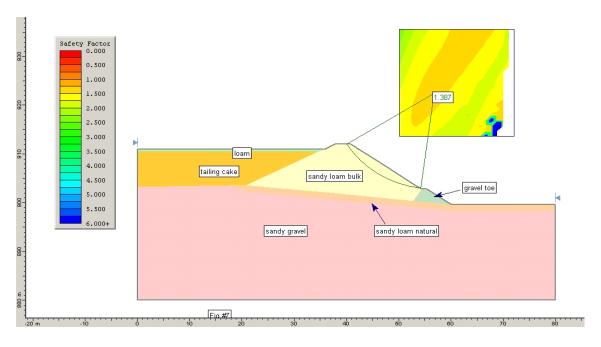


Рис. 2. Оценка статической устойчивости дамбы хвостохранилища №2 по 2 варианту.

Таблица 2

Грудут	Коэф.	Показатель	Сцепление	Угол внутрен.			
Грунт	пористости, е	текучести, I_L	C, kPa	трения ф, град.			
По	По результатам исследований института КыргызГИИЗ						
Супесь с глубины 15 м	0,739	<0	17,7	30			
Суглинок с глубины 17 м	0,923	<0	13,3	31			
По данным Г.Л. Фисенко (ВНИМИ)							
Алевролиты			290	31			
Суглинки			35	27			
Супеси			17	30			
По СНиП 2.02.02-85. Основания гидротехнических сооружений							
и СНиП 2.02.01-83*. Основания зданий и сооружений							
Суглинки	0,65	0	31	24			
Супеси	0,65	0	13	24			

Показатели грунтов

- \$\ для тела дамбы С= 3 кПа, φ=330;
- \$ для основания С= 23 кПа, φ=250.

Результаты расчета статической устойчивости дамбы хвостохранилища №2 по 2 варианту без учета фильтрации приведены на рис. 2. Значение K_3 =1,387. Сейсмическая устойчивость для этого варианта: K_3 =1,15, что больше нормативного (k_s =0,99).

Рассмотрим основные лабораторные и нормативные показатели грунтов, действующие на территории Кыргызской Республики (табл. 2).

Выводы. Дамба хвостохранилища №2 относится к 4 классу. Нормативные значения коэффициентов устойчивости при статике K_3 = 1,1, при сейсмике – 0,99.

Расчетная модель была составлена на основании анализа проектных данных, результатов бурения скважин и лабораторных испытаний, проведенных Ошским филиалом ОАО "КыргызГИИЗ", а также нормативных документов.

Учитывая значительное расхождение значений прочностных свойств одних и тех же номенклатурных видов грунтов по результатам лабораторных исследований, и приведенных в

нормативной литературе, было принято решение произвести оценку устойчивости дамбы хвостохранилища №2 по двум вариантам.

Согласно СНиП 2.06.05-84 прочностные характеристики грунтов тела дамбы приняты постоянными.

Дамба хвостохранилища №2 в условиях статики и сейсмики устойчива.

Литература

- 1. СНиП 2.06.01-86. Гидротехнические сооружения. Основные положения проектирования. Государственный строительный комитет. М., 1987.
- 2. СНиП 2.06.05-84*. Плотины из грунтовых материалов. Издание официальное. Госстрой СССР. М., 1991. С. 49.
- 3. СНиП 2.02.02-85. Основания гидротехнических сооружений. M., 1987.
- 4. СНиП 2.02.01-83*. Основания зданий и сооружений. М., 1995.
- 5. *Фисенко Г.Л.* Устойчивость бортов карьеров и отвалов. М.: Недра, 1965. 378 с.