УДК 622.83:620.171.5 (043.3) (575.2) (04)

ИССЛЕДОВАНИЕ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ГОРНЫХ ПОРОДАХ НА ОСНОВЕ ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКОГО МЕТОДА МОДЕЛИРОВАНИЯ

И.Т. Айтматов – акад. НАН КР, *К.Т. Тажибаев* – докт. техн. наук, *Г.О. Казакбаева* – канд. физ.-мат. наук

The results of researches of residual stresses in optical active solid models and their influence on processes of deformation and destruction by uniaxial compression are adduced.

Введение. По генетическим условиям своего формирования естественные поля напряжений в массивах горных пород можно подразделить на три вида: гравитационные, современные тектонические, остаточные.

Начиная с 60-х годов XX столетия главное внимание ученых-геомехаников в области проблем естественного напряженного состояния массивов горных пород сосредоточено на гравитационных и тектонических полях напряжений породных структур. Считается, что указанные виды полей напряжений являются главными силами, определяющими механическое состояние и деформационное поведение горных пород как в условиях их естественного залегания, так и при техногенных воздействиях [1]. Вместе с тем в поле зрения ряда ведущих ученых-геомехаников ХХ столетия (Б. Фойгт [2], Н.П. Влох, Я.И. Липин А.Л. Сашурин [3], М. Фридман [4], Х. Бок [5], В.Г. Зотеев, Л.В. Можаев и др. [6]) наряду с гравитационными и тектоническими были также и остаточные напряжения горных пород. Данными учеными получены интересные результаты, указывающие на наличие в горных породах остаточных напряжений, значения которых в отдельных случаях достигали высоких показателей. Результаты измерения напряжений в массивах горных пород, выполненные многими исследователями, свидетельствуют о пространственной неоднородности естественных полей напряжений.

Характерной особенностью полей естественных напряжений породных массивов при наличии в них напряжений остаточного типа является не просто пространственная неоднородность этих полей, зачастую выражающаяся в относительно монотонном периодическом характере изменчивости напряжений, но и наличие в отдельных местах и точках значительно более высоких сжимающих и растягивающих напряжений. При этом растягивающих напряжения наблюдаются как на малых, так и на больших глубинах вдали от зон очистных работ и горных выработок.

Выполненные в Институте физики и механики горных пород НАН КР в 80-х годах прошлого столетия исследования по остаточным напряжениям в горных породах выявили неизвестные ранее аномальные особенности проявления остаточных напряжений. В частности, было сделано научное открытие явления скачкообразного и знакопеременного освобождения остаточных напряжений в горных породах [7].

Исследования процессов деформирования и разрушения твердых тел (горных пород) с остаточными напряжениями выявили аномальные условия их деформирования и динамический характер разрушения под действием

статических нагрузок. В Институте физики и механики горных пород (ИФиМГП НАН КР) для выявления общих закономерностей пространственного распределения полей остаточных напряжений в горных породах и определения влияния этих напряжений на процессы деформирования и разрушение пород были проведены исследования на базе физического моделирования остаточных напряжений в моделях из оптически активных материалов и с использованием поляризационно-оптического метода изучения напряжений.

Поляризационно-оптический метод исследования напряжений основан на свойстве большинства прозрачных изотропных материалов приобретать под действием напряжений (деформаций) способность двойного лучепреломления. Величина двойного лучепреломления, связанная с величиной напряжения, может быть измерена оптическим методом при просвечивании модели поляризованным светом [8–12].

В нашей работе твердые оптически активные образцы моделей с остаточными напряжениями разного уровня изготавливались из эпоксидной смолы ЭД-6 размером 10×5×2 см. Фотографии картин изохром и зарисовка изолиний выполнены на немецкой поляризационно-оптической установке "300". Остаточные напряжения, возникающие при физических и физико-химических процессах отверждения смолы ЭД-6, в условиях остывания модельного материала нами названы генетическими. Исследовались также и образцы, в которых остаточные напряжения создавались путем тер-

мообработки модельного материала. Такие напряжения нами названы *наведенными термообработкой* остаточными напряжениями. Физико-механические характеристики образцов, изготовленных из смолы ЭД-6, приведены в таблице.

Для выявления особенностей процессов деформирования и разрушения модельных образцов с остаточными напряжениями разного уровня и без них проводились опыты при их одноосном статическом сжатии с помощью 30-тонного пресса по стандартной методике. Поперечные и продольные деформации испытываемого образца измерялись индикаторами часового типа с ценой деления 0,001 мм. При замере деформаций в момент снятия показания индикаторов нагрузка поддерживалась постоянной.

Результаты экспериментов. На рис. 1—4 приведены характерные графики распределения генетических и наведенных термообработкой главных и касательных остаточных напряжений по вертикальным и горизонтальным сечениям образца.

В физически однородном материале наблюдается периодический характер распределения остаточных напряжений по вертикальному сечению (рис. 1 а, б), максимальные значения: $\sigma_1 = 4,8$ МПа, а $\sigma_2 = 13$ МПа. По горизонтальному сечению образца (рис. 2 а, б) и в боковых частях, и в середине имеют место как растягивающие, так и сжимающие напряжения. Таким образом, пространственное распределение полей остаточных напряжений и по вертикальному и по горизонтальному сечениям в пределах образца носит периодический, а в отдельных случаях скачкообразный характер (см. рис. 1 и 2).

Физико-механические	характег	эистики	материала
THISTIRG MCAUITH ICCRITE	Aupunici	JII CIIIIIII	marcpmana

Показатель	Температура		
	комнатная	"замораживания"	
Объемный вес у, г/см ³	1,38	-	
Модуль упругости Е, кг/см ²	$(345 \div 360) \cdot 10^2$	210÷230	
Оптический коэффициент С, см ² /кг	(1950÷2000) 10 ⁻⁷	(54÷56) 10 ⁻⁷	
Коэффициент Пуассона у	0,34	0,5	

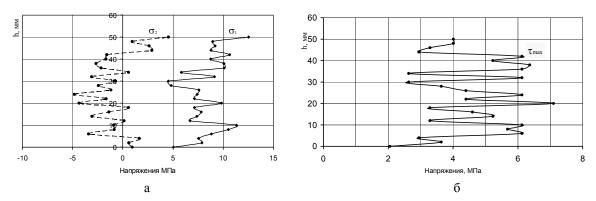


Рис. 1. Эпюры генетических: а – главных нормальных остаточных напряжений σ_1 , σ_2 ; б – максимальных касательных остаточных напряжений τ_{max} по вертикальному сечению (образец №4)

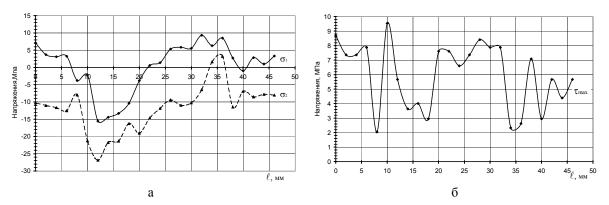


Рис. 2. Эпюры генетических: а – главных нормальных остаточных напряжений σ_1 , σ_2 ; σ_3 ; σ_4 – максимальных касательных остаточных напряжений σ_4 – главных напряжен

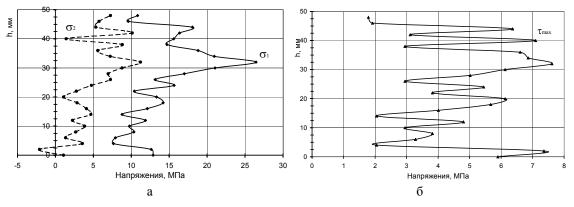
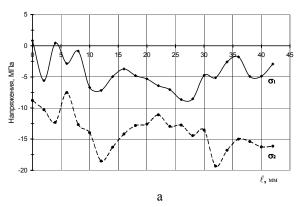



Рис. 3. Эпюры: а — главных нормальных напряжений σ_1 , σ_2 ; б — максимальных касательных напряжений τ_{max} по вертикальному сечению в образце №10 с наведенными термообработкой остаточными напряжениями

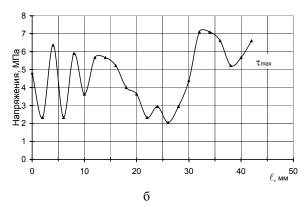


Рис. 4. Эпюры: а – главных нормальных напряжений σ_1 , σ_2 ; б – максимальных касательных напряжений τ_{max} по горизонтальному сечению в образце №10 с наведенными термообработкой остаточными напряжениями

На приведенных эпюрах главных и максимальных касательных, наведенных в образце термообработкой остаточных напряжений (рис. 3 а, б) видно, что по вертикальному сечению преобладают значительные растягивающие напряжения, максимальные значения которых достигают 32 МПа. По горизонтальному сечению (рис. 4 а, б) имеют место сжимающие остаточные напряжения, максимальные значения которых в некоторых точках образца достигают –19 МПа.

Для рассматриваемых образцов с генетическими и наведенными остаточными напряжениями общим является то, что и по вертикальным, и по горизонтальным сечениям в пределах образца указанные остаточные напряжения имеют периодический и знакопеременный характер пространственной изменчивости, что в целом характерно и для остаточных напряжений в горных породах. Следует также отметить, что при общем пространственно изменчивом характере вариаций полей генетических остаточных напряжений в отдельных точках модельного образца (верхняя зона) наблюдаются аномально высокие значения напряжений (см. рис. 3 а, б), которые в 3-4 раза превосходят значения напряжений нижней половины модели.

Выполненные эксперименты на одноосное сжатие образцов из оптически активного материала с остаточными и без остаточных напряжений показали совершенно различный характер их деформирования и разрушения. Образцы для испытаний были изготовлены из одного и того же оптически активного материала,

но отличались наличием или отсутствием в них остаточных напряжений. Для примера приведем графики зависимости поперечных деформаций образцов с остаточными (рис. 5) и без остаточных (рис. 6) напряжений.

График деформации (см. рис. 5) образца с остаточными напряжениями при одноосном сжатии имеет аномальный характер, а график деформации образца без остаточных напряжений (см. рис. 6) – прямолинейный.

Если образец без остаточных напряжений при заданной нагрузке (≈130 МПа) претерпел лишь некоторую пластическую деформацию изгиба (рис. 7 а), то при такой же нагрузке образцы с остаточными напряжениями разного уровня (рис. 7 б, в, г) претерпели разрушение.

Иначе говоря, образцы с остаточными напряжениями и без остаточных напряжений, механически однотипные и структурно однородные, при равнозначных условиях нагружения повели себя совершенно различно. В одних условиях при наличии остаточных напряжений возникли трещины (см. рис. 7 б), в других (см. рис. 7 г) произошло динамическое разрушение образца.

Таким образом, экспериментальные исследования показали, что остаточные напряжения разных уровней являются причиной динамических процессов разрушения твердых тел. Следует также отметить, что в образцах с возникшими трещинами и после снятия нагрузки в течение длительного периода шел процесс развития трещин в условиях отсутствия внешних воздействующих сил.

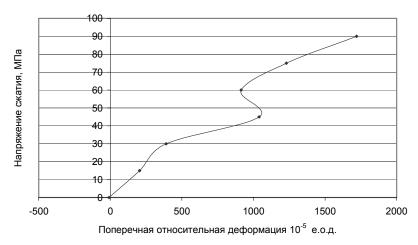


Рис. 5. Зависимость при одноосном сжатии относительной поперечной деформации (обр. N10 с наведенными остаточными напряжениями)

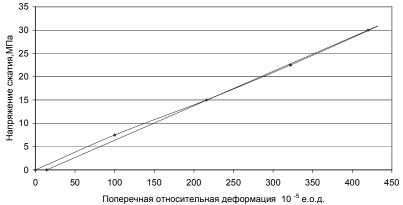


Рис. 6. Зависимость при одноосном сжатии относительной поперечной деформации от напряжения (обр. N25 без остаточных напряжений)

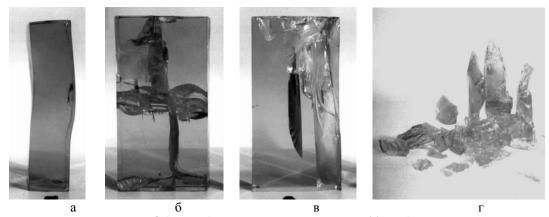


Рис. 7. Образец без остаточных напряжений (a) и образцы с остаточными напряжениями разного уровня (б, в, г) после испытаний на одноосное сжатие

- В результате выполненных экспериментальных исследований оптически активных твердых образцов с остаточными напряжениями по выявлению характера распределения полей остаточных напряжений и их влияния на условия деформировании и разрушения можно сделать следующие выводы.
- 1. Пространственное распределение формирующихся генетических и наведенных термообработкой полей остаточных напряжений в модельных образцах характеризуется периодической и иногда знакопеременной изменчивостью.
- 2. Анализ влияния различного уровня остаточных напряжений в однородных модельных образцах на характер их деформирования и разрушения при одноосном сжатии свидетельствует о том, что остаточные напряжения, даже при малых внешних нагрузках, перераспределяясь в пределах образца, обусловливают скачкообразное изменение деформаций, появление трещин и развитие процесса динамического разрушения (разрушение, сопровождаемое звуковым эффектом).
- 3. Специальными методами отжига в модельных образцах снимались остаточные напряжения и при данных условиях вводились в эксперимент с внешней нагрузкой. Модельные образцы, в которых после отжига остаточные напряжения отсутствовали, при одних и тех же условиях нагружения выдерживали более высокую нагрузку, не разрушаясь, деформируясь плавно, без аномальных отклонений по сравнению с образцами, имеющими остаточные напряжения.

Литература

- 1. *Айтматов И.Т.* Геомеханика рудных месторождений Средней Азии. Фрунзе: Илим, 1987. 246 с.
- Voigt B. Interpretation of in-sity stress measurements // Proc. Ist Congr. Int. Soc. Rock. Mech. Lisbon, 1967. – V. 3 – P. 332–343.

- 3. Влох Н.П., Липин Я.И., Сашурин А.Л. Исследование остаточных напряжений в крепких горных породах // Современные проблемы механики горных пород: Матер. IV всесоюз. конф. по механике горн. пород. Л., 1972. С. 186–188.
- 4. Friedman M. Residual elastic Strain in rock // Tectonophysics. V.15 № 4, 1975. P. 297–333.
- Bock H. Experimental determination of the residual stress field in basaltic Column // Proc. 4th Congr. Int. Rock. Mech, 1979. – V.1. – P. 45–49.
- 6. Взаимосвязь остаточных напряжений скальных пород с их генезисом / Зотеев В.Г., Можаев Л.В., Белоусов М.Н., Воронин В.И. // Отражение современных полей напряжений, свойств пород в состоянии скальных массивов. Апатиты, 1977. С. 95–96.
- А.с. на научное открытие (диплом № 90, № А-109 от 29.04. 1998 г.) / Айтматов И.Т., Тажибаев К.Т. Явление скачкообразного освобождения остаточных напряжений в горных породах. – 1998.
- 8. Дюрелли А., Райли У. Введение в фотомеханику (поляризационно-оптический метод). М.: Мир, 1970. 484 с.
- 9. *Малкис Н.И., Трумбачев В.Ф.* Оптически чувствительные полимерные материалы для решения задач горного давления // Физ.-техн. пробл. разработки полез. ископаемых (ФТПРПИ), 1971. №2. С. 70–77.
- 10. Фрохт М.М. Фотоупругость. Поляризационно-оптический метод исследования напряжений. М.; Л.: Гос. изд-во техн.-теорет. лит., 1948. Т.1. 432 с.
- 11. Фрохт М.М. Фотоупругость. Поляризационно-оптический метод исследования напряжений. М.; Л.: Гос. изд-во техн.-теорет. лит., 1948. Т. 2. 488
- 12. *Хаимова-Малькова Р.И.* Методика исследования напряжений поляризационно-оптическим методом. М.: Наука, 1970. С. 81-87.