УДК 519.63

ПРИМЕНЕНИЕ ПРОЕКЦИОННЫХ РАЗНОСТНЫХ СХЕМ ДЛЯ РЕШЕНИЯ ПРЯМОЙ ДВУМЕРНОЙ ЗАДАЧИ МАГНИТОТЕЛЛУРИЧЕСКОГО ЗОНДИРОВАНИЯ

О.Б. Забинякова, С.Н. Скляр

Предложен способ построения разностных схем для решения прямой двумерной задачи магнитотеллурического зондирования, основанный на проекционном варианте интегро-интерполяционного метода.

Ключевые слова: электромагнитное поле; разностная схема; проекционный вариант интегро-интерполяционного метода.

APPLICATION OF PROJECTIVE DIFFERENCE SCHEMES FOR SOLVING OF THE FORWARD TWO-DIMENSIONAL PROBLEM OF MAGNETOTELLURIC SOUNDING

O.B. Zabinyakova, S.N. Sklyar

It is suggested a method for construction of difference schemes for solving of the forward two-dimensional problem of magnetotelluric sounding based on projective version of the integral-interpolation method.

Keywords: electromagnetic field; difference scheme; projective version of the integral-interpolation method.

Метод магнитотеллурического зондирования (МТЗ) является одним из основных методов глубинной геофизики. Он основан на изучении вариаций переменного электромагнитного поля магнитосферной и ионосферной природы с целью получения сведений о строении верхних слоев Земли и протекающих в них геодинамических процессах. Интерпретацию данных МТЗ проводят в рамках математических моделей, основанных на системе уравнений Максвелла [1, 2]. В настоящее время на практике решения обратной задачи МТЗ обычно ищутся в классе одно- и двумерных моделей, трехмерные модели, из-за высокой ресурсоемкости, пока используются реже [3]. Известно, что разработка быстрого и точного алгоритма для решения прямой задачи дает основу для создания эффективного и надежного алгоритма решения обратной задачи магнитотеллурики. В данной работе предлагаются новые численные методы решения прямой двумерной задачи МТЗ, а именно, двумерной задачи Н-поляризации (ТМ-моды) [1, 2]. Базой для построения численных методов служит проекционный вариант интегро-интерполяционного метода (ПВИИМ) [4], позволяющий сохранять основные свойства дифференциальной задачи в ее дискретном аналоге и учитывать краевые условия общего вида. Ранее (см. [5]) ПВИИМ был использован для решения прямой одномерной задачи МТЗ – задачи Тихонова–Каньяра.

Известно, что в рамках стандартных упрощающих предположений (квазистационарность и зависимость от времени по гармоническому закону, $\exp(-i\omega t)$ постоянство магнитной и диэлектрической проницаемостей) система уравнений Максвелла распадается на две независимые подсистемы:

1) ТМ – моду (соответствует Н-поляризации)

$$-\frac{\partial H^{y}}{\partial z} = \sigma E^{x},$$

$$\frac{\partial E^{x}}{\partial z} - \frac{\partial E^{z}}{\partial x} = i\omega\mu_{0}H^{y},$$

$$\frac{\partial H^{y}}{\partial x} = \sigma E^{z};$$
(1)

2) ТЕ – моду (соответствует Е-поляризации)

$$\begin{cases} -\frac{\partial E^{y}}{\partial z} = i\omega\mu_{0}H^{x}, \\ \frac{\partial H^{x}}{\partial z} - \frac{\partial H^{z}}{\partial x} = \sigma E^{y}, \\ \frac{\partial E^{y}}{\partial x} = i\omega\mu_{0}H^{z}. \end{cases}$$
(2)

Символами *H* и *E* с индексами обозначены комплекснозначные компоненты напряженности магнитного и электрического полей, соответственно, $\sigma = \sigma(z)$ – удельная электрическая проводимость; μ_0 – магнитная восприимчивость в вакууме. В качестве краевых условий будем рассматривать различные комбинации значений неизвестных функций в граничных точках области. Построим разностную схему для системы (1) (построение разностной схемы для системы (2) аналогично), основываясь на идеологии ПВИИМ [4]. Система уравнений (1) рассматривается в некоторой двумерной области Ω плоскости (*x*,*z*), покрытой прямоугольной сеткой; рассмотрим произвольную ячейку этой сетки, вводя обозначения:

$$\pi = \pi_{n,j} = \left[x_n, x_{n+1} \right] \times \left[z_j, z_{j+1} \right], n = \overline{1, N}, j = \overline{1, J},$$

где: N-количество узлов сетки по оси Ox; J-количество узлов сетки по оси Oz, а $\Delta x_n = x_{n+1} - x_n$, $\Delta z_j = z_{j+1} - z_j -$ шаги сетки по каждому из направлений.

Умножим уравнения в (1) на произвольные "тестовые" функции $\varphi_1(x, z)$, $\varphi_2(x, z) \otimes \varphi_3(x, z)$ соответственно; результаты сложим и проинтегрируем по сеточной ячейке $\pi_{n,j}$, в том числе и по частям, в итоге приходим к интегро-разностному тождеству:

$$0 = \int_{\pi} \left[\left(-\frac{\partial H^{y}}{\partial z} - \sigma E^{x} \right) \varphi_{1} + \left(\frac{\partial E^{x}}{\partial z} - \frac{\partial E^{z}}{\partial x} - i\omega\mu_{0}H^{y} \right) \varphi_{2} + \left(\frac{\partial H^{y}}{\partial x} - \sigma E^{z} \right) \varphi_{3} \right] dxdz =$$

$$= \int_{\partial \pi} \left[\left(H^{y}\varphi_{3} - E^{z}\varphi_{2} \right) \cos(n,x) + \left(E^{x}\varphi_{2} - H^{y}\varphi_{1} \right) \cos(n,z) \right] ds -$$

$$- \int_{\pi} \left[E^{x} \cdot \left(\frac{\partial \varphi_{2}}{\partial z} + \sigma \varphi_{1} \right) + E^{z} \cdot \left(-\frac{\partial \varphi_{2}}{\partial x} + \sigma \varphi_{3} \right) + H^{y} \cdot \left(-\frac{\partial \varphi_{1}}{\partial z} + \frac{\partial \varphi_{3}}{\partial x} + i\omega\mu_{0}\varphi_{2} \right) \right] dxdz.$$
(3)

В тождество (3) введем кусочно-постоянную аппроксимацию функции удельной электропроводности $\sigma = \sigma(x,z) : \sigma(x,z) \approx \overline{\sigma} \equiv \sigma_{n,j}$ *при* $(x,z) \in \pi_{n,j}$. Отбросим полученные погрешности аппроксимации, считая их достаточно малыми, а величины E^x , E^z , H^y будем считать приближенными значениями искомых функций. Тогда получим равенство:

$$0 = \int_{\partial \pi} \left[\left(H^{y} \varphi_{3} - E^{z} \varphi_{2} \right) \cos(n, x) + \left(E^{x} \varphi_{2} - H^{y} \varphi_{1} \right) \cos(n, z) \right] ds - \int_{\pi} \left[E^{x} \cdot \left(\frac{\partial \varphi_{2}}{\partial z} + \overline{\sigma} \varphi_{1} \right) + E^{z} \cdot \left(-\frac{\partial \varphi_{2}}{\partial x} + \overline{\sigma} \varphi_{3} \right) + H^{y} \cdot \left(-\frac{\partial \varphi_{1}}{\partial z} + \frac{\partial \varphi_{3}}{\partial x} + i\omega \mu_{0} \varphi_{2} \right) \right] dx dz.$$

$$\tag{4}$$

Для того чтобы в тождестве (4) обратить в ноль второй интеграл и избавиться от его дальнейшей дополнительной аппроксимации, подберем тестовые функции в (4) таким образом, чтобы выполнялись соотношения:

$$\begin{cases} \frac{\partial \varphi_2}{\partial z} + \overline{\sigma} \varphi_1 = 0, \\ -\frac{\partial \varphi_2}{\partial x} + \overline{\sigma} \varphi_3 = 0, \quad (x, z) \in \pi, \\ -\frac{\partial \varphi_1}{\partial z} + \frac{\partial \varphi_1}{\partial x} + i\omega \mu_o \varphi_2 = 0. \end{cases}$$
(5)

Тогда с учетом системы (5) тождество (4) превращается в следующие соотношения, справедливые для любой сеточной ячейки:

$$\int_{Z_{j}}^{Z_{j+1}} \left(H^{y} \varphi_{3} - E^{z} \varphi_{2} \right)_{X_{n}}^{X_{n+1}} dz + \int_{X_{n}}^{X_{n+1}} \left(E^{x} \varphi_{2} - H^{y} \varphi_{1} \right)_{Z_{j}}^{Z_{j+1}} dx = 0.$$
(6)

Для решения системы (5) рассмотрим произвольную функцию $\psi(x, z)$, заданную на ячейке π_{ni} и положим:

$$\varphi_{1} = -\frac{\partial \psi}{\partial z}, \ \varphi_{2} = \overline{\sigma}\psi, \ \varphi_{3} = \frac{\partial \psi}{\partial x}.$$
 (7)

При таком выборе тестовых функций первое и второе уравнения в (5) выполняются автоматически. Чтобы функции (7) удовлетворяли третьему уравнению в (5), необходимо и достаточно подчинить $\pi_{n,i}$ условию:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} - \overline{k}^2 \cdot \psi = 0, (x, z) \in \pi_{n, j},$$
(8)

где $\overline{k} = k_{n,j} = (1-i)\sqrt{\frac{\sigma_{n,j}\omega\mu_0}{2}}$ – волновое число, соответствующее ячейке $\pi_{n,j}$.

Пусть $\alpha^{(p)}(x)$, $\beta^{(q)}(z)$; p,q = 0,1 – вспомогательные функции, определяемые как решения следующих задач (где $0 \le \theta \le 1$ – параметр метода):

$$\begin{cases} \frac{d^{2} \alpha^{(p)}}{dx^{2}} - \theta \overline{k}^{2} \alpha^{(p)} = 0, \ x \in (x_{n}, x_{n+1}); \\ \alpha^{(p)} (x_{n}) = 1 - p, \ \alpha^{(p)} (x_{n+1}) = p, \ p = 0, 1. \end{cases}$$

$$\begin{cases} \frac{d^{2} \beta^{(q)}}{dz^{2}} - (1 - \theta) \overline{k}^{2} \beta^{(q)} = 0, \ z \in (z_{j}, z_{j+1}); \\ \beta^{(q)} (z_{j}) = 1 - q, \ \beta^{(q)} (z_{j+1}) = q, \ q = 0, 1. \end{cases}$$
(10)

Решения задач (9), (10) возможно найти в аналитическом виде:

$$\alpha^{(0)}(x) = \frac{sh\left[\overline{k}\sqrt{\theta}\left(x_{n+1}-x\right)\right]}{sh\left(\overline{k}\sqrt{\theta}\Delta x_{n}\right)}, \quad \alpha^{(1)}(x) = \frac{sh\left[\overline{k}\sqrt{\theta}\left(x-x_{n}\right)\right]}{sh\left(\overline{k}\sqrt{\theta}\Delta x_{n}\right)}, \quad x \in [x_{n}, x_{n+1}];$$
$$\beta^{(0)}(z) = \frac{sh\left[\overline{k}\sqrt{1-\theta}\left(z_{j+1}-z\right)\right]}{sh\left(\overline{k}\sqrt{1-\theta}\Delta z_{j}\right)}, \quad \beta^{(1)}(z) = \frac{sh\left[\overline{k}\sqrt{1-\theta}\left(z-z_{j}\right)\right]}{sh\left(\overline{k}\sqrt{1-\theta}\Delta z_{j}\right)}; \quad z \in [z_{j}, z_{j+1}].$$

На каждой сеточной ячейке определим четыре линейно независимых функции:

$$\psi^{(p,q)}(x,z) = \alpha^{(p)}(x)\beta^{(q)}(z), p = 0, 1, q = 0, 1.$$
(11)

Чтобы сформировать разностные уравнения подставим последовательно функции (11) в (7), а полученные в результате φ_{l} , φ_{2} и φ_{3} – в разностное тождество (6); для аппроксимации оставшихся одномерных интегралов будем использовать квадратурную формулу трапеций. В результате получим следующие соотношения, справедливые для произвольной сеточной ячейки $\pi = \pi_{ni}$:

$$\frac{\Delta z_{j}}{\Delta x_{n}} \left[E_{n,j}^{z} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right)} \cdot H_{n+1,j}^{y} + \sqrt{\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right) \cdot H_{n,j}^{y} \right] - E_{n,j}^{x} - \frac{\sqrt{1-\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta_{z_{j}} \right)} \cdot H_{n+1,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta_{z_{j}} \right) \cdot H_{n,j}^{y} = 0.$$

$$(12)$$

$$\frac{\Delta z_{j}}{\Delta x_{n}} \left[E_{n,j+1}^{z} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right)} \cdot H_{n+1,j+1}^{y} + \sqrt{\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right) \cdot H_{n,j+1}^{y} \right] +$$

$$+ E_{n,j+1}^{x} - \frac{\sqrt{1-\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n,j+1}^{y} = 0.$$

$$\frac{\Delta z_{j}}{\Delta x_{n}} \left[-E_{n+1,j+1}^{z} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right)} \cdot H_{n,j+1}^{y} + \sqrt{\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right) \cdot H_{n+1,j+1}^{y} \right] +$$

$$+ E_{n+1,j+1}^{x} - \frac{\sqrt{1-\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n+1,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n+1,j+1}^{y} = 0.$$

$$\Delta z_{n} \left[-e_{n+1,j+1}^{x} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n+1,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n+1,j+1}^{y} = 0.$$

$$\Delta z_{n} \left[-e_{n+1,j+1}^{x} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n+1,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n+1,j+1}^{y} = 0.$$

$$\Delta z_{n} \left[-e_{n+1,j+1}^{x} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n+1,j}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n+1,j+1}^{y} = 0.$$

$$\frac{\Delta z_{j}}{\Delta x_{n}} \left[-E_{n+1,j}^{z} - \frac{\sqrt{\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right)} \cdot H_{n,j}^{y} + \sqrt{\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{\theta} k_{n,j} \Delta x_{n} \right) \cdot H_{n+1,j}^{y} \right] + \left(15 \right) \\
-E_{n+1,j}^{x} - \frac{\sqrt{1-\theta} \left(k/\sigma \right)_{n,j}}{sh \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right)} \cdot H_{n+1,j+1}^{y} + \sqrt{1-\theta} \left(k/\sigma \right)_{n,j} cth \left(\sqrt{1-\theta} k_{n,j} \Delta z_{j} \right) \cdot H_{n+1,j}^{y} = 0.$$

Для произвольной внутренней точки сеточной области в (13) заменим индекс *j* на *j*+*l*, результат сложим с (12), исключая величину $E_{n,j}^x$. Из полученного соотношения выразим величину $E_{n,j}^z$. Получим:

$$E_{n,j}^{z} - \left[\frac{\Delta z_{j}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{\theta} \left(k/\sigma\right)_{n,j}}{sh\left(\sqrt{\theta}k_{n,j}\Delta x_{n}\right)} + \frac{\Delta z_{j-1}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{\theta}k_{n,j-1}\Delta x_{n}\right)}\right] H_{n+1,j}^{y} - \frac{\Delta x_{n}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{1-\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{1-\theta}k_{n,j}\Delta z_{j}\right)} H_{n,j+1}^{y} - \frac{\Delta x_{n}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{1-\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right)} H_{n,j-1}^{y} + \left[\frac{\Delta z_{j}}{\Delta z_{j} + \Delta z_{j-1}} \sqrt{\theta} \left(k/\sigma\right)_{n,j} cth\left(\sqrt{\theta}k_{n,j}\Delta x_{n}\right) + \frac{\Delta x_{n}}{\Delta z_{j} + \Delta z_{j-1}} \sqrt{\theta} \left(k/\sigma\right)_{n,j} cth\left(\sqrt{1-\theta}k_{n,j}\Delta z_{j}\right) + \frac{\Delta z_{j-1}}{\Delta z_{j} + \Delta z_{j-1}} \sqrt{\theta} \left(k/\sigma\right)_{n,j-1} cth\left(\sqrt{\theta}k_{n,j-1}\Delta x_{n}\right) + \frac{\Delta x_{n}}{\Delta z_{j} + \Delta z_{j-1}} \sqrt{\theta} \left(k/\sigma\right)_{n,j-1} cth\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right) \right] H_{n,j}^{y} = 0.$$
(16)

В (14) заменим индексы: *n* на *(n-1)*, *j* на *(j-1)*, а в (15) заменим индекс *n* на *(n-1)*, результаты сложим и из полученного равенства выразим величину $E_{n,j}^z$:

$$-E_{n,j}^{z} - \left[\frac{\Delta z_{j}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{\theta} (k/\sigma)_{n-1,j}}{sh(\sqrt{\theta} k_{n-1,j}\Delta x_{n-1})} + \frac{\Delta z_{j-1}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{\theta} (k/\sigma)_{n-1,j-1}}{sh(\sqrt{\theta} k_{n-1,j-1}\Delta x_{n-1})}\right] H_{n-1,j}^{y} - \frac{\Delta x_{n-1}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{1-\theta} (k/\sigma)_{n-1,j-1}}{sh(\sqrt{1-\theta} k_{n-1,j}\Delta z_{j})} H_{n,j+1}^{y} - \frac{\Delta x_{n-1}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{1-\theta} (k/\sigma)_{n-1,j-1}}{sh(\sqrt{1-\theta} k_{n-1,j-1}\Delta z_{j-1})} H_{n,j+1}^{y} + \frac{\Delta z_{n-1}}{\Delta z_{j} + \Delta z_{j-1}} \frac{\sqrt{1-\theta} (k/\sigma)_{n-1,j-1}}{sh(\sqrt{1-\theta} k_{n-1,j-1}\Delta z_{j-1})} H_{n,j+1}^{y} + \frac{\Delta z_{n-1}}{sh(\sqrt{1-\theta} k$$

$$+\frac{\Delta x_{n-1}}{\Delta z_{j}+\Delta z_{j-1}}\frac{\sqrt{1-\theta}(k/\sigma)_{n-1,j}}{sh(\sqrt{1-\theta}k_{n-1,j}\Delta z_{j})}H_{n,j+1}^{y}-\frac{\Delta x_{n-1}}{\Delta z_{j}+\Delta z_{j-1}}\frac{\sqrt{1-\theta}(k/\sigma)_{n-1,j-1}}{sh(\sqrt{1-\theta}k_{n-1,j-1}\Delta z_{j-1})}H_{n,j-1}^{y}+\\ +\left[\frac{\Delta z_{j}}{\Delta z_{j}+\Delta z_{j-1}}\sqrt{\theta}(k/\sigma)_{n-1,j}cth(\sqrt{\theta}k_{n-1,j}\Delta x_{n-1})+\right.\\ \left.+\frac{\Delta x_{n-1}}{\Delta z_{j}+\Delta z_{j-1}}\sqrt{1-\theta}(k/\sigma)_{n-1,j-1}cth(\sqrt{1-\theta}k_{n-1,j-1}\Delta x_{n-1})+\right.\\ \left.+\frac{\Delta x_{n-1}}{\Delta z_{j}+\Delta z_{j-1}}\sqrt{\theta}(k/\sigma)_{n-1,j-1}cth(\sqrt{1-\theta}k_{n-1,j-1}\Delta x_{n-1})+\right.\\ \left.+\frac{\Delta x_{n-1}}{\Delta z_{j}+\Delta z_{j-1}}\sqrt{1-\theta}(k/\sigma)_{n-1,j-1}cth(\sqrt{1-\theta}k_{n-1,j-1}\Delta z_{j-1})\right]H_{n,j}^{y}=0.$$

Формулы (16) и (17) определяют значения $E_{n,j}^z$ на левой и правой границах сеточной области, если значения $H_{n,j}^y$ вычислены во всех узлах сетки. Исключая из (16) и (17) величины $E_{n,j}^z$, получим:

$$-\left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n,j}}{sh\left(\sqrt{\theta}k_{n,j}\Delta x_{n}\right)} + \frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{\theta}k_{n,j-1}\Delta x_{n}\right)}\right]H_{n+1,j}^{y} - \left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j}}{sh\left(\sqrt{\theta}k_{n-1,j}\Delta x_{n-1}\right)} + \frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1}}{sh\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)}\right]H_{n-1,j}^{y} - \left[\frac{\Delta x_{n}\sqrt{1-\theta} \left(k/\sigma\right)_{n,j}}{sh\left(\sqrt{1-\theta}k_{n,j}\Delta z_{j}\right)} + \frac{\Delta x_{n-1}\sqrt{1-\theta} \left(k/\sigma\right)_{n-1,j}}{sh\left(\sqrt{1-\theta}k_{n-1,j-1}\Delta z_{j-1}\right)}\right]H_{n,j+1}^{y} - \left[\frac{\Delta x_{n}\sqrt{1-\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right)} + \frac{\Delta x_{n-1}\sqrt{1-\theta} \left(k/\sigma\right)_{n-1,j-1}}{sh\left(\sqrt{1-\theta}k_{n-1,j-1}\Delta z_{j-1}\right)}\right]H_{n,j-1}^{y} + \left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{1-\theta}k_{n,j}\Delta x_{n}\right)} + \Delta x_{n}\sqrt{1-\theta} \left(k/\sigma\right)_{n,j-1} cth\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right)\right) + \left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n,j-1}}{sh\left(\sqrt{\theta}k_{n,j-1}\Delta x_{n}\right)} + \Delta x_{n}\sqrt{1-\theta} \left(k/\sigma\right)_{n,j-1} cth\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right)\right) + \left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n,j-1} cth\left(\sqrt{\theta}k_{n,j-1}\Delta x_{n}\right)}{sh\left(\sqrt{1-\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \Delta x_{n}\sqrt{1-\theta} \left(k/\sigma\right)_{n-1,j} cth\left(\sqrt{1-\theta}k_{n,j-1}\Delta z_{j-1}\right) + \left[\frac{\Delta z_{j}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)}{sh\left(\sqrt{1-\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \Delta x_{n-1}\sqrt{1-\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right) + \left[\frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \left[\frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta x_{n-1}\right)} + \frac{\Delta z_{j-1}\sqrt{\theta} \left(k/\sigma\right)_{n-1,j-1} cth\left(\sqrt{\theta}k_{n-1,j-1}\Delta z_{j-1}\right)}\right] H_{n,j}^{y} = 0.$$

Система соотношений (18) определяет величины $H_{n,j}^{y}$ при условии, что на границе области эти значения заданы. Такая задача является стандартной задачей Дирихле для пятиточечной разностной схемы, которая может решаться любым итерационным методом, например, методом Зейделя.

Производя манипуляции с соотношениями (12)–(15), аналогичные предыдущим, получим уравнения для определения величин $E_{n,j}^x$ на верхней и нижней границах области соответственно, а также во внутренних точках области Ω , при вычисленных во всех узлах сетки значениях $H_{n,j}^y$:

$$-E_{n,j}^{x} - \left[\frac{\Delta x_{n}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{1-\theta} \left(k/\sigma\right)_{n,j}}{sh\left(\sqrt{1-\theta}k_{n,j}\Delta z_{j}\right)} + \frac{\Delta x_{n-1}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{1-\theta} \left(k/\sigma\right)_{n-1,j}}{sh\left(\sqrt{1-\theta}k_{n-1,j}\Delta z_{j}\right)}\right] H_{n,j+1}^{y} - \frac{1}{2}\left[\frac{1-\theta}{2}\left(k/\sigma\right)_{n-1,j}}{sh\left(\sqrt{1-\theta}k_{n-1,j}\Delta z_{j}\right)}\right]$$

$$-\frac{\Delta z_{j}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{\theta} (k/\sigma)_{n,j}}{sh (\sqrt{\theta} k_{n,j} \Delta x_{n})} H_{n+1,j}^{\nu} - \frac{\Delta z_{j}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{\theta} (k/\sigma)_{n-1,j}}{sh (\sqrt{\theta} k_{n-1,j} \Delta x_{n-1})} H_{n-1,j}^{\nu} + \\ + \left[\frac{\Delta x_{n}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{1-\theta} (k/\sigma)_{n,j} cth (\sqrt{1-\theta} k_{n,j} \Delta z_{j}) + \\ + \frac{\Delta z_{j}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{\theta} (k/\sigma)_{n,j} cth (\sqrt{\theta} k_{n,j} \Delta x_{n}) + \\ + \frac{\Delta x_{n-1}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{1-\theta} (k/\sigma)_{n-1,j} cth (\sqrt{1-\theta} k_{n-1,j} \Delta z_{j}) + \\ + \frac{\Delta z_{j}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{\theta} (k/\sigma)_{n-1,j} cth (\sqrt{\theta} k_{n-1,j} \Delta x_{n-1}) \right] H_{n,j}^{\nu} = 0.$$

$$E_{n,j}^{\nu} - \left[\frac{\Delta x_{n}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{1-\theta} (k/\sigma)_{n,j-1}}{sh (\sqrt{1-\theta} k_{n,j-1} \Delta z_{j-1})} + \frac{\Delta x_{n-1}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{1-\theta} (k/\sigma)_{n-1,j-1}}{sh (\sqrt{1-\theta} k_{n,j-1} \Delta z_{j-1})} \right] H_{n,j}^{\nu} + \\ - \frac{\Delta z_{j-1}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{\theta} (k/\sigma)_{n,j-1}}{sh (\sqrt{\theta} k_{n,j-1} \Delta x_{n})} H_{n+1,j}^{\nu} - \frac{\Delta z_{j-1}}{\Delta x_{n} + \Delta x_{n-1}} \frac{\sqrt{\theta} (k/\sigma)_{n-1,j-1}}{sh (\sqrt{\theta} k_{n-1,j-1} \Delta x_{n})} H_{n-1,j}^{\nu} + \\ + \left[\frac{\Delta x_{n}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{1-\theta} (k/\sigma)_{n,j-1} cth (\sqrt{1-\theta} k_{n,j-1} \Delta z_{j-1}) + (20) + \\ + \frac{\Delta z_{j-1}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{\theta} (k/\sigma)_{n,j-1} cth (\sqrt{1-\theta} k_{n,j-1} \Delta x_{n}) + \\ + \frac{\Delta x_{n-1}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{\theta} (k/\sigma)_{n,j-1} cth (\sqrt{\theta} k_{n,j-1} \Delta x_{n}) + \\ + \frac{\Delta x_{n-1}}{\Delta x_{n} + \Delta x_{n-1}} \sqrt{\theta} (k/\sigma)_{n-1,j-1} cth (\sqrt{1-\theta} k_{n-1,j-1} \Delta x_{j-1}) + \\ (20)$$

В качестве тестовой задачи для численных экспериментов была выбрана система дифференциальных уравнений (1) при $\sigma(x,z) = const$, для которой можно найти решение в аналитическом виде. С аналитического решения "снимались" краевые условия для функции магнитной напряженности *H*. В рамках численных экспериментов производилось сравнение новых численных методов (ПВИИМ) с аналитическим решением, а также с решением этой же тестовой задачи методом центрально-разностной аппроксимации (ЦРМ) [6]. Сравнение осуществлялось по относительным погрешностям, вычисляемым по формуле:

$$rel_error = \frac{\left\| \left(u\right)^{*} - u^{*} \right\|_{\infty}}{\left\| \left(u\right)^{*} \right\|_{\infty}} \cdot 100\%,$$

где $(u)_{n,j}^{h}$ – проекция точного решения в узел сетки (x_{n}, z_{j}) , $u_{n,j}^{h}$ – приближенное решение в этом же узле, и $\| (z_{n}, y_{n}) - z_{n} \| = \| (z_{n}, y_{n}) \| = \| (z_{n}, y_$

$$\|(u)^{h} - u^{h}\|_{\infty} = \max_{n,j} |(u)^{h}_{n,j} - u^{h}_{n,j}|, \|(u)^{h}\|_{\infty} = \max_{n,j} |(u)^{h}_{n,j}|$$

В таблице 1 приведены относительные погрешности вычислений при решении тестовой задачи со следующими заданными параметрами:

$$\Omega = [0,1] \times [0,1], \ \sigma = 1, \omega = 1, \mu_0 = 30, \theta = 0.5$$

вариант 1: число узлов 10×10; вариант 2: число узлов 30×30; вариант 3: число узлов 50×50.

Метод	Функция	Вариант задания параметров		
		1	2	3
ПВИИМ	H^{y}	0,05	0,52	3,44
	E ^x	0,01	3,4.10-2	0,146
	E ^z	1,21.10-12	6,09.10-13	2,44.10-12
ЦРМ	H^{y}	23,63	7,45	5,29
	E ^x	18,48	6,35	3,83
	E ^z	70,81	87,3	90,59

Таблица 1 – Относительные погрешности, %

Как следует из данных таблицы, новый метод решает тестовую задачу с существенно большей точностью, чем схема с центральными разностями.

Литература

- 1. Жданов М.С. Электроразведка: учебник для вузов / М.С. Жданов. М.: Недра, 1986. 316 с.
- 2. *Бердичевский М.Н.* Модели и методы магнитотеллурики / М.Н. Бердичевский, В.И. Дмитриев. М.: Научный мир, 2009. 680 с.
- 3. *Рыбин А.К.* Глубинное строение и современная геодинамика Центрального Тянь-Шаня по результатам магнитотеллурических зондирований / А.К. Рыбин. М.: Научный мир, 2011. 272 с.
- 4. *Sklyar S.N.* A projective version of the integral-interpolation method and it's application for the discretization of the singular perturbation problems / S.N. Sklyar // Advanced Mathematics: Computations and Appli-cations: Proc. of the International Conf. AMCA-95. NCC Pablisher, Novosibirsk, 1995. P. 380–385.
- Забинякова О.Б. Численные методы решения прямых задач магнитотеллурического зондирования / О.Б. Забинякова, Д.И. Зинченко, М.А. Кулагина, А.К. Рыбин, С.Н. Скляр // Матер. 2-й межд. конф., посв. 20-летию КРСУ и 100-летию Я.В. Быкова (5–7 сентября 2013 г., Бишкек). Т. 2. С. 194–198.
- 6. Самарский А.А. Введение в численные методы / А.А. Самарский. М.: Наука, 1982. 269 с.