УДК 531.3:534.1/.2

ВЛИЯНИЕ ПАРАМЕТРОВ УДАРНОЙ СИСТЕМЫ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ПЛАСТИНЫ ПРИ ЕЕ ВИБРОУДАРНОЙ ОЧИСТКЕ

В.Э. Еремьянц, В.В. Ню

Рассматривается изменение напряженного состояния пластины со слоем отложений на внутренней поверхности при ее виброударной очистке. Установлены зависимости напряжений от параметров ударной системы "боек-инструмент-пластина" и от толщины слоя отложений.

Ключевые слова: боек; инструмент; пластина; слой отложений; удар; волны деформации; напряжения.

INFLUENCE OF THE IMPACT SYSTEM PARAMETERS ON THE STRESS CONDITION

OF THE PLATE UNDER VIBRO-IMPACT CLEANING PROCESS

V.E. Eremjants, V.V. Niu

Stress condition of the plate with a layer of slag on its internal surface under process of vibro-impact cleaning is considered. Relations of stresses from the "striker-instrument-plate" impact system parameters and from the thickness of slag layer are established.

Key words: striker; instrument; plate; slag layer; impact; strain waves; stress.

Виброударный способ очистки внутренних поверхностей труб большого диаметра, бункеров и других емкостей является относительно новым и малоизученным. Это определяет необходимость его исследования и совершенствования.

Работы в этом направлении были начаты в начале 2000-х годов с построения и обоснования математической модели ударной системы "боек машины-инструмент-обрабатываемая поверхность", используемой в кривошипно-коромысловых ударных механизмах для очистки золошлакопроводов. К настоящему времени разработана математическая модель ударной системы этих механизмов, установлены основные закономерности волновых процессов, протекающих в системе "боек-инструмент-пластина", и на их основе предложена методика выбора рациональных параметров элементов ударной системы, обеспечивающих высокий коэффициент передачи энергии удара в обрабатываемую пластину, при выполнении требований обеспечения прочности инструмента и пластины.

Результаты этих исследований обобщены в работах [1, 2], где боек ударной машины представлен в виде жесткого тела с податливой сферической ударной поверхностью. Считалось, что общие деформации бойка пренебрежимо малы по сравнению с его местными контактными деформациями. Следует отметить, что такое представление бойка в модели справедливо не только для кривошипно-коромысловых, но и для пневматических ударных машин, в которых продольные размеры бойка соизмеримы с поперечными, а ударный торец имеет сферическую форму.

Однако данная модель и полученные с ее помощью результаты совершенно неприемлемы для гидравлических ударных механизмов, которые по ряду характеристик более перспективны по сравнению с пневматическими и кривошипно-коромысловыми.

В гидравлических ударных механизмах продольные размеры бойка 1 (рисунок 1) намного больше поперечных, а ударные торцы бойка и инструмента 2 – плоские. В этом случае боек представляется в модели в виде упругого стержня, местные контактные деформации которого пренебрежимо малы по сравнению с общими продольными деформациями. Это различие существенно изменяет математическую модель ударной системы, а следовательно, и решение ее уравнений. В связи с этим возникает необходимость корректировки математической модели и выявления основных закономерностей волновых процессов, присущих ударной системе гидравлических ударных механизмов.

Рисунок 1 – Расчетная схема

Решение этой задачи было начато в работах [3-5]. Была исследована эффективность передачи энергии удара в обрабатываемую пластину 3 при различных толщинах пластины δ₁, отношениях диаметра инструмента к толщине пластины v и отношениях толщины слоя отложения 4 к толщине пластины k_{δ} . Полученные результаты показали, что с точки зрения эффективности передачи энергии для пластин толщиной 6 мм инструмент должен иметь диаметр 15 мм, толщиной 8 мм - 20-24 мм, и для пластин толщиной 10-12 мм диаметр инструмента должен составлять 25-30 мм. При указанных размерах коэффициент передачи энергии удара в пластину по мере изменения толщины слоя отложений в результате его разрушения составляет от 0,70 до 0,95, что примерно в 1,5 раза больше по сравнению с результатами, полученными для кривошипно-коромысловых и пневматических механизмов.

В данной работе решается задача определения напряженного состояния пластины и слоя отложений при различных соотношениях параметров v и k_s .

При решении задачи движение сечений бойка и инструмента описывалось одномерными волновыми уравнениями. Их решения отыскивались методом Даламбера в виде суммы двух функций. Одна из них описывает перемещение сечений в прямой волне деформации, распространяющейся в положительном направлении оси *z*, другая – в отраженной волне, движущейся в обратном направлении. Диаметры бойка и инструмента, а следовательно, и их ударные жесткости, принимались одинаковыми, так как предшествующие исследования показали, что при этом обеспечивается наибольшая передача энергии бойка в пластину при наименьших напряжениях, возникающих в элементах системы. Длины стержней также принимались равными. В таком случае волна, отраженная от поверхности пластины, перемещается по инструменту в обратном направлении и, отражаясь от его верхнего торца, снова подходит к пластине в виде второй прямой волны деформации к моменту окончания действия первой прямой волны. Таким образом, обеспечивается непрерывное воздействие волн деформации на обрабатываемую поверхность. Боек, инструмент и пластина выполнены из стали. Двухслойная пластина, состоящая из стальной пластины и слоя отложений, приводилась к однослойной по методике, приведенной в работе [6].

Дифференциальное уравнение колебаний пластины основывалось на допущении о малом влиянии на изгиб пластины поперечных сил и напряжений, нормальных к ее нейтральной плоскости. Решение этого уравнения отыскивалось в замкнутом виде, по методике, приведенной в работе [7].

Уравнения математической модели решались при граничных условиях, выражающих равенство упругих сил в контактном сечении бойка и инструмента и в контактном сечении инструмента и пластины. При этом коэффициент жесткости контактной характеристики инструмента и пластины находился из линеаризованной характеристики Герца [7]:

$$c = 1,25K^{\frac{2}{3}}P_{km}^{\frac{1}{3}}; \quad K = \frac{2E_1}{3(1-\mu_1^2)}\sqrt{r}, \tag{1}$$

где μ_1 – коэффициент Пуассона для стали; r – радиус сферической ударной поверхности инструмента; P_{km} – максимальное значение силы в контакте инструмента с пластиной; E_1 , μ_1 – соответственно модуль упругости и коэффициент Пуассона материала стержней.

Зависимость контактной силы от времени описывается функцией

$$P_{k}(t) = P_{1}(1-q)(1-\exp(-sat)), \qquad (2)$$

где P_1 – амплитуда начальной волны деформации, $P_1 = 0.5CV_0$; *a* – скорость распространения продольной волны деформации в стержнях; *C* – ударная жесткость стержней, $C = \rho_1 aS$; *S*, ρ_1 – площадь поперечного сечения и плотность материала стержней; V_0 – скорость удара бойком по инструменту;

$$q = (\chi v_c^2 - 1) / (\chi v_c^2 + 1);$$

$$\chi = \pi \sqrt{3(1 - \mu_1^2)} / 16;$$

$$v_c^2 = v^2 / \sqrt{k_D k_m};$$

$$v = d / \delta_1;$$

d — диаметр бойка и инструмента; k_D , k_m — коэффициенты, учитывающие приведенную

Вестник КРСУ. 2015. Том 15. № 9

цилиндрическую жесткость и приведенную массу пластины,

$$\begin{aligned} k_D &= \left\lfloor 1 + 4k_E k_\delta \left(1 + 1, 5k_\delta + k_\delta^2 + 0, 25k_E k_\delta^3 \right) \right\rfloor / \left[1 + k_E k_\delta \right]; \\ k_m &= 1 + k_\rho k_\delta; \end{aligned}$$

 $k_E = E_2 / E_1;$ $k_\delta = \delta_2 / \delta_1;$ $k_\rho = \rho_2 / \rho_l;$ E_2, ρ_2 — модуль упругости и плотность материала

 E_2, ρ_2 – модуль упругости и плотность материала слоя отложений; δ_1 – толщина пластины; δ_2 – толщина слоя отложений.

Контактная сила (2) достигает максимального значения в момент времени T = 2l/a, где l – длина бойка, и равна

$$P_{km} = P_1 (1-q) (1 - \exp(-p)), \qquad (3)$$

где

$$p = 4 / \Theta(1-q); \quad \Theta = C^2 / cm$$

В качестве начальных условий принималось, что до удара боек движется со скоростью V_0 , инструмент и пластина – неподвижны.

Для оценки максимальных напряжений, возникающих на поверхности пластины и в слое отложений, использовался приближенный метод, основанный на предположении, что размеры пластины в плане таковы, что граничные условия на ее краях не оказывают влияния, по крайней мере, на первое взаимодействие инструмента с пластиной.

С учетом этого в результате совместного решения уравнений математической модели было получено выражение для амплитудной функции прогиба пластины при начале координат *x* и *y* в ее центре:

$$w(x, y) = W_0 \cos \gamma x \cos \gamma y$$

где $\gamma = \pi / \Lambda$, $\Lambda - длина$ полуволны,

$$\Lambda = 2T\sqrt[4]{D\omega^2 / m_0} ;$$

 ω – частота колебаний, $\omega = \pi/T$; W_0 – постоянная, определяемая из условий, что в момент окончания удара прогиб в центре пластины максимален [7, 8],

$$W_0 = \frac{1}{8\sqrt{Dm_0}} \int_0^t P_k(t) dt,$$

 τ – продолжительность действия контактной силы; D – приведенная цилиндрическая жесткость двухслойной пластины; m_0 – приведенная масса одного квадратного метра пластины;

$$D = D_0 k_D; \quad m_0 = \rho_1 \delta_1 k_m \,,$$

D₀ – цилиндрическая жесткость пластины без слоя шлака,

$$D_0 = E_1 \delta_1^3 / 12 \left(1 - \mu_1^2 \right).$$

Деформации, возникающие в пластине при изгибе, имеют вид

$$\varepsilon_x = -z \frac{\partial^2 w(x, y)}{\partial x^2}; \ \varepsilon_y = -z \frac{\partial^2 w(x, y)}{\partial y^2}$$

где *z* – координата сечения, отсчитываемая от нейтральной плоскости.

В двухслойной пластине нейтральная плоскость расположена на расстоянии *z*₀ от внешней поверхности пластины. При этом

$$z_{0} = \frac{E_{1}\delta_{1}^{2} + 2E_{2}\delta_{1}\delta_{2} + E_{2}\delta_{2}^{2}}{2(E_{1}\delta_{1} + E_{2}\delta_{2})}$$

Напряжения в пластине и слое шлака определяются выражениями

$$\sigma_{xi} = \frac{E_i}{1-\mu^2} \Big(\varepsilon_{xi} + \mu \varepsilon_{yi} \Big); \ \sigma_{yi} = \frac{E_i}{1-\mu^2} \Big(\varepsilon_{yi} + \mu \varepsilon_{xi} \Big),$$

где E_i , μ – соответственно приведенные модуль упругости и коэффициент Пуассона двухслойной пластины после приведения ее к однослойной; здесь и далее индекс 1 соответствует материалу пластины, 2 – материалу шлака,

$$u = \frac{\mu_1 \overline{E_1} \delta_1 + \mu_2 \overline{E_2} \delta_2}{\overline{E_1} \delta_1 + \overline{E_2} \delta_2}; \quad \overline{E_i} = \frac{E_i}{1 - \mu_i^2}$$

где μ_i – коэффициент Пуассона материалов элементов системы.

Предполагалось, что при симметричном распространении волн по поверхности пластины деформации вдоль осей *x* и *y* одинаковы ($\varepsilon_{xi} = \varepsilon_{yi}$) и имеют максимальное значение в центре пластины. Тогда с учетом представленных зависимостей выражение для определения амплитудных значений напряжений принимает вид:

$$\sigma = \frac{\overline{E}_i z}{(1-\mu)} \frac{\partial^2 w}{\partial x^2} = \frac{\overline{E}_i z}{(1-\mu)} W_0 \gamma^2.$$

В качестве примера рассмотрена модель с параметрами, такими же, как и в работе [5]: масса бойка m = 1 кг, скорость в начальный момент удара $V_0 = 3,5$ м/с, все элементы системы выполнены из стали, $\rho_1 = 7850$ кг/м³, a = 5100 м/с, $E_1 = 20,4\cdot10^4$ МПа. Для слоя отложений $\rho_2 = 2050$ кг/м³, $E_2 = 0,247\cdot10^4$ МПа, $\mu = \mu_1 = 0,3, \mu_2 = 0,15$.

Максимальные напряжения на поверхности пластины возникают в случае отсутствия на ней слоя отложений, то есть при $k_{\delta} = 0$. Формула для определения амплитудных значений напряжений в центре внешней поверхности пластины ($z = \delta_1/2$) при воздействии на нее первой волны, распространяющейся по инструменту, имеет вид:

$$\sigma_n = \frac{2\chi V_0 \rho_1 a}{\left(1 - \mu_1^2\right) \left(1 - \mu\right)} \left(1 + q\right) \left[1 - \frac{\Theta}{4} \left(1 - q\right) \left(1 - \exp(-p)\right)\right].$$
(4)

На рисунке 2 представлена диаграмма зависимости напряжений на поверхности пластины от

42

при различной толщине пластин

отношения диаметра инструмента к толщине пластины v при разных δ_1 . Кривые 1, 2, 3, 4 на рисунке соответствуют толщинам пластины 6, 8, 10, 12 мм. Линия 5 показывает величину предела пропорциональности для стали $\sigma_m = 180$ МПа.

нальности для стали $\sigma_{nu} = 180$ МПа. Из полученных результатов следует, что для пластины толщиной 6 мм ограничения на прочность пластины выполняются при значении v меньшем 2,4 (d < 15 мм), для пластины толщиной 8 мм – при v меньшем 2,7 (d < 22 мм) и для пластин толщиной 10 мм и более – при любых значениях v.

С учетом этих данных были скорректированы результаты, полученные в работе [5], по рациональным значениям параметра v и диаметрам инструмента (таблица 1).

Таблица 1 – Рациональные значения диаметров инструмента, значения коэффициента передачи энергии удара в пластину и максимальных напряжений в ней при обработке пластин различной

топшины

Толщины				
δ_1 , мм	6	8	10	12
ν	2,0-2,4	2,5–2,7	2,5-3,0	2–2,5
<i>d</i> , мм	12-14	20-22	24-30	24-30
η_1	0,70–0,99	0,70-0,95	0,70-0,95	0,70-0,90
$\sigma_{n},$ MIIa	158–180	175–180	155–157	130–131

Максимальные напряжения, возникающие в шлаке, рассчитываются отдельно для наружного слоя ($z = \delta_1 + \delta_2 - z_0$):

$$\sigma_{cH} = \frac{4E_2\chi V_0}{\left(1 - \mu_1^2\right)\left(1 - \mu\right)ak_D} \frac{1 + 2k_\delta + k_E k_\delta^2}{2\left(1 + k_E k_\delta\right)}$$
$$(1+q) \left[1 - \frac{\Theta}{4}\left(1 - q\right)\left(1 - \exp(-p)\right)\right], \tag{5}$$

и для внутреннего слоя, прилегающего к пластине ($z = \delta_1 - z_0$),

$$\sigma_{c0} = \frac{4E_2\chi V_0}{\left(1 - \mu_1^2\right)\left(1 - \mu\right)ak_D} \frac{1 - k_E k_\delta^2}{2\left(1 + k_E k_\delta\right)} \cdot \left(1 + q\right) \left[1 - \frac{\Theta}{4}\left(1 - q\right)\left(1 - \exp\left(-p\right)\right)\right].$$
(6)

Вестник КРСУ. 2015. Том 15. № 9

На рисунке 3а показаны графики функции (5), а на рисунке 3б – функции (6), где линия 1 соответствует пределу прочности материала шлака при растяжении [$\sigma_{\rm m}$] = 0,7 МПа. Кривые 2, 3, 4 соответствуют значениям v, равным 2, 3, 4.

На этих графиках видно, что изменение v от 2 до 4 при k_{δ} больше 4 не оказывает существенного влияния на напряжения в слое отложений, особенно в контакте слоя с пластиной. Во всех рассмотренных случаях напряжения на внешней поверхности слоя превышают предел его прочности, что обеспечивает разрушение слоя отложений.

Напряжения на внутренней поверхности слоя достаточны для его разрушения при определенных значениях k_{δ} . Например, при $\delta_1 = 6$ мм разрушение внутренней поверхности слоя начнется при k_{δ} меньшем 5, при $\delta_1 = 8$ мм – меньшем 3,5, при $\delta_1 = 10$ мм – меньшем 2,8. В этих случаях будет происходить объемное разрушение слоя по всей его толщине.

Интересно отметить, что максимальные напряжения на наружной поверхности слоя при всех рассмотренных толщинах пластины возникают в диапазоне изменения k_{δ} от 1 до 3. В этом же диапазоне происходит и объемное разрушение всего слоя. Следовательно, эти соотношения толщины слоя отложений и пластины являются наиболее оптимальными с точки зрения производительности процесса очистки.

В работе рассмотрены зависимости напряженного состояния пластины и слоя отложений при определенной скорости удара. При другой скорости диапазоны рациональных диаметров могут измениться. Оценка влияния скорости удара на эффективность передачи энергии удара в пластину и напряженное состояние элементов системы является задачей дальнейших исследований.

Литература

- Еремьянц В.Э., Панова Л.Т., Асанова А.А. Расчет характеристик процесса виброударной очистки поверхностей / В.Э. Еремьянц, Л.Т. Панова, А.А. Асанова // Проблемы машиностроения и надежности машин. РАН. 2012, № 6. С. 63–70.
- Еремьянц В.Э., Панова Л.Т., Асанова А.А. Выбор рациональных параметров виброударных машин для очистки поверхностей / В.Э. Еремьянц, Л.Т. Панова, А.А. Асанова // Проблемы машиностроения и надежности машин. РАН. 2013, № 6. С. 24–30.
- Еремьянц В.Э., Ню В.В. Передача энергии удара через инструмент в пластину / В.Э. Еремьянц, В.В. Ню // Вестник КРСУ. 2013. № 7. С. 36–40.
- 4. Ню В.В. Влияние параметров ударной системы "боек-инструмент-пластина" на эффективность передачи энергии удара / В.В. Ню // Современная техника и технологии в научных исследованиях: Матер. 6-й межд. конф. молодых ученых. Бишкек: Научная станция РАН, 2014. С. 176–180.
- Ню В.В. К эффективности использования энергии удара при очистке пластин гидравлическими виброударными механизмами / В.В. Ню // Современные проблемы теории машин. 2015. №3. Новокузнецк, 2015. С. 168–173.
- Королев В.И. Упругопластические деформации оболочек / В.И. Королев. М.: Машиностроение, 1971. 320 с.
- Еремьянц В.Э. Динамика ударных систем. Моделирование и методы расчета / В.Э. Еремьянц. Palmarium academic publishing. Саарбрукен. Германия, 2012. 586 с.
- Гольдсмит В. Удар. Теория и физические свойства соударяемых тел / В. Гольдсмит. М.: Стройиздат, 1965. 448 с.