УДК.: 621.315.211: 679.745. 33 - 021.121

КОНТРОЛЬ ЗА СОСТОЯНИЕМ ЭКРАНА ОДНОФАЗНОГО КАБЕЛЯ С ИЗОЛЯЦИЕЙ ИЗ СПИТОГО ПОЛИЭТИЛЕНА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ.

К. Б. Такырбашев, КГТУ им. И. Раззакова

Рассматривается методика расчета выбора способа заземления экрана кабеля и алгоритм контроля за состоянием экрана кабеля в зависимости от протекающего тока по жиле кабеля. Приведены практические расчеты для конкретного объекта и схема реализации алгоритма контроля за состоянием экрана кабеля.

The method of calculation of a choice of a way of grounding of the screen of a cable and algorithm of contra of a condition of the screen of a cable depending on proceeding current on a cable vein is considered. Practical calculation for concrete object and the scheme of realization of algorithm of control of a condition of the screen of a cable are given.

В настоящее время кабельные линии 6-10 кВ г. Бишкек с бумажной изоляцией меняют на новые кабеля с изоляцией из сшитого полиэтилена однофазного исполнения.

Актуальность темы заключается в том, что в процессе эксплуатации кабельной сети, не контролируются состояние изоляции, температура вибрации, токи в экранах кабеля в режиме реального времени, т.е. он-лайн режиме.

В современных микропроцессорных терминалах защиты и автоматики отсутствуют функции диагностики контроля состояния экрана кабеля и температурного режима кабеля, а также регистрация частичных разрядов. Решение вышеперечисленных актуальных задач позволит устройствам релейной защиты стать профилактическим средством защиты.

Новизной данной статьи является контроль состояния заземления экрана кабелей 6, 10, 35 кВ в режиме он-лайн. Предложен алгоритм диагностирования состояния экрана кабеля, адаптированного в зависимости от проходящего тока по жиле кабеля.

Цель исследования заключается в том, чтобы создать новый алгоритм, диагностирующий состояние экрана кабеля.

Задача исследования:

- обеспечение отказа устойчивости,
- надежное электроснабжение потребителей,
- высокий уровень автоматизации,
- профилактическая защита с функцией диагностики кабельных линий,
- выявление дефектов в экране кабеля.

Особенностью однофазного силового кабеля 6- $10~\mathrm{kB}$ с изоляцией из сшитого полиэтилена — это экран.

Рассмотрим поперечное сечение однофазного кабеля из сшитого полиэтилена (рис. 1).

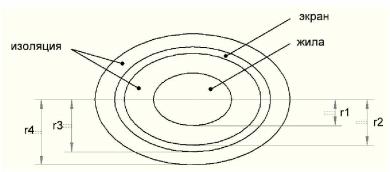


Рис. 1. Однофазный кабель с изоляцией из сшитого полиэтилена.

При эксплуатации однофазного кабеля из сшитого полиэтилена возникает проблема заземления экрана. По нормативно-технической документации [1,2] необходимо заземлять экран кабеля с 2-х сторон. В этом случае, в зависимости от протекающего тока по жиле кабеля, возникает ток экрана, примерно составляющий 80% от протекающего тока по жиле кабеля. Отсюда возникают потери и нагрев изоляции и, как следствие, происходит пробой изоляции.

Постановка задачи исследования.

Контроль за состоянием заземления экрана кабеля влияет:

- на величину тока в экране в нормальных и аварийных режимах и при неправильном заземлении экрана, что может привести к повреждениям.
 - на электрические потери в экране, а значит, на его тепловой режим и пропускную способность.
- на величину напряжения в экране в нормальных и аварийных режимах (при его заземлении), т.е. на надежность режима кабеля и безопасность его обслуживания.
 - на основные электрические параметры кабеля (активное и индуктивное сопротивление).

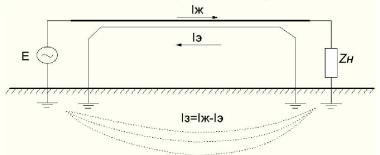


Рис. 2. Однофазная сеть, включающая источник, кабель, нагрузку.

Сегодня имеются многочисленные факторы неправильного заземления экранов однофазных кабелей, находящихся в эксплуатации.

Исследование.

Для исследования методики упрощенного расчета заземления экрана однофазного кабеля [3], основанных на известных формулах для собственных и взаимных активно-индуктивных сопротивлений многопроводной системы «провода – земля».

На основе этой методики можно создать функции диагностики УРЗА за состоянием экрана.

На основании методики упрощенного расчета экрана создан алгоритм диагностики: вводятся паспортные данные кабеля и в режиме он-лайн контролируется состояние экрана кабеля.

Механизм появления токов и напряжений в экранах.

Для объяснения рассмотрим однофазную сеть (рис. 2) $\dot{I}_{\mathcal{K}} = \dot{I}_{\ni} + \dot{I}_{\exists}$.

Ток в земле I_3 будет возвращаться от нагрузки в источник, занимая всю толщу земли, протекая через нагрузку, возвращается через толщу земли в источник. Распределенный ток в земле протекает на одной определенной эквивалентной глубине D_3 , что составляет несколько сотен метров. При определении параметров кабеля приняты следующие допущения:

- геометрия расположения в пространстве 3-х фазной системы кабелей такова, что $S \rangle r_3$.
- если фазы кабеля расположены в вершинах равностороннего треугольника, то $s=d_{AB}=d_{BC}=d_{AC}$; если фазы кабеля расположены на одном уровне, то $d_{AC}=2d_{AB}=2d_{BC}$; в случае транспозиции жил кабеля $s'=d_{AB}\cdot d_{BC}\cdot d_{AC}=1,26\cdot d_{AB}$.
- экран кабеля упрощенно считаем $r_3 > (r_3 r_2)$, это позволяет пренебречь конечной толщиной экрана и в расчетах использовать лишь внутренний радиус.
 - пренебрегаем токами смещения в земле.
 - пренебрегаем эффектом близости на промышленной частоте.

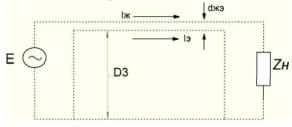


Рис. 3. Однофазная сеть, для которой показаны условные контуры с токами.

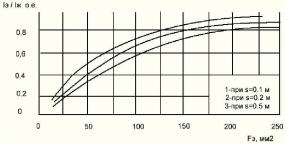


Рис. 4. Ток в экране однофазного кабеля по сравнению с током в жиле (в симмметричном режиме) в зависимости от сечения экрана F_{\ni} и расстояния s между кабелями (между центрами) соседних фаз. Сечените жилы $F_{\infty} = 500 \text{ мм}^2$, экран заземлен в обоих концах кабеля.

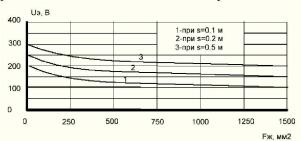


Рис. 5. Напряжение на экране однофазного кабеля (в симметричном режиме) в схеме рис. 7 в зависимости от сечения жилы F_{∞} и расстояния s между кабелями (между центрами) соседних фаз. Напаряжение дано в расчете на длину кабеля 1000 м в жиле 1 000 A. Сечение экрана F_{\ni} любое, экран заземлен только на одном конце кабеля.

Уравнение, описывающее взаимодействие контуров (рис. 2, 3) следующее:

$$\Delta \dot{U}_{\mathcal{K}} = \dot{I}_{\mathcal{K}} \cdot \dot{Z}_{\mathcal{K}} + \dot{Z}_{\mathcal{K}\ni} \cdot \dot{I}_{\ni}$$

$$\Delta \dot{U}_{\ni} = \dot{I}_{\ni} \cdot \dot{Z}_{\ni} + \dot{I}_{\mathscr{K}} \cdot \dot{Z}_{\mathscr{K}\ni}$$
 , где $\Delta \dot{U}_{\mathscr{K}} = \dot{E} - \dot{I}_{\mathscr{K}} \cdot \dot{Z}_{\mathscr{K}}$ - продольное напряжение на жиле.

 $\Delta \dot{U}_{\ni}$ - продольное напряжение на экране.

 $R_{\mathcal{K}}$, $R_{\mathfrak{I}}$, $R_{\mathfrak{I}}$ - активное сопротивление жилы, экрана, земли.

В случае заземления экрана однофазного кабеля с двух сторон $\Delta \dot{U}_{\ni} = 0$

$$0 = \dot{Z}_{\ni}\dot{I}_{\ni} + \dot{Z}_{\mathscr{H}\ni} \cdot \dot{I}_{\mathscr{H}}; \quad \dot{Z}_{\ni}\dot{I}_{\ni} = -\dot{Z}_{\mathscr{H}\ni} \cdot \dot{I}_{\mathscr{H}} \quad \frac{\dot{I}_{\ni}}{\dot{I}_{\mathscr{H}}} = -\frac{\dot{Z}_{\mathscr{H}\ni}}{\dot{Z}_{\ni}} = -\frac{R_{3} + j \cdot \omega \cdot M_{\mathscr{H}\ni}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} \qquad \left| \frac{I_{\ni}}{I_{\mathscr{H}}} \right| \langle 1 + i \cdot \hat{I}_{\mathscr{H}} \rangle = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni} + j \cdot \omega \cdot L_{\ni}} = -\frac{i \cdot \hat{I}_{\mathscr{H}}}{R_{3} + R_{\ni}} = -\frac{i \cdot \hat{$$

В случае, если экран однофазного кабеля заземлен с одной стороны: $I_{\ni}=0$ $\Delta \dot{U}_{\ni}=\dot{Z}_{\mathscr{K}}+\dot{I}_{\mathscr{K}}$

В случае 3-х фазной группы однофазных кабелей, взаимодействие контуров будет относительно шести напряжений и шести токов

$$\begin{split} \Delta \dot{U}_{\mathcal{H}\!A} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!A} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!A} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!B} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!C} + \dot{I}_{\mathcal{H}\!C}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!B} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!B} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!B} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!A} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!C} + \dot{I}_{\mathcal{H}\!C}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!C} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!A} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!B} + \dot{I}_{\mathcal{H}}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!A} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!A} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!A} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!B} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!C} + \dot{I}_{\mathcal{H}\!C}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!B} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!B} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!B} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!A} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!C} + \dot{I}_{\mathcal{H}\!C}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!C} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!A} + \dot{I}_{\mathcal{H}}) + \dot{Z}_{\mathcal{K}} (\dot{I}_{\mathcal{H}\!B} + \dot{I}_{\mathcal{H}\!B}) \cdot \\ \Delta \dot{U}_{\mathcal{H}\!C} &= \dot{Z}_{\mathcal{H}} I_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{H}\!\Im} \dot{I}_{\mathcal{H}\!C} + \dot{Z}_{\mathcal{H}\!A} \dot{I}_{\mathcal{H}\!A} + \dot{Z}_{\mathcal{H}\!A} +$$

Таким образом, справедливо $(I_{\mathcal{H}\mathcal{B}}+I_{\mathcal{B}})\approx 0$ и $(\dot{I}_{\mathcal{K}}+\dot{I}_{\mathcal{K}})\approx 0$, т.е. фазы B, C не могут компенсировать влияние тока жилы фазы A на ток в экране фазы A.

Следовательно, механизм возникновения токов в экранах остается справедливым и для групп из 3-х однофазных кабелей. Для определения погонных продольных активно-индуктивных сопротивлений 3-хфазной системы однофазных кабелей токами прямой и нулевой последовательностей, которые используются в расчетах нормальных и аварийных режимов работы сети необходимо указать граничные условия и состояния экрана, от которого зависят параметры кабеля ([3]).

Таблица 1. Состояние экрана и граничные условия.

№	Состояние экрана	Схема	Граничные условия
1	Разземлен	А	$I_{\ni A}=0$ $I_{\ni B}=0$ $I_{\ni C}=0$
2	Заземлен с одной стороны	А В Іжа — В Іка — В І	$I_{\Im A} = 0$ $I_{\Im B} = 0$ $I_{\Im C} = 0$
3.	Заземлен с двух сторон	А	$\Delta \dot{U}_{\mathcal{A}} = 0$ $\Delta \dot{U}_{\mathcal{B}} = 0$ $\Delta \dot{U}_{\mathcal{B}} = 0$

Примечания.

В п. 2 таблицы пренебрегаем емкостными токами в начале кабеля.

В п. 3, 4 пренебрегаем сопротивлениями заземления экрана.

В п. 4 необходимо учесть граничные условия для токов в узлах транспозиции, для чего система (1) записывается для каждого участка между узлами транспозиции (т.е. 3 раза при N=1) и токи в экранах (а также напряжения) в конце участка приравниваются к токам (и напряжениям) в начале другого участка в соответствии с рисунком.

Результаты расчета КЛ- 35 кВ от ПС Южная до ПС Центральная-2

В расчетах необходимо задать геометрию кабеля рис. 1, сечение жилы $F_{\mathbb{R}}$ и сечение экрана F_{9} , а также толщину $d_{\mathbb{X} \ni}$ изоляции << жила-экран.

$$r_1 = \sqrt{\frac{F_{\mathcal{K}}}{\pi}}; \quad r_2 = r_1 + d_{\mathcal{K}\ni}; \quad r_3 = \sqrt{r_2^2 + \frac{F_{\ni}}{\pi}}$$

Принимаем $d_{\mathcal{H}\ni} = 3,4$ мм

По упрощенной методике расчета получены расчетные кривые для кабеля 10 кВ с изоляцией из сшитого полиэтилена рис. 4, рис. 5. [4].

Паспортные заводские данные для расчета

 $F_{x} = 240 \text{ мм}^2$ - сечение жил кабеля (алюминий).

 $F_2 = 28 \text{ мм}^2$ - сечение экрана кабеля (алюминий).

 r_{x} = 18,2 мм – радиус жилы.

 $r_9 = 28.8 \text{ мм} - \text{радиус экрана.}$

 $I_{x} = 380 \text{ A} - \text{номинальный ток}$

 $r_{\kappa} = 31,45 \text{ мм} - \text{внешний радиус кабеля.}$

 $\rho_{\rm sc} = 0.028$ мком · метр алюминий.

 $\rho_9 = 0.028$ мком · метр алюминий.

Длина кабеля L = 3300 м.

 $ho_{cp.} = 184~{\rm Om\cdot metp}$ — среднее удельное сопротивление грунта. $I_{\kappa_3}^{(3)} = 3500~{\rm A}$ — ток трехфазного короткого замыкания вне кабеля.

S = 0.1 м (взято из расчета) – расстояние между кабелями соседних фаз.

Рассмотрим два случая заземления экрана.

Первый случай. Экран заземлен с одной стороны кабеля, а второй конец экрана кабеля не заземлен.

Используем методику расчета профессора д.т.н. Евдокунина, напечатанного в журнале № 5 (83) 2013 г. Новости электротехники.

По графику $U_{\ni F}=f(F_{\bowtie})$ при s = 0,1 м в зависимости от сечения жил выбираем $U_{\ni F}=175 a$, а в случае s = 0,2 м $U_{\mathcal{P}} = 200 a$, т.е. чем больше s, тем больше напряжение на экране.

Где $U_{\ni r}$ - напряжение на экране, взятых по графику.

 U_{2} - напряжение кабеля реальное.

$$U_{\textit{GF}} = 175 \mathbf{6} \cdot \frac{3300 \textit{M}}{1000} \cdot \frac{380 \textit{A}}{1000} = \frac{175 \cdot 33 \cdot 38}{1000} = \frac{219450}{1000} = 219,45 \mathbf{6}$$

Это означает, что при протекании номинального тока по жиле кабеля, равного 380 в, на свободном незаземленном конце появляется 219,45в.

Рассчитаем напряжение на экране в случаях трехфазного короткого замыкания кабельной линии

$$U_{\ni T} = 175 \mathbf{6} \cdot \frac{3300 \mathit{M}}{1000} \cdot \frac{3500 \mathit{A}}{1000} = \frac{175 \cdot 33 \cdot 35}{1000} = \frac{219450}{100} = 2021{,}25 \mathbf{6}$$

Второй случай. Когда экран кабельной линии заземлен с двух сторон кабеля. $\Delta U_{\ni} = 0$

Применяются следующие формулы для расчета тока I_{\ni} .

$$\begin{split} \frac{I_{\ni}}{I_{_{\mathcal{H}}}} &= -\frac{Z_{_{\mathcal{H}\!\ni}}}{Z_{\ni}} = -\frac{R_3 + j\cdot\omega\cdot\mu_{_{\mathcal{H}\!\ni}}}{R_3 + R_{\ni} + j\cdot\omega\cdot L_{_{\mathcal{H}\!\ni}}} \qquad \mu_{_{\mathcal{H}\!\ni}} = L_{_{\mathcal{H}\!\ni}} \\ D_3 &= 2,24\sqrt{\frac{\rho_3}{\omega\cdot\mu_0}} \text{ - эквивалентная} \end{split}$$

D₃ – эквивалентная глубина земли.

 $R^*_{\text{земли}} = \frac{\pi}{4} \cdot \mu_0 \cdot f \cdot \rho_{\text{земли}}$ - относительное активное сопротивление земли.

Выводим постоянные из формул:

$$\begin{split} L_{\Im} &= \ln \Biggl(120 \cdot \frac{\sqrt{\rho}_{3}}{r_{\Im}} \Biggr) \cdot l \cdot 2 \cdot 10^{-7} = 0,\!139 \varepsilon H \\ &\frac{I_{\Im}}{I_{\mathcal{K}}} = -\frac{R_{3} + j \cdot \omega \cdot \mu_{\Im \mathcal{K}}}{R_{3} + R_{\Im} + j \cdot \omega \cdot L_{\Im}}; \\ R_{3} &= R_{\Im}^{*} \cdot 3300 M = 9,\!07 \cdot 10^{-3} \cdot 3300 M = 30 O M \\ &\frac{I_{\Im}}{I_{\Im \mathcal{K}}} = -\frac{30 + j \cdot 2\pi \cdot f \cdot \mu_{\Im \mathcal{K}}}{30 + j \cdot 3,\!3 + j \cdot 2\pi \cdot f \cdot L_{\Im}} = -\frac{30 + j \cdot 314 \cdot 0,\!139}{33,\!3 + j \cdot 314 \cdot 0,\!139} = -\frac{30 + j \cdot 43,\!6}{33,\!3 + j \cdot 43,\!6} = -\frac{53}{55} = 0,\!96; \end{split}$$

Заземлять экран с двух сторон запрещается. Необходимо применить способ транспозиции секций кабеля. Предлагается следующий алгоритм диагностики и схемы реализации

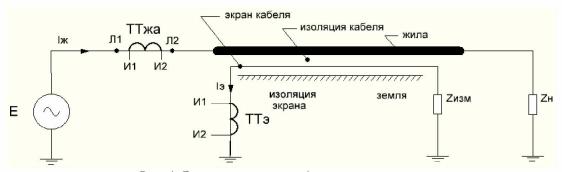


Рис. 6. Схема расположения датчиков тока и сопротивления.

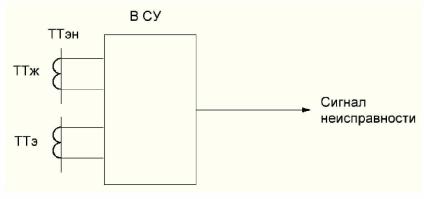


Рис. 7. Сравнивающее устройство тока, тока жилы и тока экрана.

Принцип работы алгоритма.

В каждой фазе экрана устанавливается трансформатор тока с $k_{\rm TT}$ = 1/1. В отсоединенный конец кабеля подсоединяется резистор сопротивлением 1 кОм.

Сравниваются ток в жиле и ток в экране в зависимости от режима нагрузки:

Если соотношение этих токов изменяется, тогда компаратор перекидывается и выдает сигнал неисправности, по дисплею УРЗА читаем состояние экрана.

Заключение.

В процессе исследования получен новый алгоритм диагностики состояния экрана кабеля. На основе алгоритма разработана схема распознавания неисправности экран однофазного силового кабеля в режиме он-лайн имеет ценное практическое значение при эксплуатации кабеля.

Методику расчета заземления экрана кабеля рекомендуется применять в практических расчетах.

Литература.

- 1. ПТЭ.
- 2. ПУЭ.
- 3. Евдокунин Г. А., Дмитриев М. В. Однофазные силовые кабели 6-500 кВ. Расчет заземления экранов. // Новости электротехники, №2 (44), 2007
- 4. Евдокунин Г. А., Дмитриев М. В. Однофазные кабели 6-10 кВ с изоляцией из сшитого полиэтилена. Расчет заземления экранов // Новости электротехники, № 5 (47), 2008

УДК.:62-784.4:658.26:621.362

СХЕМЫ ПЫЛЕПРИГОТОВЛЕНИЯ СОВРЕМЕННЫХ ТЭЦ И ПУТИ АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВЫРАБОТКИ ТЕПЛОВОЙ И ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Гинятуллина А. М., Кадыров И.Ш. КГТУ им. И. Раззакова; E-mail:almirag@mail333.com,

MODERN SCHEMES OF COAL PULVERIZATION AND WAYS OF TECHNOLOGICAL-PROCESS AUTOMATION ON GENERATION OF HEAT AND ELECTRICAL ENERGY

A. Giniatullina, Kadyrov I. Sh.

Kyrgyz State Technical University named I.Razzakov E-mail: almirag@mail333.con,

В статье дается описание технологического процесса выработки тепловой и электрической энергии и определены пути для его автоматизации.

This article describes the technological process of heat and electrical energy and the ways for its automation.

Введение. Одной из предпосылок автоматизации котлов ТЭЦ является рациональное управление технологическими параметрами оборудования с использованием передовой технологии управляющих устройств, отвечающей современным стандартам по безопасности и энергосбережению. Исходными данными при построении новых схем управления котлом по-прежнему является изменение подачи топлива во всем диапазоне нагрузок без отключения и включения отдельных горелок. Из сказанного выше вытекает, что общей задачей автоматического регулирования является поддержание оптимальных условий протекания какого-либо технологического процесса без вмешательства человека.

В энергосистеме ТЭЦ такими условиями являются соответствие между электрической нагрузкой турбогенератора и производительностью котлоагрегата, поддержание давления и температуры пара в заданных пределах; экономичное сжигание топлива; соответствие производительности питательной установки нагрузке котлоагрегатов, а также поддержание стабильных значений параметров ряда вспомогательных процессов. Перечисленные выше условия выполнимы в том случае, если основной компонент производства, топливный продукт сжигания в котлоагрегатах, обладает значительным удельным тепловыделением.

Основными видами топлива, используемыми при производстве тепла и электричества, являются топливные ископаемые: угли, торф, горючие сланцы, мазут, природный газ. Вид основного топлива обычно

Принцип работы алгоритма.

В каждой фазе экрана устанавливается трансформатор тока с $k_{\rm TT}$ = 1/1. В отсоединенный конец кабеля подсоединяется резистор сопротивлением 1 кОм.

Сравниваются ток в жиле и ток в экране в зависимости от режима нагрузки: Если соотношение этих токов изменяется, тогда компаратор перекидывается и выдает сигнал неисправности, по дисплею УРЗА читаем состояние экрана.

Заключение.

В процессе исследования получен новый алгоритм диагностики состояния экрана кабеля. На основе алгоритма разработана схема распознавания неисправности экран однофазного силового кабеля в режиме он-лайн имеет ценное практическое значение при эксплуатации кабеля.

Методику расчета заземления экрана кабеля рекомендуется применять в практических расчетах.

Литература.

- 1. ПТЭ.
- 2. ПУЭ.
- 3. Евдокунин Г. А., Дмитриев М. В. Однофазные силовые кабели 6-500 кВ. Расчет заземления экранов. // Новости электротехники, №2 (44), 2007
- 4. Евдокунин Γ . А., Дмитриев М. В. Однофазные кабели 6-10 кВ с изоляцией из сшитого полиэтилена. Расчет заземления экранов // Новости электротехники, № 5 (47), 2008