

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТЕЧЕНИЯ РАСПЛАВА КАТОДА ЭЛЕКТРИЧЕСКОЙ ДУГИ

ЖАЙНАКОВ А., УРУСОВА Т.Э.

Институт физико-технических проблем и материаловедения НАН КР izvestiya@ktu.aknet.kg

В рамках численного моделирования рассматривается роль электромагнитных сил и сил вязкого трения с потоком дуговой плазмы в формировании течения в расплаве катода; проводится сравнительная оценка влияния каждой из указанных сил в отдельности. Выявлено, что картина течения расплава формируется главным образом электромагнитными силами.

Сварка сильноточной электрической дугой с плавящимся катодом сопровождается формированием на торце катода капли расплавленного металла [1]. Процесс формирования, роста и последующего отрыва капли от катода является нестационарным, но в целом имеет периодический характер. Как показывают опытные наблюдения, размеры капли расплава соизмеримы с радиальными размерами катода и могут составлять несколько миллиметров, а время от начала формирования капли до ее отрыва от катода может достигать нескольких секунд. За это время в результате воздействия различных факторов в капле формируется определенная картина течения, оказывающая заметное влияние на протекающие в ней физико-химические процессы. Например, реакции между компонентами сварочных материалов – металл электрода, покрытие, легирующие добавки и пр.

Одними из факторов, формирующих гидродинамику расплава, являются электромагнитные силы F_{mag} и силы вязкого трения F_{wis} с потоком дуговой плазмы. В настоящей статье рассматривается роль F_{mag} и F_{wis} в формировании течения расплава и проводится сравнительная оценка влияния каждой из указанных сил в отдельности. Отметим, что сложная функциональная связь физических процессов, формирующих течение расплава катода, затрудняет численное решение задачи в общей постановке, и это обстоятельство заставляет использовать ряд упрощений.

Постановка задачи. В цилиндрической системе координат *z*, *r*, θ рассчитывается открытая электрическая дуга силой тока *I* = 300 A, межэлектродным расстоянием *L* = 5 мм, горящая в аргоне атмосферного давления; на торце стального катода радиусом $R_c = 2$ мм имеется капля расплавленного металла (рис. 1*a*). Рассматриваются три формы капли с условным названием короткая, длинная и широкая; размеры и форма капли приведены на рис. 1 *b* – *d*; для простоты численных расчетов криволинейная поверхность капли аппроксимируется прямыми отрезками. Для каждой из форм капли проведены расчеты при различных значениях радиуса r_c катодной привязки дуги на капле расплава: 1,5; 2 и 2,5 мм в случае широкой капли.

Рис. 1. Условная схема дуги с плавящимся катодом «-» (*a*); размеры и форма капли расплава: короткая (*b*), длинная (*c*), широкая (*d*)

Отметим, что при рассмотрении влияния радиуса катодной привязки дуги на течение расплава, определяющим фактором являются не численные значения r_c как таковые, а именно соотношения с радиусом стержневого катода R_c : $r_c < R_c$, $r_c = R_c$ либо $r_c > R_c$. Катодная привязка дуги полагается осесимметричной, равномерно в направлении θ рассредоточенной на поверхности расплава.

Сделанные упрощения позволяют исключить из рассмотрения деформацию поверхности капли, силу тяжести и силу поверхностного натяжения, гравитационную конвекцию и конвекцию Марангони.

Тепловое состояние анода не рассматривается и в качестве анода принята неплавящаяся медная пластина с заданным распределением температуры $T_a(r)$; радиус анодной привязки дуги определяется в процессе численного решения.

Расчеты выполнены в рамках двухмерной математической модели частичного локального термодинамического равновесия плазмы [2]. Полагалось, что протекающие процессы являются стационарными, течение ламинарным, излучение объемным, приэлектродные процессы не рассматриваются, индукционными токами в расплаве катода пренебрегается. Наличие электродов и расплава в расчетной области *ABCDE* (см. рис. 1*a*) учитывается методом фиктивных областей (МФО); методические аспекты численного решения в рамках МФО изложены в [3, 4].

Дискретизация дифференциальных уравнений и итерационное решение разностного аналога проводятся по методике [5]. Динамические характеристики (скорость, давление) рассчитываются по алгоритму SIMPLE'R [5].

Для расплава стального катода используются следующие средние значения теплофизических свойств: плотность $\rho = 8 \cdot 10^3 \text{ кг/м}^3$, электропроводность $\sigma = 10^6 (\text{Ом·м})^{-1}$, вязкость $\mu = 7 \cdot 10^{-3} \text{ кг/(м·с)}$, температура плавления $T^* = 1750 \text{ K } [6, 7]$.

На представленных далее рисунках приведена не вся расчетная область, а только центральные фрагменты; при изображении векторных полей скорости масштаб векторов не выдержан.

Для рассматриваемых форм капли расплава расчетные распределения характеристик столба дуги качественно близки между собой и имеют традиционный вид [8, 9]; лишь при различных значениях радиуса катодной привязки дуги наблюдаются количественные различия.

Рассмотрим характеристики течения расплава; максимальные значения скорости V и интенсивности циркуляции G (абсолютные значения) для различных форм капли приведены в таблице 1.

Таблица 1

циркуляции G расплава для различных форм капли; $r_c = 1,5$ мм < K_c .									
	короткая капля		длинная		широкая				
	<i>V</i> , см/с	<i>G</i> , г/с	<i>V</i> , см/с	<i>G</i> , г/с	<i>V</i> , см/с	<i>G</i> , г/с			
$F_{mag+wis}$	14	1,9	14,4	2,6	15,6	4,1			
F_{mag}	9,1	1,6	11,7	2,1	12,4	3,5			
F_{wis}	11,5	0,7	11,5	1,3	11,6	1,1			

Расчетные значения скорости V и интенсивности уляции G расплава для различных форм капли: r_e = 1.5 мм < R

Картина течения расплава (векторное поле скорости) в короткой капле для варианта $r_c = 1,5$ мм $< R_c$ приведена на рис. 2 *а*.

Рис. 2. Векторные поля скорости V в капле расплава: a – результат совместного воздействия $F_{mag+wis}$; b – результат воздействия F_{wis} . $r_c = 1,5$ мм < R_c .

В результате совместного воздействия $F_{mag+wis}$ формируется тороидальный вихрь правовинтового направления вращения. Наибольшие значения (см. табл. 1) скорости реализуются

на внешней поверхности капли в области $r \approx 1 - 1,5$ мм, $z \approx 1 - 1,5$ мм; внутри капли скороститечения восходящего потока почти вдвое ниже.

Рассмотрим отдельно друг от друга роль F_{mag} и F_{wis} в формировании течения расплава. В результате вязкого взаимодействия с потоком дуговой плазмы в капле формируется одиночный тороидальный вихрь правовинтового направления вращения (рис. 2 *b*). Наибольшие значения скорости реализуются на горизонтальной поверхности капли z = 1,5 мм и приосевой области r < 0,5 мм.

На рис. З приведены картина течения расплава в результате воздействия электромагнитных сил и векторное поле F_{mag} . В капле формируются два тороидальных вихря: большой правовинтового и малый вихрь левовинтового направления вращения. Малый вихрь, как показал дополнительный численный анализ, обусловлен воздействием именно электромагнитных сил, а не является вторичным течением, порожденным большим вихрем. Наибольшие значения скорости реализуются на внешней поверхности $r \approx 1,5$ мм, $z \approx 1$ мм и в центральной области расплава $r \approx 0,5$ – 1 мм, $z \approx 0,5$ мм; в области малого вихря скорость течения в несколько раз меньше.

Сравнение показывает, что воздействие каждой из сил F_{mag} и F_{wis} формирует в целом идентичную картину течения расплава, т.е. силы F_{mag} и F_{wis} содействуют друг другу. Исключение составляет участок вблизи горизонтальной поверхности капли, где малый вихрь (см. рис. 3 *a*), обусловленный воздействием F_{mag} , противодействует течению, формируемому F_{wis} .

Рис. 3. Векторное поле скорости V(a) в капле расплава в результате воздействия электромагнитных сил $F_{mag}(b)$; $r_c = 1,5$ мм $< R_c$.

С переходом к длинной и широкой форме капли течение расплава не претерпевает существенных изменений и в целом является аналогичным рассмотренно-му выше течению. Как совместное, так и отдельное воздействие F_{mag} и F_{wis} формирует одиночный вихрь правовинтового направления вращения (за исключением малого вихря в случае воздействия F_{mag}). Различия наблюдаются только лишь в численных значениях расчетных характерис-тик. Причем для различных форм капли максимальная скорость течения расплава примерно одинаковая, а различия в интенсивности циркуляции расплава обусловлены различием размеров капли, и, следовательно, массы движущегося расплава.

Оценим влияние радиуса r_c катодной привязки дуги на течение расплава; расчетные данные для случая $r_c = R_c$ приведены в таблице 2.

						Табл	ица 2
	короткая капля		длинная		широкая		
	<i>V</i> , см/с	<i>G</i> , г/с	<i>V</i> , см/с	<i>G</i> , г/с	<i>V</i> , см/с	<i>G</i> , г/с	
$F_{mag+wis}$	6,7	0,7	8,1	0,7	10,5	2,8	
F_{mag}	3,1	0,2	1,8	0,3	7,3	2,1	
F_{wis}	9,6	0,6	9,7	2,1	9,7	1,1	

. Расчетные значения скорости и интенсивности циркуляции расплава для различных форм капли; $r_c = 2 \text{ MM} = R_c$

Сравнение вариантом $r_c < R_c$ (см. табл. 1) показывает, что в ситуации $r_c = R_c$ происходи снижение скорости и интенсивности циркуляции расплава. Это особенно заметно на примере отдельного воздействия F_{mag} , в то время как расчетные значения V и G, обусловленные F_{wis} , остаются приблизительно одинаковыми.

Снижение V и G отчасти обусловлено уменьшением плотности тока и, следовательно, уменьшением F_{mag} ; но главная причина заключается в изменении направления воздействия электромагнитных сил.

Рассмотрим длинную каплю расплава, картина течения в которой при совместном воздействии $F_{mag+wis}$ приведена на рис. 4*a*. Вблизи внешней поверхности капли скорость течения расплава достигает значений ≈ 8 см/с, но значительно меньше $\approx 0,1$ см/с во внутренних областях; как следствие, интенсивность циркуляции по сравнению с вариантом $r_c < R_c$ снижается почти вчетверо. Вместе с тем, одно только вязкое взаимодействие с потоком дуговой плазмы обеспечивает более высокие значения скорости, особенно внутри капли, и интенсивности циркуляции (см. табл. 2).

В широкой капле при условии $r_c = R_c$ также происходит снижение скорости и интенсивности циркуляции расплава по сравнению с вариантом $r_c < R_c$. Однако в отличие от короткой или длинной капли, во-первых, изменения не столь значительны, во-вторых, причина изменений иная.

Дело в том, что радиус широкой капли 2,5 мм больше радиуса катода $R_c = 2$ мм и радиуса привязки дуги $r_c = 2$ мм и поэтому имеет место некоторое расширение и сужение токопроводящей области. Это обусловливает неравномерное в аксиальном направлении сжатие расплава электромагнитными силами и формирование течения в виде вихревых структур, причем в капле доминирует течение с правовинтовым направлением вращения.

Дальнейшее увеличение радиуса катодной привязки от $r_c = 2$ до 2,5 мм > R_c приводит к еще большему снижению скорости течения и интенсивности циркуляции расплава. Совместное воздействие $F_{mag+wis}$ формирует в капле расплава два вихря противоположного направления вращения (рис. 8 *a*). Скорость течения V = 6,7 см/с и интенсивность циркуляции расплава G = 1 г/с сравнительно невысокие; при этом одно только вязкое взаимодействие с потоком дуговой плазмы формирует во всем объеме капли одиночный вихрь правовинтового направления вращения с расчетными значениями V = 8,4 см/с, G = 1,6 г/с.

Уменьшение скорости течения и интенсивности циркуляции расплава обусловлено изменением радиуса r_c катодной привязки дуги, и, как следствие, изменением направления воздействия электромагнитных сил. В данном случае F_{mag} по-прежнему формируют течение расплава в виде вихревых структур (рис. 8 *b*), однако в отличие от вариантов $r_c < R_c$ и $r_c = R_c$ в капле расплава доминирует течение с левовинтовым направлением вращения, еще больше противодействующее течению, обусловленному вязким взаимодействием с потоком плазмы.

В рамках принятых допущений в рассмотренном диапазоне внешних параметров дуги, размеров и формы капли, картина течения расплава формируется главным образом электромагнитными силами.

Влияние F_{mag} в значительной степени определяется соотношением между радиусом r_c катодной привязки дуги и радиусом катода R_c , а также формой капли расплава. Электромагнитные силы могут формировать, а могут блокировать течение расплава. В первом случае течение реализуется в виде вихревых структур, причем в капле расплава может доминировать течение как левовинтового, так и правовинтового направления вращения. Силы вязкого трения F_{wis} с потоком дуговой плазмы формируют одиночный вихрь правовинтового направления вращения.

Литература

- 1. Ерохин А.А. Основы сварки плавлением. М: Машиностроение, 1973. 448 с.
- 2. Низкотемпературная плазма. Т. 1. Теория столба электрической дуги / Под ред. Энгельшта В.С., Урюкова Б.А. Новосибирск: Наука, 1990.–374с.
- 3. Урусов Р.М., Урусова Т.Э. Применение метода фиктивных областей для расчета характеристик электрической дуги // ТВТ. 2004. Т.42. № 3. С. 374 382.
- 4. Жайнаков А., Урусов Р.М., Урусова Т.Э. Численный анализ электрических дуг в нерегулярных областях. Бишкек, 2007. 196 с.
- 5. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. 146 с.

- Шпильрайн Э.Э., Фомин В.А., Сковородько С.Н., Сокол Г.Ф. Исследование вязкости жид. металлов. – М: Наука, 1983. – 243 с.
- 7. Зиновьев В.Е. Кинетические свойства металлов при высоких температурах. М.: Металлургия, 1984. 200 с.
- 8. Финкельнбург В., Меккер Г. Электрические дуги и термическая плазма. М.: ИЛ, 1961. 370 с.
- 9. Низкотемпературная плазма. Т. 7. Сильноточный дуговой разряд в магнитном поле / Под ред. Жукова М.Ф., Урюкова Б.А. – Новосибирск: Наука, 1992. – 267 с.