НАНОСТРУКТУРИРОВАНИЕ АЛЮМИНИЯ ИЗ ИМПУЛЬСНОЙ ПЛАЗМЫ В ОДНОАТОМНЫХ СПИРТАХ

Бул иште суюктуктарда импульстук плазма энергиясын колдонуу менен алюминийди диспергирлөөдө продуктунун составына бир атомдуу спирттердин тийгизген таасири изилденген.

В работе исследовали влияние одноатомных спиртов на состав продуктов диспергирования алюминия с использованием энергии импульсной плазмы в жидкостях.

In work influence of mono – atomic alcohols on composition of products of aluminum dispergating with use of energy of pulse plasma in liquids was investigated.

Алюминий – легкий металл серебристо-белого цвета, обладает высокой тепло- и электропроводностью, стойкостью к коррозии. Это простое вещество находит применение во многих сферах, без него не могли бы существовать в современном виде целые отрасли промышленности. Алюминий и его соединения используются в качестве горючего компонента в твердых ракетных топливах [1]. Одним из перспективных направлений использования алюминия на сегодняшний день считаются системы генерирования и хранения водорода [2]. Аналитические и экспериментальные исследования показывают, что порошкообразный алюминий горит и зажигается быстрее [3]. При уменьшении размеров частиц алюминия изменяются не только механические свойства, но и термодинамические характеристики - температура плавления становится гораздо ниже, чем у более крупных частиц [4]. Замена частиц алюминия микронных размеров на его наночастицы увеличивает скорость детонации во взрывчатых составах [5]. Наноалюминий является химически активным из-за резкого повышения поверхностной энергии [6], чем у стандартного порошкового алюминия.

В настоящее время разработан ряд технологий синтеза наночастиц алюминия: левитационно-струйный [7], лазерная абляция [8], электроплазменный взрыв металлического алюминия [9-10]. Нанопорошок алюминия имеет целый ряд преимуществ: высокая энергоемкость, экологичность, безопасность хранения, относительная легкость производства и т.д.

Нами предлагается прямой, эффективный и простой метод синтеза наночастиц алюминия с использованием энергии импульсной плазмы, создаваемой в различных жидкостях. Единичный импульс имеет чрезвычайно малую длительность $(10^{-3}-10^{-4} \text{ c})$, высокую плотность тока $(10^{6}-10^{8} \text{ A/cm}^{2})$ в зоне воздействия, очень высокую температуру в канале разряда $(10^{4}-10^{5} \text{ K})$ и давление 3-10 кбар. Малая длительность единичного импульса, очень маленький объем нанореактора в виде газового пузыря $(10^{-3}-10^{-4} \text{ см}^{-3})$, возникающего после воздействия единичного импульса, позволяют направить почти 90% подводимой энергии на наноструктурирование твердого тела без потерь в окружающую среду [11].

Диспергирование алюминия чистотой 99,94 % проводилось в одноатомных спиртах (этиловый, изопропиловый), при энергии единичного импульса – 0,05 Дж. Частицы алюминия в виде темных осадков оседали на дно реактора. Осадки отделялись от среды

153

декантированием и фильтрацией и просушивались на воздухе. Полученные серые порошки подвергались рентгенофазовому (рентгеновский аппарат ДРОН-3 с СиКα- излучением (γ=1.54187Å)) и электронно-микроскопическому (сканирующий электронный микроскоп (СЭМ) марки SGIH 750) анализам. Обработку полученных дифрактограмм проводили с использованием базы данных ICDD PDF-2, уточнение параметров элементарных ячеек осуществляли с использованием оригинального комплекса программ «OriginPro7.5» и таблиц Я.Л. Гиллера [12].

Размер частиц рассчитан по уравнению П. Шеррера [13].

На дифрактограммах продуктов диспергирования алюминия (рис.1а) в этиловом и (рис.1б) изопропиловом спиртах обнаружены линии двух фаз: металлический алюминий, кристаллизующийся в кубической сингонии (пространственная группа Fm3m) с параметром решетки a = 4,0528 Å (в этиловом спирте) и a = 4,05697 Å (в изопропиловом), что совпадает с данными JCPDS № 04-787. Частицы оксида алюминия представлены в тетрагональной сингонии (пространственная группа P4m2 (115)) и имеют параметры решетки: a = 5,627 Å, c = 23,852 Å (в этиловом спирте) и a = 5,64 Å, c = 23,443 Å (в изопропиловом спирте) согласно стандартной карте JCPDS № 88-1609.

Результаты анализа дифрактограмм продукта диспергирования алюминия в этиловом и изопропиловом спиртах приведены в таблицах 1 и 2:

Таблица 1

Данные обработки дифрактограммы продукта диспергирования алюминия в этиловом спирте

N⁰	20	I/I ⁰	Dтеор.Å	Dэкc.Å	HKL	HKL
					Al	Al_2O_3
1	31,7	11	2,7937	2,8225		200
2	31,92	10	2,7937	2,8036		116
3	35,98	10	2,4900	2,4960		211

4	38,48	100	2,3380	2,3394	111	
5	40,36	11	2,2131	2,2347		215
6	44,72	49	2,0240	2,0264	200	
7	49,6	10	1,8261	1,83785		225
8	55,16	7	1,6582	1,66504		315
9	65,12	24	1,4310	1,43240	220	
10	78,24	20	1,2210	1,22180	311	
11	82,36	7	1,1690	1,17081	222	
12	99,08	5	1,0124	1,01318	400	

Параметры кристаллической решетки наночастиц алюминия (кубическая) a = 4,0528 Å; Al₂O₃ (тетрагональная) a = 5,627 Å, c = 23,852 Å.

Таблица 2

Результаты обработки дифрактограммы продукта диспергирования алюминия в изопропиловом спирте

N⁰	20	I/I ₀	Dтеор.Å	Dэкс.Å	HKL	HKL
					Al	Al $_2$ O $_3$
1	31,24	7	2,8933	2,8630		107
2	31,82	9	2,7937	2,8122		200/116
3	36	6	2,4900	2,4947		211
4	38,44	100	2,338	2,3417	111	
5	40,29	7	2,2131	2,2384		215
6	44,70	44	2,024	2,0273	200	
7	55,12	5	1,6582	1,6662		315
8	65,06	21	1,431	1,4336	220	
9	78,16	16	1,221	1,2228	311	
10	82,42	7	1,1690	1,1701	222	
11	99,02	3	1,0124	1,0136	400	

Параметры кристаллической решетки наночастиц алюминия (кубическая) a = 4,05697 Å; Al₂O₃ (тетрагональная) a = 5,64 Å, c = 23,443 Å.

Электронно-микроскопический снимок образцов, выполненный на СЭМ, показывает (рис.26 и 36) присутствие сферических наночастиц алюминия с размерами от 4 до 10 нм. Количественный микроанализ продуктов диспергирования алюминия в этиловом и изопропиловом спиртах определяли с помощью рентгеновского энергодисперсионного анализатора, которым оснащен СЭМ (рис.2а и 3а). Обнаружено, что образцы на 62,06 % (в этиловом) и 63,06 % (в изопропиловом) состоят из металлического алюминия, на 37,94 % (в этиловом) и 36,94 % (в изопропиловом) из оксида алюминия. Таким образом, мы можем предположить, что нами получены металлические и оксидные наночастицы алюминия

Рис.2. Энергодисперсионный анализ (а) и СЭМ снимок (в) наночастиц алюминия, полученных в этиловом спирте.

Рис.3. Энергодисперсионный анализ (а) и СЭМ снимок (в) наночастиц алюминия, полученных в изопропиловом спирте.

На основании проделанных исследований было установлено, что при диспергировании алюминия в импульсной плазме, создаваемой между двумя электродами из алюминия в этиловом и изопропиловом спиртах, формируются наночастицы металлического алюминия и оксида алюминия. При этом наночастицы алюминия кристаллизуются в кубической сингонии (пространственная группа Fm3m) и имеют средние размеры в обеих средах от 4 до 10 нм.

Список литературы

1. Фролов Ю.В., Пивкина А.Н., Иванов Д.А. и др. Структура частиц и параметры горения составов с наноалюминием // Химическая физика – 2008. - Т.27. - №6. - С. 54 – 61.

2. Ильин А.П., Коршунов А.В., Толбанова Л.О. Применение нанопорошка алюминия в водородной энергетике // Известия Томского политехнического университета – 2007. - Т. 311. - №.4. - С. 10 – 14.

3. Громов А.А., Попенко Е.М., Ильин А.П., Верещагин В.И. О влиянии добавок на горение аэрогелей алюминия // Химическая физика – 2005. - Т. 24. - № 4. - С. 69 – 83.

4. Богданов К.Ю. Почему наночастицы плавятся при низкой температуре // Популярная нанотехнология

http://www.popnano.ru/studies/index.php?id=75&task=view

5. Гогуля М.Ф.,.Махов М.Н., Бражников М.А. и др. Взрывчатые характеристики алюминизированных нанокомпозитов на основе октогена // Физика горения и взрыва – 2008. - Т. 44. - № 2. - С. 85 – 100.

6. Бабук В.А., Зеликов А.Д., Салимулин Р.М. Нанотермодинамика как инструмент описания малоразмерных объктов естественного мира // Журнал технической физики – 2013. - Т. 83. - вып. 2. - С. 1 – 7.

7. Сторожев В.Б., Жигач А.Н., Кусков М.Л. и др. Получение наноразмерных частиц алюминия левитационно - струйным методом и исследование их распределения по размерам // Российские нанотехнологии – 2009. - Т. 4. - С. 73 – 78.

8. Al-Mamun Sh.A., Nakajima R., Ishigaki T. Tuning the size of aluminum oxide nanoparticles synthesized by lazer ablation in water using physical and chemical approaches // Journal of Colloid and Interface Science – 2013. - V. 392. - P. 172 - 182.

9. Котов Ю.А., Бекетов И.В., Медведев А.И., Тимошенкова О.Р. Получение наночастиц алюминия в оксидной оболочке // Российские нанотехнологии – 2013. - Т. 8. - № 5,6. - С. 126 – 129.

10. Ильин А.П., Тихонов Д.В., Назаренко О.Б. Защитные покрытия и термическая устойчивость нанопорошков алюминия, полученных в условиях электрического взрыва // Известия Томского политехнического университета – 2011. - Т. 319. - № 3. - С. 5 – 10.

11. Сулайманкулова С.К., Асанов У.А. Энергонасыщенные среды в плазме искрового разряда. – Бишкек, Кыргызпатент, 2002. – 264 с.

12. Гиллер Я.Л. Таблицы межплоскостных расстояний. Москва. 1966

13. Monshi A., Foroughi M.R., Monshi M.R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. // World journal of nano science and engineering – 2012. - V. 2. - P. 154 - 160.